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Abstract

In this paper, we formulate an age‐structured epidemic modeı for the demographic transition in which
we assume that the cultural norms leading to lower fertility are transmitted amongst individuals in the
same way as infectious diseases. First, we formulate the basic model as an abstract homogeneous Cauchy
problem on a Banach space to prove the existence, uniqueness, and well‐posedness of solutions. Next based
on the normalization arguments, we investigate the existence of nontrivial exponential solutions and then
study the linearized stability at the exponential solutions using the idea of asynchronous exponential
growth. For the boundary exponential solutions, we formulate the stability condition using reproduction
numbers. We show that bi‐unstability of boundary exponential solutions is one of conditions which
guarantee the existence of coexistent exponential solutions.

1 Introduction

During the  18^{th} and ı9th centuries, the mortality rate in industrialized countries declined along with economic
progress and industrial development. The birth rate began to decline somewhat later, and in the  20^{th} century
these countries experienced low mortality and low fertility rates to an unprecedented extent, while the growth
rates of their populations also sharply declined. The change from “high‐birth and high‐death” to “high‐birth
and low‐death” and then to ‘low‐birth and low‐death” is called the demographic transition. Since World War
II, the demographic transition has been observed even in developing countries.

The well‐known modernization hypothesis insists that the low fertility rate is a result of individual adap‐
tation to general modernized environments, as industrialization, urbanization, educational standards, and
families change. On the other hand, diffusion theory for the demographic transition assumes that innovative
cultural norms that lower the number of births could be transmitted from individuals with low fertility (infect‐
eds) to traditional individuals with high fertility (susceptibles). In this study, we develop an age‐structured
epidemic model to explain these demographic transition dynamics based on the diffusion theory ([5], [6]).

Here, to illustrate the basic aspects of the transmission dynamics in a growing or shrinking population,
let us consider a simple age‐independent case. Let  S(t) be the density of individuals with high fertility, i.e.
susceptibıe people, at time  t , and let  I(t) be the density of individuals with low fertility, i.e. infected people,
at time  t . The basic unstructured system for the demographic transition is described by a homogeneous
Lotka‐Volterra system:

  \frac{dS(t)}{dt}  =\lambda ı  S (  t)—   \frac{\beta S(t)I(t)}{S(t)+I(t)},
(1.1)

  \frac{dI(t)}{dt}=\lambda_{2}I(t)+\frac{\beta S(t)I(t)}{S(t)+I(t)},
’This is ajoint work with Ryohei Saito (Rei‐Frontier Inc.) and Nicolas Bacaër (IRD, Bondy). Due to limitations of space, we

omit proofs, some extended arguments and numerical resuıts. Hisashi Inaba is supported by JSPS KAKENHI Grant Number
 16K05266.

 \dagger inaba@ms.u‐tokyo.ac.jp

51



52

where  \lambda ı and  \lambda_{2} are the Maıthusian parameters for susceptible and infected people respectively such that
 \lambda ı  >\lambda2, and  \beta>0 is the transmission coefficient. The sign of  \lambda_{j} does not matter in the following argument.
We are assuming that the force of infection is given by the homogeneous law  \beta S/N with  N=S+I , and
that the difference between the Malthusian parameters reflects the difference in the crude birth rates (that
is, we neglect differential mortality)1.

For the homogeneous dynamical system, if  p^{*} is an equilibrium solution, then so is  cp^{*} for any  c>0 . Then
there is no possibility of an attracting nontrivial equilibrium except for the origin, which is very different
from the standard nonlinear system. Then our interest focuses on the existence and stability of persistent
(exponential) solutions, which play a role as stationary solutions in nonhomogeneous nonlinear dynamical
systems.

As we see below, there are essentially two cases for all positive initial data:

 e if  \beta<\lambda_{1}-\lambda_{2} , then the susceptible population grows asymptotically like  e^{\lambda_{1}t} , the infected population
grows or decays asymptotically like  e^{(\beta+\lambda_{2})t} , so the infected fraction tends to  0 (the demographic
transition does not occur and the reverse transition occurs if the susceptibles invade into the infected
population);

 \bullet if  \beta>\lambda_{1}-\lambda_{2} , then the susceptible population grows or decays asymptotically like  e^{(\lambda_{1}-\beta)t} , the infected
population grows or decays asymptotically like  e^{\lambda_{2}t} , so the infected fraction tends to 1 (the demographic
transition occurs, and the reverse transition does not occur).

In this studies, we extend the above observations to an age‐structured model, which allows more complex
behavior. In particular, there is a non‐degenerate third case where both  S and  I are positive, and grow
exponentially with the same Malthusian parameter  \lambda\in(\lambda_{2}, \lambda_{1}) , which may be called the coexistent expo‐
nential solution. For two trivial exponential solutions, there is no bi‐unstable case for the age‐independent
model. However, it is not the case for the age‐dependent model, we can show that the bi‐unstability of the
boundary exponential solutions (where  S or  I is zero) is one of conditions which guarantee the existence of
coexistent exponential solutions, and in fact, by numerical simulations, we can prove that the bi‐unstable
case is possible.

2 Age‐structured model

Consider now the following age‐dependent epidemic model for the demographic transition:

  \frac{\partial p_{1}(t,a)}{\partial t}+\frac{\partial p_{2}(t,a)}{\partial a}=
-(\mu(a)+\pi(t, a))p_{1}(t, a) ,

  \frac{\partial p_{2}(t,a)}{\partial t}+\frac{\partial p_{2}(t,a)}{\partial a}=
\pi(t, a)p_{1}(t, a)-\mu(a)p_{2}(t, a) , (2.1)

 p_{1}(t, 0)= \int_{0}^{\infty}m_{1}(a)p_{1}(t, a)da, p_{2}(t, 0)=\int_{0}
^{\infty}m_{2}(a)p_{2}(t, a)da,
where  m_{1}(a) is the age‐specific birth rate of the susceptible population (population with high fertility),  m_{2}(a)
is the age‐specific birth rate of the infected population (population with low fertility), and  \mu(a) is the common
age‐specific death rate. We assume that the force of “cultural” infection  \pi(t, a) is given by the homogeneous
law

  \pi(t, a):=\frac{1}{N(t)}\int_{0}^{\infty}\beta(a, \sigma)p_{2}(t, \sigma)
d\sigma,
where  N(t)  := \int_{0}^{\infty}n(t, a)da is the total size of the population,  n(t, a)  :=p_{1}(t, a)+p_{2}(t, a) is the age density
of the host population, and  \beta(a, \sigma) is the transmission coefficient between susceptible individuals at age  a

and infected individuals at age  \sigma . Let  \ell(a) be the survival probability, defined by  P(a)= \exp(-\int_{0}^{a}\mu(\sigma)d\sigma)
1The natural death rate of each popuıation is given by a common value  \mu>0 and  \lambda_{j}=m_{j}-\mu with  m_{1}>m_{2} , where  m_{J} is

the birth rate of j‐th population.
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and let  \Phi_{j}(a)  :=m_{j}(a)\ell(a) be the net reproduction function (or the net maternity function) of the j‐
th population. We assume that  m_{1}(a)>m_{2}(a) , so that  \mathcal{R}_{1}>\mathcal{R}_{2} where   \mathcal{R}_{j}:=\int_{0}^{\infty}m_{j}(a)\ell(a)da is the
demographic reproduction number (net reproduction rate) for the j‐th population. The intrinsic growth rate
 \lambda_{j} (j  = ı, 2) is defined as the real dominant root of Lotka’s characteristic equation  [?][7] :

  \int_{0}^{\infty}e^{-\lambda_{J}a}\Phi_{j}(a)da=1.
Therefore,  \lambda_{1}>\lambda_{2} . Moreover, we adopt the following technicaı assumption:

Assumption 1. 1.  \lambda_{1}>\lambda_{2}>-\underline{\mu}, where   \underline{\mu}:=\inf_{a\in R_{+}}\mu(a)>0.

2. Assume that  m_{j}\in L_{+}^{1}(R_{+})\cap L_{+}^{\infty}(R_{+}),  \mu\in L_{+}^{\infty}(R_{+}) and that there exist  \beta_{1}\in L_{+}^{1}(R_{+})\cap L_{+}^{\infty}(R_{+})
and  \beta_{2}\in L_{+}^{\infty}(R_{+}) such that  \beta_{1}(a)\beta_{2}(\sigma)\leq\beta(a, \sigma)\leq\kappa\beta_{1}(a)
\beta_{2}(\sigma) with  \kappa>1 , and  \beta_{1} and  \beta_{2} are
quasi‐interior points of  L_{+}^{1} . Moreover, we assume that

  \lim_{harrow 0}\int_{0}^{\infty}|\beta(a+h, \sigma)-\beta(a, \sigma)|da=0 umiformly for  \sigma\in R+\cdot

Let  p(t)=(p_{1}(t, \cdot),p_{2}(t, \cdot))^{T} . Then the basic system is considered to be an abstract homogeneous nonlinear
dynamical system on  X  :=L^{1}(R_{+})\cross L^{1}(R_{+}) :

  \frac{dp}{dt}=Ap(t)+F(p(t)) , p(0)=p_{0} , (2.2)

where  A is the infinitesimal generator of a positive  C_{0}‐semigroup defined by

 (A\phi)(a)=(\begin{array}{l}
--dA_{(a)-\mu(a)\phi_{1}(a)}da
-d^{\frac{2}{a}(a)-\mu(a)\phi_{2}(a)}Ad
\end{array})
and having domain  D(A)  := \{\phi\in W^{1,1}(R_{+}):\phi_{j}(0)=\int_{0}^{\infty}m_{j}(a)\phi_{j}(a)
da\} and  F:X_{+}arrow X is a nonlinear
operator given by

 F(\phi)(a):=(\begin{array}{l}
-\pi(a|\phi)\phi_{1}(a)
\pi(a|\phi)\phi_{1}(a)
\end{array}),
where  \phi=(\phi_{1}, \phi_{2})\in X_{+},  \Vert\phi\Vert_{X}  := \int_{0}^{\infty}(|\phi_{1}(a)|+|\phi_{2}(a)|)da and

  \pi(a|\phi):=\frac{1}{\Vert\phi\Vert_{X}}\int_{0}^{\infty}\beta(a, \sigma)
\phi_{2}(\sigma)d\sigma,
denotes a nonlinear operator acting on  X . Then  F is homogeneous of degree one, that is,  F(\alpha\phi)=\alpha F(\phi)
for  \alpha>0 and  F(0)=0.

Lemma 2.1. The homogeneous operator  F is globally Lipschitz continuous on  X_{+} , and there exists  \epsilon>0

such that  (I+\epsilon F)(X_{+})\subset X_{+}.

Proposition 1. Let  p_{0}\in X_{+} . Then the Cauchy problem (2.2) has a unique mild solution  p(t)\in X_{+} that
defines a semiflow  S(t) such that  p(t)=S(t)p_{0} and  S(t)(X_{+})\subset X_{+}.

3 Normalized system and the stability of exponential solutions

The solution of (2.2) is called a persistent (exponential) solution if it has the form as  e^{\lambda^{*}}tw^{*} , where  \lambda^{*} is a
constant and  w^{*}\in X . Then it follows from the homogeneous nonlinearity that  a (biologically meaningful)
persistent solution exists if and only if the nonlinear eigenvalue problem  Aw^{*}+F(w^{*})=\lambda^{*}w^{*} has a solution,
which propose us a fixed point problem. For the homogeneous system, we are mainıy interested in persistent
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(exponential) solutions, In the following, first we introduce the normalized system ([1], [3]). Then using the
idea of asynchronous exponential growth (AEG) by Webb ([8], [9], [?]), we shall prove a simple criterion for
the orbital stability of exponential solutions.

Let  \theta be the bounded linear positive functional from  x_{+} to  R+ defined by

  \langle\theta, z\rangle:=\int_{0}^{\infty}(z_{1}(a)+z_{2}(a))da, z=(z_{1}, 
z_{2})\in X,
which gives the total population size if  z\in X_{+} . So  \langle\theta,  z(t)\rangle>0 if  z(0)\in X_{+}\backslash \{0\} . Let us introduce some
new variables called the age profile:

 w_{1}(t, a)= \frac{p_{1}(t,a)}{\{\theta,p(t)\rangle}, w_{2}(t, a)=\frac{p_{2}
(t,a)}{\{\theta,p(t)\rangle},
and

 w(t) :=(w_{1}(t, \cdot), w_{2}(t, \cdot))\in\Gamma :=\{\phi\in X_{+}:\{\theta, 
\phi\rangle=1\},

where  \Gamma is a state space of age profiles. Then we can replace the basic system (2.2) by the normalized system
as follows

  \frac{dw}{dt}=Aw+F(w)-\langle\theta, Aw+F(w)\rangle w, w\in\Gamma , (3.1)

The normalized system has a unique mild global solution  S(t)w_{0} , and  \Gamma is positively invariant with respect
to the semiflow  S(t),  t\geq 0 . If  w_{0}\in \mathcal{D}(A) , then  S(t)p_{0} becomes a classical solution. It follows from (3.1) that

  \frac{d}{dt}\langle\theta, w\rangle=\langle\theta, (A+F)w(t)\rangle(1-
\{\theta, w(t)\rangle) .

Therefore,
 \langle\theta, w(t)\rangle=1-(1-\langle\theta, w(0)\rangle)e^{-\int_{0}^{t}
\langle\theta,(A+F)w(s)\rangle ds},

from which we conclude that   S(t)(\Gamma)\subset\Gamma for an  t>0 . If we use the solution  w(t) of the normalized system
(3.1), the solution  p(t) of the original system is given by

 p(t)=w(t) \exp(\int_{0}^{t}\{\theta, (A+F)w(s)\rangle ds)\langle\theta, z(0)
\rangle.
Therefore, the original problem has been reduced to a problem on the space of age profiles  \Gamma.

For our case, notice that  \langle\theta,  (A+F)w} is a linear functional on  X . In fact, if we introduce a linear
functional  H from  X_{+}arrow R defined by

 H( \phi):=\int_{0}^{\infty}[(m_{1}(a)-\mu(a))\phi_{1}(a)+(m_{2}(a)-\mu(a))\phi_
{2}(a)]da, \phi=(\phi_{1}, \phi_{2})\in X_{+}.
and if  w is a solution of the normalized system, then  H(w(t)) gives the Malthusian parameter for the total
population size:

 H(w(t))= \{\theta, Aw+F(w)\rangle=\frac{1}{\langle\theta,p(t)\}}
\frac{d\langle\theta,p(t)\rangle}{dt}.
Let us consider the problem of existence and stability of (exponentially growing) persistent solutions. Let

  w^{*}\in\Gamma be a steady state of the normalized system. Then we have the following nonlinear eigenvalue problem:

 \lambda^{*}w^{*}=Aw^{*}+F(w^{*}) , w^{*}\in \mathcal{D}(A)\cap\Gamma , (3.2)

where  \lambda^{*}=\langle\theta,  (A+F)w^{*}\rangle . It is clear that  e^{\lambda^{*}}tw^{*} is a persistent solution of the original system. Conversely,
if there exists an exponential solution  e^{\lambda t}z^{*} for the original homogeneous system (2.2), then  \lambda^{*} and  w^{*}=

 z^{*}/\langle\theta,   z^{*}\rangle must satisfy (3.2), and so  w^{*} is a stationary state of the normalized system.
To demonstrate the linearized stability of the exponential solution, the Euler formula for the homogeneous

system is crucial [9].
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Proposition 2. If  F is Fréchet differentiable at  x\in x_{+} , then the Euler formula  F'[x]x=F(x) holds, where
 F'[x] denotes the Fréchet derivative at  x . Moreover,  F'[x]=F'[cx] for any  c>0.

Therefore, if  F is Fréchet differentiable at a steady state  w^{*} of the normalized system such that  (A+
 F)w^{*}=\lambda^{*}w^{*} , then  w^{*} is the positive eigenvector for the linearized operator  B  :=A+F'[w^{*}] associated
with the eigenvalue  \lambda^{*} , and  B is independent of positive scalar multipliers for  w^{*}.

Let  \zeta(t)  :=w(t)-w^{*}\in X_{\theta}  :=\{\zeta\in X : \langle\theta, \zeta\rangle=0\} . Then the normalized system can be rewritten as an
equation on  X_{\theta}.

  \frac{d\zeta(t)}{dt}=B\zeta(t)-\langle\theta, B\zeta(t)\rangle w^{*}-\lambda^{
*}\zeta(t)+\mathcal{G}(\zeta(t))
 =C\zeta(t)+\mathcal{G}(\zeta(t)) , (3.3)

where   C\zeta  :=B\zeta-\langle\theta,   B\zeta\rangle w^{*}-\lambda^{*}\zeta is a linear operator and  \mathcal{G}(\zeta) is the second order term as  \Vert \mathcal{G}(\zeta)\Vert_{X}/\Vert\zeta\Vert_{X}arrow 0
when  \zetaarrow 0.

Lemma 3.1. The subspace  X_{\theta} is invariant with respect to  C,  e^{tC} and  \mathcal{G} . Then if  \zeta(0)\in X_{\theta} , the mild
solution of (3.3) is given as the solution of the integral equation in  X_{\theta} :

 \zeta(t)=e^{C}オ   \zeta(0)+\int_{0}^{t}e^{C(t-s)}\mathcal{G}(\zeta(s))ds . (3.4)

Definition 3.2. If for any  \epsilon>0 , there exists  \delta>0 such that  \Vert\zeta(t)\Vert_{X}<\epsilon for all  t>0 when  \Vert\zeta(0)\Vert_{X}<\delta,
then  w^{*} is called locally stable. If  w^{*} is locally stable and   \lim_{tarrow\infty}\Vert\zeta(t)\Vert_{X}=0 when  \Vert\zeta(0)\Vert_{X}<\delta' for
some  \delta'>0 , then  w^{*} is called locally asymptotically stable, while  w^{*} is called unstable if it is not stable.  An

exponential solution of the original system is called stable (in the sense of Hadeler [1], [2]) if the corresponding
steady state of the normalized system is locally stable, while it is unstable if the corresponding steady state of
the normalized system is unstable.

Let  C_{\theta} be the part of  C in  X_{\theta} , that is,  C_{\theta}=C on  \mathcal{D}(C_{\theta})=\{\phi\in \mathcal{D}(C)\cap X_{\theta} : C\phi\in 
X_{\theta}\} . Then  C_{\theta} is
an infinitesimal generator of a strongly continuous semigroup  e^{tC_{\theta}} on  X_{\theta} . The linearized equation of (3.3) is
 \zeta'=C_{\theta}\zeta on  X_{\theta} , so we can apply Proposition 4.13 of [7] to obtain the following stability resuıt:

Proposition 3. If  \omega_{0}(C_{\theta})<0 , then  w^{*} is locally asymptotically stable. If there exists  \lambda_{\dagger}\in\sigma(C_{\theta}) such that
 \Re\lambda_{\dagger}>0 and   \max\{\omega_{1}(C_{\theta}), \sup_{\lambda\in\sigma(C_{\theta})\backslash 
(E\sigma(C_{\theta})\cup\{\lambda_{\dagger}\})}\Re\lambda\}<\Re\lambda_{\dagger} , then  w^{*} is unstable.

On the other hand, if we use the concept of asynchronous exponential growth (AEG) by Webb ([8], [9]),
we can state a more simple stability condition.

Definition 3.3. Let  T(t),  t\geq 0 , be a strongly continuous semigroup of bounded hnear operators in the Banach
space X. Then  T(t),  t\geq 0 , has asynchronous exponential growth (AEG) with intrinsic growth constant  \lambda\in R

if there exists a nonzero rank‐one operator  P in  X such that   \lim_{tarrow\infty}e^{-\lambda t}T(t)=P , where the limit is in the
operator norm topology.

Applying the result of [9], we obtain

Proposition 4. Suppose that the lineanized operator  B=A+F'[w^{*}] ts the infinitesimal generator of a
strongly continuous semigroup of bounded hnear operators  T(t),  t\geq 0 , and it has AEG such that   \lim_{tarrow\infty}e^{-\lambda^{*}t}T(t)=
 P , where  P is a nonzero rank‐one operator in X. Then there exists  \delta>0 such that, if  x\in U_{\delta}  :=\{x\in
 X_{+}\backslash \{0\} :  \Vert(I-P)x\Vert_{X}/\Vert Px\Vert_{X}<\delta\} , then Qx  := \lim_{tarrow\infty}e^{-\lambda^{*}t}p(t) exists, where  Qx\in Range(P) and  Qx\neq 0.

Proposition 5. An equilibrium   w^{*}\in\Gamma is locally asymptotically stable in the sense of Hadeler if  B=

 A+F'[w^{*}] has AEG with intrinsic growth constant  \lambda^{*}.

55



56

4 Existence of nontrivial exponential solutions

The basic system (2.1) has two boundary exponential solutions corresponding to boundary equilibrium points
of the normalized system. In fact, if  p_{2}=0 , then there exists a trivial exponential solution such that
 p_{1}^{*}(t, a)=e^{\lambda_{1}t}w_{1}(a) ,  w_{1}(a)  :=(c_{1}(a), 0) , where  c_{1}(a)  := \frac{e^{-\lambda_{1}}\ell(a)}{f_{0}^{\infty_{e-\lambda,x}}e(x)d} is the stable age profile of the

susceptible population with high fertility. On the other hand, if  p_{1}=0 , then there exists another trivial
exponential solution such that  p_{2}^{*}(t, a)=e^{\lambda_{2}t}w_{2}(a) ,  w_{2}(a)  :=(0, c_{2}(a)) , where  c_{2}(a)  := \frac{e^{-\lambda_{2^{O}}}\ell(a)}{\int_{0}^{\infty}e-\lambda_{2}xp(x)dx} is

the stabıe age profile of the infected population with low fertility.
Our fundamental problem is now to determine whether a positive steady state  (u^{*}, v^{*})>0 exists for the

normalized system (3.ı). Let   w^{*}=(u^{*}, v^{*})\in\Gamma be a positive steady state solution of (3.1). Then we have

  \frac{du^{*}(a)}{da}=-H^{*}u^{*}(a)-(\mu(a)+\pi^{*}(a))u^{*}(a) ,

  \frac{dv^{*}(a)}{da}=-H^{*}v^{*}(a)-\mu(a)v^{*}(a)+\pi^{*}(a)u^{*}(a) ,

 u^{*}(0)= \int_{0}^{\infty}m_{1}(a)u^{*}(a)da, v^{*}(0)=\int_{0}^{\infty}m_{2}
(a)v^{*}(a)da,
where  \pi^{*}(a)  := \int_{0}^{\infty}\beta(a, \sigma)v^{*}(\sigma)d\sigma and  H^{*}=H(w^{*}) . Thus we have

 u^{*}(a)=u^{*}(0)\ell(a)e^{-H^{*}a-\int_{0}^{a}\pi(z)dz},
 v^{*}(a)=v^{*}(0)\ell(a)e^{-H^{*}a}+e^{-Ha}\ell(a)(1-e^{-\int_{0}^{a}\pi^{*}(z)
dz})u^{*}(0) . (4.1)

From  u^{*}(a)+v^{*}(a)=(u^{*}(0)+v^{*}(0))\ell(a)e^{-H^{*}a} and the condition  |w^{*}|_{1}=1 , we have

 (u^{*}(0)+v^{*}(0)) \int_{0}^{\infty}\ell(a)e^{-Ha}da=1 . (4.2)

Since  u^{*}(0)= \int_{0}^{\infty}m_{1}(a)u^{*}(a)da , it follows from the boundary condition for  u^{*} that

 1= \int_{0}^{\infty}m_{1}(a)\ell(a)e^{-H^{*}a-\int_{0}^{a}\pi^{*}(\sigma)
d\sigma}da . (4.3)

Because (4.3) has a unique real root  H^{*} for a given  \pi^{*} , we can define a continuous functional  \Psi :  L^{1}arrow R

such that  H^{*}=\Psi(\pi^{*}) satisfies (4.3). That is, for any  \phi\in L_{+}^{1}(R_{+}) , it follows that

 1= \int_{0}^{\infty}m_{1}(a)\ell(a)e^{-\Psi(\phi)a-\int_{0}^{a}\phi(\sigma)
d\sigma} da,

from which  \Psi(\phi)\leq\lambda_{1} and  \Psi(0)=\lambda_{1}.
From (4.1) and (4.2), we get

 u^{*}(0)= \frac{1}{\int_{0}^{\infty}l(a)e^{-\Psi(\pi^{*})a}da}\frac{1-\int_{0}^
{\infty}m_{2}(a)\ell(a)e^{-\Psi(\pi')a}da}{1-\int_{0}^{\infty}m_{2}(a)\ell(a)e^{
-\Psi(\pi^{*})a-\int_{0}^{a}\pi(z)dz}da},
 v^{*}(0)= \frac{1}{\int_{0}^{\infty}l(a)e^{-\Psi(\pi^{*})a}da}\frac{\int_{0}
^{\infty}m_{2}(a)\ell(a)e^{-\Psi(\pi^{*})a}(1-e^{-\int_{0}^{\sigma}\pi^{*}(z)dz}
)da}{1-\int_{0}^{\infty}m_{2}(a)l(a)e^{-\Psi(\pi^{*})a-\int_{0}^{a}\pi^{*}(z)dz}
da}.

Using (4.1) and the definition of  \pi^{*} , we obtain a fixed‐point equation for the unknown force of infection  \pi^{*}

as  \pi^{*}(a)=G(\pi^{*})(a) , where  G is a nonıinear operator from  L^{1}(R_{+}) into itself defined by

 G( \phi)(a):=\int_{0}^{\infty}\beta(a, \sigma)b_{0}(\phi)\ell(\sigma)e^{-
\Psi(\phi)\sigma}[g_{2}(\phi)+(1-e^{-\int_{0}^{\sigma}\phi(z)dz})g_{1}(\phi)]
d\sigma.
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The functionals  g_{j} (j  = ı, 2) from  L_{+}^{1}(R_{+}) to  R are defined by

 g_{1}( \phi):=\frac{1-\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\Psi(\phi)a}da}{1-
\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\Psi(\phi)a-\int_{0}^{a}\phi(z)dz}da},
 g_{2}( \phi):=\frac{\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\Psi(\phi)a}(1-e^{-
\int_{0^{a}}\phi(z)dz})da}{1-\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\Psi(\phi)a-
\int_{0}^{a}\phi(z)dz}da},

with  \phi\in L_{+}^{1} and  b_{0}(\phi)  :=( \int_{0}^{\infty}\ell(a)e^{-\Psi(\phi)a}da)^{-1} . Note that  g_{1}(\phi)+g_{2}(\phi)=1.

Lemma 4.1. The operator  G is nonnegative and defined for all  \phi\in L_{+}^{1}(R_{+}) . Moreover, it holds that   G(U)\subset
 M_{0} , where  U  :=\{\phi\in L_{+}^{1}(R) : \Psi(\phi)\geq\lambda_{2}\} and  M_{0}  :=\{\phi\in L_{+}^{1}(R) : |\phi|_{\infty}\leq|\beta|_{\infty}, |\phi|_{1}
\leq\kappa|\beta_{1}|_{1}|\beta_{2}|_{\infty}\}.

Let  G'[0] be the Fréchet derivative at the origin. Then, for  \phi\in L_{+}^{1},

 (G'[0] \phi)(a)=b_{0}(0)\int_{0}^{\infty}\beta(a, \sigma)\ell(\sigma)e^{-
\lambda_{1}\sigma}d\sigma\frac{\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\lambda_{1}a}
\int_{0}^{a}\phi(z)dzda}{1-\int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\lambda_{1}a}da}
 +b_{0}(0) \int_{0}^{\infty}\beta(a, \sigma)\ell(\sigma)e^{-\lambda_{1}\sigma}
\int_{0}^{\sigma}\phi(z)dzd\sigma,

where  b_{0}(0)=( \int_{0}^{\infty}\ell(a)e^{-\lambda_{1}a}da)^{-1}.
To show existence of a positive steady state, we apply a fixed point argument similar to that in Kras‐

noselskii ([4], Theorem 4.11).

Proposition 6. Suppose that  \lambda_{1}-\lambda_{2}>|\beta|_{\infty}  := \sup_{(\cdot,.)\in R..R}.  |\beta(a, \sigma)| and  r(G'[0])>1 . Let

 M_{\epsilon}:=\{\phi\in L_{+}^{1}:|\phi|_{1}\leq(1+\epsilon)C, |\phi|_{\infty}
\leq(1+\epsilon)|\beta|_{\infty}\},

where  C  :=\kappa|\beta_{1}|_{1}|\beta_{2}|_{\infty} and  \epsilon>0 is chosen so that  \lambda_{1}-\lambda_{2}>(1+\epsilon)|\beta|_{\infty} . Then  G has at least one positive
fixed point  \phi^{*} in  M_{0} such that  g_{j}(\phi^{*})>0 for j  = ı, 2.

As is shown in Proposition 8, the spectral radius of  G'[0] equals that of the next generation operator for
the low‐fertility population in the normalized system, so the assumption of Proposition 6 is not satisfied if
all parameters are age‐independent. However, we found numerical examples such that the assumption of 6
is satisfied and there exists a coexistent exponential growth orbit.

Once  \pi^{*} is given as a fixed point of  G with  g_{j}(\pi^{*})>0 , the corresponding positive stationary solution is
given by  u^{*}(a)=g_{1}(\pi^{*})\ell(a)e^{-\Psi(\pi^{*})a-\int_{0^{a}}\pi^{*}(z)dz} and  v^{*}(a)=\ell(a)e^{-\Psi(\pi)a}[g_{2}(\pi^{*})+g_{1}(\pi^{*})(1-e^{-\int_{0}
^{a}\pi^{*}(z)dz})].

Proposition 7. Let  w^{*}=(u^{*}, v^{*})>0 be the positive steady state. Then  \lambda_{2}<H^{*}=H(w^{*})<\lambda_{1}.

5 Basic reproduction number

Suppose that a small number of infected individuals appear in the population  p_{1} . Then the initial dynamics
of the low‐fertility population in the normalized system is described by the following linearized equation in
the state space  X_{2}  :=L^{1}(R_{+}) :

  \frac{dv}{dt}  = (A2—  \lambda ı)v  + Pv, (5.1)

where  A_{2} is a standard population operator defined by  (A_{2}\phi)(a)  :=- \frac{d\phi(a)}{da}-\mu(a)\phi(a) with domain  D(A_{2})=
  \{\phi\in W^{1,1}(R_{+}):\phi(0)=\int_{0}^{\infty}m_{2}(a)\phi(a)da\} , and  P is a bounded perturbation given by

 (P \phi)(a):=c_{1}(a)\int_{0}^{\infty}\beta(a, \sigma)\phi(\sigma)d\sigma.
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In other words, the perturbation  v(t, a) satisfies

  \frac{\partial v}{\partial t}+\frac{\partial v}{\partial a}=-(\lambda_{1}+
\mu(a))v(t, a)+c_{1}(a)\int_{0}^{\infty}\beta(a, b)v(t, b)db,
(5.2)

 v(t, 0)= \int_{0}^{\infty}m_{2}(a)v(t, a)da.
The mild solution of (5.2) satisfies

 v(t)=e^{(A_{2}-\lambda_{1})t}v(0)+ \int_{0}
オ

 e^{(A_{2}-\lambda_{1})(t-s)}Pv(s)ds.

Applying  P to both sides of this equation, we obtain

 Pv(t)= Pe^{(A_{2}-\lambda_{1})t}v(0)+P\int_{0}^{t}e^{(A_{2}-\lambda_{1})(t-s)}
Pv(s)ds,
where  Pv(t) gives the prevalence of newly horizontally transmitted individuals. This equation of  Pv(t)
describes the renewal process for the horizontally transmitted population, but it also takes into account the
effect of vertical transmission through the boundary condition of the generator  A_{2}.

Because   \int_{0}^{\infty}m_{2}(a)\ell(a)e^{-\lambda_{1}a}da<1 , the next generation operator for the horizontal transmission in the
normalized system at  w=w_{1} is calculated as

  \mathcal{K}_{2}=P\int_{0}^{\infty}e^{(A_{2}-\lambda_{1})t}dt=P(\lambda_{1}-
A_{2})^{-1} , (5.3)

It is easy to see that  \mathcal{K}_{2}=K_{2}(\lambda_{1}) , which may also be written as

 ( \mathcal{K}_{2}\phi)(a)=\int_{0}^{\infty}k(a, b)\phi(b)db (5.4)

with the kernel

 k(a, b)= c_{1}(a)\int_{b}^{\infty}\beta(a, \sigma)\frac{\ell(\sigma)}{\ell(b)}
e^{-\lambda_{1}(\sigma-b)}d\sigma+\frac{c_{1}(a)\int_{0}^{\infty}\beta(a,\sigma)
l(\sigma)e^{-\lambda_{1}\sigma}d\sigma}{1-\int_{0}^{\infty}m_{2}(\sigma)
l(\sigma)e^{-\lambda_{1}\sigma}d\sigma}\int_{b}^{\infty}m_{2}(\sigma)e^{-
\lambda_{1}(\sigma-b)}\frac{1(\sigma)}{\ell(b)}d\sigma.
 P_{\sigma}(A_{2}+P)\cap\Lambda=\{z\in\Lambda\backslash \Pi_{2} : {\imath}\in P_
{\sigma}(K_{2}(z))\} has the dominant eigenvalue  \lambda_{d} such that  \lambda_{d}\in(\lambda_{2}, \lambda_{1})

if  \mathbb{R}_{2}<1 and  \lambda_{d}\in(\lambda_{1}, \infty) if  \mathbb{R}_{2}>1 . Therefore the Malthusian parameter of the newly horizontally
transmitted population prevalence Pv is positive if  \mathbb{R}_{2}=r(\mathcal{K}_{2})>1 , while it is negative if  \mathbb{R}_{2}=r(\mathcal{K}_{2})<1 . So
 \mathbb{R}_{2}=r(K_{2}(\lambda_{1}))=r(\mathcal{K}_{2}) gives the reproduction number of the normalized low‐fertility population prevalence.
Notice that  \mathbb{R}_{2} is an increasing function of  \beta(\cdot, \cdot) and that  \mathbb{R}_{2}arrow 0 if  |\beta|_{\infty}arrow 0 . When all coefficients are
age‐independent, one gets

 k(a, b)= \frac{\beta m_{1}}{m_{1}-m_{2}}e^{-m_{1}a}, \mathbb{R}_{2}=\int_{0}
^{\infty}k(a, a)da=\frac{\beta}{m_{1}-m_{2}},
which is given in section 2 because  \lambda_{j}=m_{j}-\mu.

Moreover, the invasion condition  \mathbb{R}_{2}>1 is one of the conditions for the existence of non‐trivial exponential
solutions (endemicity of the low‐fertility population). In fact, we can show that the following.

Proposition 8. Suppose that  \mathcal{K}_{2} and  G'[0] are nonsupporting compact positive operators. Then it follows
that  r(G'[0])=r(\mathcal{K}_{2})=\mathbb{R}_{2}.

Therefore, instability of the stable growth orbit for a high fertility population suggests the existence of
non‐trivial (coexistent) exponential solutions.
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6 Stability of the boundary exponential solution with low fertility

We next consider the stability of the boundary exponential solution for a low‐fertility population, which
corresponds to the steady state  w^{*}=w_{2}=(0, c_{2}) of the normalized system. In this case, the hnearized
system  d\zeta(t)/dt=(A+F'[w^{*}])\zeta(t) can be reduced to the following system:

  \frac{\partial\zeta_{1}(t,a)}{\partial t}+\frac{\zeta_{1}(t,a)}{\partial a}=-
\mu(a)\zeta_{1}(t, a)-\epsilon(a)\zeta_{1}(t, a) ,

  \frac{\partial\zeta_{2}(t,a)}{\partial t}+\frac{\zeta_{2}(t,a)}{\partial a}=-
\mu(a)\zeta_{2}(t, a)+\epsilon(a)\zeta_{1}(t, a) ,

  \zeta_{1}(t, 0)=\int_{0}^{\infty}m_{1}(a)\zeta_{1}(t, a)da, \zeta_{2}(t, 0)=
\int_{0}^{\infty}m_{2}(a)\zeta_{2}(t, a)da , (6.1)

where  \epsilon(a)  := \int_{0}^{\infty}\beta(a, \sigma)c_{2}(\sigma)d\sigma.
System (6.1) is a well‐known multistate stable population model [3] that has the trivial exponential

solution  e^{\lambda_{2}}t(0, c_{2}(a) ). From the homogeneous stability theory in section 4, to show the local stability
of the boundary exponential solution  e^{\lambda_{2}}t(0, c_{2}(a) ), it is sufficient to check that the linearized generator
 B_{2}  :=A+F'[w_{2}] has AEG with the intrinsic growth constant  \lambda_{2} such that   \lim_{tarrow\infty}e^{-\lambda_{2}}tT(t)=P is a rank‐
one operator. If  \lambda_{2} is the dominant, simple characteristic root of the multistate system (6.1), this strong
ergodicity result has already been shown using multistate stable population theory [3].

We define the demographic reproduction number  R_{d} by the spectral radius of the net reproduction matrix
 \mathcal{K}  := \int_{0}^{\infty}\Psi(a)da , where  \Psi(a)  :=M(a)L(a),  M is a fertility matrix given by

 M(a):=(\begin{array}{ll}
m_{1}(a)   O
O   m_{2}(a)
\end{array}),
and  L(a) is the survival matrix given by the solution matrix of  L'(a)=Q(a)L(a) , with  L(0)=I (I denotes
the identity matrix) and

 Q(a):=(\begin{array}{lll}
-\mu(a)-   \epsilon(a)   0
\epsilon(a)      -\mu(a)
\end{array}).
Then the characteristic equation is

 (I- \int_{0}^{\infty}e^{-\lambda a}\Psi(a)da)=(1-\int_{0}^{\infty}e^{-\lambda 
a}m_{1}(a)l(a)e^{-\int_{0}^{a}\epsilon(z)dz}da)(1-\int_{0}^{\infty}e^{-\lambda 
a}m_{2}(a)\ell(a)da) .

Let

  \Sigma_{L,2} :=\{\lambda\in \mathbb{C} : 1=\int_{0}^{\infty}e^{-\lambda a}
m_{1}(a)\ell(a)e^{-\int_{0}^{a}\epsilon(z)dz}da\}\cap\Lambda,
and let

  \Sigma_{L} :=\{\lambda\in \mathbb{C} : \det(I-\int_{0}^{\infty}e^{-\lambda a}
\Psi(a)da)=0\}=(\Pi_{2}\cap\Lambda)\cup\Sigma_{L,2},
be the set of characteristic roots of the multistate stable population model (6.1). Then the intrinsic growth
rate  \lambda_{d} (Malthusian parameter) of the multistate stable model is given by the dominant characteristic root
of  \Sigma_{L} , and the sign relation sign(  \lambdad)  = sign(Rd—ı) hoıds.

From the standard argument for Lotka’s characteristic equation, there exists a dominant real root  \lambda_{3}\in
 \Sigma_{L,2} such that  \Re z<\lambda_{3} for any  z\in\Sigma_{L,2}\backslash \{\lambda_{3}\}.

Lemma 6.1. Suppose that  \lambda_{3}>-\underline{\mu} . It follows that  \lambda_{3}\in[\lambda_{1}-|\beta|_{\infty}, \lambda_{1} ) and   \lambda_{d}=\max\{A_{3}, \lambda_{2}\}.

It is not difficult to show that  \sigma(B_{2})\cap\Lambda=P_{\sigma}(B_{2})\cap\Lambda=\Sigma_{L}\cap\Lambda . Define the invasion index for the

high‐fertility population  \mathbb{R}_{1} by

  \mathbb{R}_{1}:=\int_{0}^{\infty}m_{1}(a)\ell(a)e^{-\lambda_{2}\mathfrak{a}-
\int_{0}\epsilon(\sigma)d\sigma}da . (6.2)
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In fact, now the susceptible individuals are invaders into the completely low‐fertility population, so its
linearized (prevalence) dynamics is given by

  \frac{\partial\zeta_{1}(t,a)}{\partial t}+\frac{\zeta_{1}(t,a)}{\partial a}=-(
\lambda_{2}+\mu(a))\zeta_{1}(t, a)-\epsilon(a)\zeta_{1}(t, a) ,

(6.3)

  \zeta_{1}(t, 0)=\int_{0}^{\infty}m_{1}(a)\zeta_{1}(t, a)da,
Since (6.3) is a well‐known stable population model, its basic reproduction number is given by (6.2). Notice
that  \mathbb{R}_{1} is a decreasing function of  \beta . The characteristic roots of (6.3) is given by

  \{\lambda\in \mathbb{C} : 1=\int_{0}^{\infty}e^{-(\lambda+\lambda_{2})a}m_{1}
(a)\ell(a)e^{-\int_{0}^{a}\epsilon(z)dz}da\},
then its Malthusian parameter is given by  \lambda_{3}-\lambda_{2} . Then it is positive if  \mathbb{R}_{1}  > ı, while it is negative if  \mathbb{R}_{1}<1.

Then we have the following result.

Proposition 9. If  \mathbb{R}_{1}<1 , then the low‐fertility exponential solution  e^{\lambda_{2}t}w_{2} is locally stable, while it is
unstable if  \mathbb{R}_{1}> ı in the sense of Hadeler.

It is remarked that the condition  \lambda_{1}-\lambda_{2}>|\beta|_{\infty} is sufficient for  \mathbb{R}_{1}>1 . In fact, if  \lambda_{1}-\lambda_{2}>|\beta|_{\infty} , then

  \mathbb{R}_{{\imath}}\geq\int_{0}^{\infty}m_{1}(a)\ell(a)e^{-(\lambda_{2}+
|\beta|_{\infty})a}da>\int_{0}^{\infty}m_{1}(a)\ell(a)e^{-\lambda_{1}a}da=1.
Therefore, if the difference between the birth rates for the high fertility and low fertility populations is large
enough under common mortality, then the stable population with ıow fertility can be destabilized by the
invasion of high‐fertility individuals and simultaneous exponential growth could be realized, although the
uniqueness and stability for the coexistence exponential solution is an open problem.

References

[ı] Hadeler KP (2017) Topics in Mathematical Biology, Springer

[2] Iannelli  M , Martcheva  M (2003) Homogeneous dynamical systems and the age‐structured SIR model
with proportionate mixing incidence, in Evolution Equations: Applications to Physics, Industry, Life
Sciences and Economics (eds. Iannelli  M , Lumer G), Progress in Nonhnear Differential Equations and
Their Applications, Vol. 55, Birkhäuser, Basel Boston Berlin, 227‐251.

[3] Inaba  H (20ı7) Age‐Structured Population Dynamics in Demography and Epidemiology, Springer Sin‐
gapore

[4] Krasnoselskii MA (1964) Positive Solutions of Operator Equations, Noordhoff, Groningen

[5] Manfredi  P , Fanti  L (2003) The demographic transition and neo‐classical models of balanced growth, in
The Theory of Economic Growth (ed. Salvadori N), Edward Elgar, Cheltenham

[6] Rosero‐Bixby  L , Casterline JB (1993) Modelling diffusion effects in fertility transition, Population Studies
47, ı47‐167

[7] Webb GF (1985) Theory of Nonlinear Age‐Dependent Population Dynamics, Marcel Dekker: New York
and Basel

[S] Webb GF (1987) An operator theoretic formulation of asynchronous exponential growth, Trans. Amer.
Math. Soc. 303(2), 751‐763

[9] Webb GF (ı993) Asynchronous exponential growth in differential equations with homogeneous nonlin‐
earities, in Differential Equations in Banach Spaces (eds. Dore  G , Favini  A , Obrecht  E , Venni A), Lecture
Notes in Pure and Applied Mathematics 148, Dekker, New York, 225‐233

60


