
9

Model Checking of Embedded Systems
Using RTCTL

Yajun Wu * and Satoshi Yamane †
* Graduate School of Natural Science and Technology

Kanazawa University, Kanazawa, Japan
Email: kwu@csl.ec.t.kanazawa‐u.ac.jp
† Institute of Science and Engineering

Kanazawa University, Kanazawa, Japan
Email: syamane@is.t.kanazawa‐u.ac.jp

Abstract—For embedded systems, verifying both real‐
time properties and logical validity are important. In
order to verify real‐time properties, we develop a simu‐
lator to propose model checking method. The simulator
generates timed Kripke structure by dynamic program
analysis. We implement the simulator to construct timed
Kripke structure including the execution time. Also, we
implement model checker in order to verify whether
timed Kripke structure satisfies RTCTL formulas.

I. INTRODUCTION

In recent years, embedded systems have been widely
used in autonomous car, medical equipment and IoT

(Internet of Things). Verifying both real‐time proper‐
ties and logical validity are important for embedded
systems.

Recently software model checking [1] and program
verification [2] have received widespread attention.
S. Yamane and others have developed a verification
system [3] for verifying embedded assembly programs.
It generates Kripke structure by the simulator (dynamic
program analysis) and verifies stack overflow by CTL
(Computational Tree Logic) model checking.

In this paper, we will describe model checking using
RTCTL (Real‐Time CTL) in order to verify whether
timed Kripke structure satisfies real‐time properties.
We develop the simulator to generate timed Kripke
structure from assembly program. In our approach,
we implement the simulator to construct timed Kripke
structure which includes the execution time. Also, we

implement model checker in order to verify whether
timed Kripke structure satisfies real‐time properties. In
general, as timed Kripke structure has infinite states,
our approach is effective. In our study, to evaluate a
proposed method, we conducted experiments with the
implementation of the verification system.

II. RELATED WORKS

B. Schlich studied model checking by using static
program analysis to verify assembly program, but
real‐time properties are not verified. B. Schlich can
verify the hardware dependency problem by using the
assembly program [4].

E. A. Emerson and others proposed RTCTL, and
also developed model checking algorithms for RTCTL
[5]. But our semantics of RTCTL is quite different
from E. A. Emerson’s semantics of RTCTL.

R. Alur and D. L. Dill studied timed automata

[6]. Timed automaton is an extension of a finite state
automaton, and is a model that describes the system
by both discrete event and continuous time lapse
according to state transitions. On the other hand, in this
study, we develop discrete‐time timed Kripke structure
for the execution time of assembly program. Our study
is different from timed automata.

S. Yamane and others have developed a verification
system. The simulator generates Kripke stmcture, and
model checker verifies CTL formulas. The simuıator

includes clock cycles while generating models, but
real‐time properties and execution time are not taken
into consideration. S. Yamane and others have de‐

veloped abstraction techniques by using DND (De‐
layed NonDeterminism) of the bit level. Our proposed
method is quite different from [3] as follows: (1)
Generating timed Kripke structure including execution
time. (2) Using RTCTL formulas to verify real‐time
properties. (3) Proposing RTCTL model checking al‐
gorithm after generating timed Kripke structure.

III. COMPUTATIONAL MODEL OF EMBEDDED

ASSEMBLY PROGRAM

As a computational model, we define a timed Kripke
structure which extends Kripke structure [7] by time
function.

[Definition 3.1] (Timed Kripke structure) Timed
Kripke structure is M= (S, S_{0}, R, L , TM).

(1) A finite set of states S.
(2) A set of initial states S_{0}\subseteq S

(3) A transition relation R\subseteq S\cross S

(4) A labeling function L:Sarrow 2^{AP}L is a function
which assigns to each state a set of atomic propositions.
AP is atomic proposition.

9

 10

(5) A time function TM: Sarrow N TM is a function
that assigns the execution time of each instruction to
each state. Here N is any natural number.

IV. RTCTL

For model checking of real‐time properties, we
define Real‐Time temporal logic (RTCTL (Real‐Time
CTL)). We use RTCTL developed by E. A. Emerson
[5].

[Definition 4.1] (Syntax of RTCTL) Syntax of
RTCTL formulas as follows:

(1) Each atomic proposition AP is a RTCTL for‐
mula.

(2) If p, q are RTCTL formulas, similarly p\wedge q and
 \neg p are RTCTL formulas.

(3) If p, q are RTCTL formulas, similarly E(pUq) ,
 A(pUq) and EXp are RTCTL formulas.

(4) If p, q are RTCTL formulas and k is any natural
number for execution time, similarly E(pU^{\leq k}q) and
 A(pU^{\leq k}q) are RTCTL formulas.

Some other RTCTL are defined as follows:

 AF^{\leq k}q=A(true U q) EF^{\leq k}q=E(true U

 q)
 AG^{\leq k}p=\neg EF^{\leq k}\neg p EG^{\leq k}p=\neg A\Gamma^{\leq k}\neg p

We propose the semantics of RTCTL as follows.
[Definition 4.2] (Semantics of RTCTL) In the se‐

mantics of RTCTL formuıas, other than E(pU^{\leq k}q)
and A(pU^{\leq k}q) are the same as those of RTCTL by E.
A. Emerson and others. Our semantics of E(pU^{\leq k}q)
and A(pU^{\leq k}q) is quite different from E. A. Emerson’s
semantics [5]. In the semantics of E(pU^{\leq k}q) and A(p
 U^{\leq k}q) is defined over timed Kripke structure M=(S,
 S_{0}, R, L , TM) .

(1) E(pU^{\leq k}q)
For a state sequence s_{0} , sı, . . ., s_{J} , . . ., s_{x} , . . . in

 M, \exists i0\leq i, s_{i}\models q and \sum_{\alpha=0}^{\iota}TM(s_{\alpha})\leq k and \forall j
 0\leq j<i, s_{j}\models p.

(2) A(pU^{\leq k}q)
For all state sequence s_{0}, s_{1} , . . ., s_{j} , . . ., s_{t} , . . . in

 M, \exists i0\leq i, s_{i}\models q and \sum_{\alpha=0}^{i}TM(s_{\alpha})\leq k and \forall j
 0\leq j<i, s_{0}\models p.

V. VERIFICATION SYSTEM

The verification system is shown in Fig. 1.

Fig. 1. Verification system

Next, the model checking algorithm of E(pU^{\leq k}
q) is defined in Algorithm 1. A(pU^{\leq k}q) is almost
the same as E(pU^{\leq k}q) . We generate states for the
verification target and output a timed Kripke structure
by the simulator. Simultaneously, model checking is
performed by inputting RTCTL formula and timed
Kripke structure.

We use |f| to denote the length of RTCTL formula
 f(E(pU^{\leq k}q)) . The calculation of |f| is the same as

that of E. A. Emerson and others [5]. When |f'| is
the length of the CTL formula f' obtained from f by
deleting time constraint, |f|=|f'|+c and c is the sum of
the lengths of the bit strings representing in binary the
time constraint of f. Thus, we see that the complexity
of executing the entire procedure E(pU^{\leq k}q) model
check is O(|f|(|S|+|R|)) .

 \frac{Algorithm1A1gorithmofMocelCheckE(pU^{\leq k}q)}{1S:=\{s|q\in L(s)\}}
2 for s\in S do L(s):=L(s)UE(pU^{\leq k}q)
3 N:=kH:=k ll initialize N and H

4 while S\neq\emptyset do

5 choose s\in S

6 S:=S\backslash \{s\} // remove s from S

7 N :=H // update N by H

8 for aıl t such that R(t, s) do

9 if E(pU^{\leq H}q)\not\in L(t) and N\geq 0 and p\in

 L(t) then

10 H :=N ‐ TM(s) // update H

11 L(t):=L(t)\cup\{E(pU^{\leq H}q)\}
12 S:=S\cup\{t\} // add t to S

13 else if N<0 and S\neq\emptyset then

14 choose y\in S// other path has not checked
15 choose E(pU^{\leq H}q) from L(y)
16 choose H from E(pU^{\leq H}q)
17 end if

18 end for all

19 if R(t, s)=\emptyset then //state s is the initial state

20 H:=N ‐ TM(s)
21 if H<0 and S\neq\emptyset then

22 choose y\in S
23 choose E(pU^{\leq H}q) from L(y)
24 choose H from E(pU^{\leq H}q)
25 else if H\geq 0 then

26 break

27 end if

28 end if

29 end if

30 end while

31 N:=H // update N by H

32 if N\geq 0
33 return true

34 else return false

[Example 1] We will give an example in order to
explain Algorithm 1. We specify verification property

10

by RTCTL as follows.

 E(pU^{\leq 10}q)

We verify whether timed Kripke structure in Fig. 2
sataisfies E(pU^{\leq 10}q) according to Algorithm 1 as
follows.

 S= { s_{1} , s_{2}, s_{3} , S4, s_{5} } S_{0}=\{s_{1}, s_{3}\}
 R=\{ (s_{1}, s_{2}), (s_{2}, s_{5}), (s_{3}, s_{4}), (s_{4}, s_{5})\}
 L(s_{1})=\{p\} L(s_{2})=\{p\}
 L(s_{3})=\{\} L(s_{4})=\{p\}
 L(s_{5})=\{q\} TM(s_{1})=1
 TM(s_{2})=1 TM(s_{3})=1
 TM(s_{4})=100 TM(s_{5})=1

Fig. 2. An example of timed Kripke structure

This formula is obviously satisfied since there is a
path s_{1}arrow s_{2}arrow s_{5}.

To verify the RTCTL formula Algorithm 1 proceeds
the following steps. Fig. 3, Fig. 4 and Fig. 5 give
snapshots of Algorithm 1 in operation on the timed
Kripke structure for the labeling function.

(1) In the first stage:

 e Initially, S:=\{s_{5}\} (line 1) and L(s_{5}):=\{q, E(p
 U^{\leq 10}q)\} (line 2), as shown in Fig. 3. Then N:=

 10, H:=10 (line 3).
 0 Choose and remove s_{5} from S (line 4, 5, 6).
 e Assign N :=H:=10 (line 7).
 0 There are two states s_{2} and s_{4} that satisfy R:=

 \{(s_{2}, s_{5}), (s_{4}, s_{5})\}(1ine8) .

‐ Choose t=s_{2} first. Then assign H:= N‐
 TM(s_{5}):=9 (line 10). Next add E(pU^{\leq 9}q)
to L(s_{2}) (line 11) as shown in Fig. 4, and add
 s_{2} to S (line 12).

‐ Next, Choose t=s_{4} (line 9). But p\not\in L(s_{4}) ,
nothing to do here.

11

Fig. 3. First step of labeling

 dUU I tlOrl

Fig. 4. Second step of labeling

(2) In the second stage:
 e Now, S:=\{s_{2}\} (line 4). Similarly choose and

remove s_{2} and assign N :=H:=9 (line 7).
 e There is one state s_{1} that satisfies R :=\{ (s_{1}, s_{2})\},

and choose it (line 8).

‐ Then assign H:=N-TM(s_{2}):=8 (line 10).
Next add E(pU^{\leq 8}q) to L(s_{1}) (line 11) as
shown in Fig. 5, and add s_{1} to S (line 12).

 L(s_{1})=L(s_{1})\cup E(p\cup\leq 8q)

 TM(s_{3})=1 TM(s_{4})=100 addition

Fig. 5. Third step of labeling

(4) Only in the final stage:
 \bullet S:=\{s_{1}\} (line 4). Similarly choose and remove

 s_{1} . Then assign N :=H :=8 (line 7).
 e There is no state t that satisfies R :=\{(t, s_{1})\} (line

8, line ı9).

‐ Then updata H :=N-TM(s_{1}) :=7 (line 20).

11

 12

 \bullet Therefore, H\geq 0 , then leave the loop, and updata
 N=7 (line 31).

 \bullet Due to N\geq 0 . So the verification result becomes

true (line 33).

VI. EXPERIMENTS

We used LED program written by H8/3687 micro‐
controller [8][9]. The size of the program has 64 lines
of assembly code.

The execution time is obtained from the execution

state number of the assembly instruction. Since the
operating frequency of H8/3687 microcontroller is 20
MHz, the execution time per state is as follows.

 1/20Mhz=0.05\mu s

Therefore, we assume the unit time of time con‐
straint k is 0.05\mu s.

The experiment was conducted on a laptop as fol‐
lows:

 \bullet CPU : Intel(R) Core(TM) i7‐7700HQ processors
running at 2. 80GHz

 e Memory : 16GB main memory
 \bullet OS : windows 10

 \bullet Simulator is written in a combination of Java and

Scala, and Model Checker is written in Scala as
follows.

 \bullet Java 1.8.0_{-}121 , 15000 lines
 \bullet Scala 2.11.8 , 6000 lines
 \bullet Tools : JFlex [10], Jacc [11]

Program ı (LED program)lights up one LED by
a sensor of the microcontroller outputs. The sensor
can identify black and white. When the sensor of
the microcontroller detects white, it outputs 1 and
LED lights up, when it detects black, it outputs 0.

Furthermore, we preset the sensor always detected
white and it turns off immediately after the LED lights
up. For example, Tota1\iota_{ed} times LED lights up by
 Tota1\iota_{ed} times the sensor outputs. We specify timing
constraints by RTCTL for this experiment as follows:

RTCTL 1: EF^{\leq k}(Tota1\iota_{ed}=n)=E(true U (Tota1_{\iota}ed
 =n))

 Tota1_{led} denotes the total number of lights up times.
The n is the number of lights up times, indicated by
the value of the register RO in the state. The formula
intuitively means that LED lights up Tota1_{\iota_{ed}} times
happen at some state on some path from initial states
within the timing constraint k . Besides we preset the
specific LED light up number while timing constraint
 k is limited within one millisecond (k=20000) .

The experimental results are shown in Table I. The
first column presents the total number of lights up
times. The second column gives the number of states.
The third columm indicates the number of transition

relations. The fourth column presents the total time
of simulator and model checking. The fifth column
presents execution time of assembly program for some

path satisfies Tota1_{led} times lights up LED or the
execution time of assembly program for a certain
path is only not satisfied time constraint. The last
columm shows the result which shows satisfiability of
RTCTL formula. Execution time is obtained from the

total execution time of executed states. The execution

time of each state is an execution time of assembly
instruction executed in each state.

TABLE I

THE RESULTS OF VERIFYING PROGRAM 1

 n states rela ions ve ification execution result

 \frac{time(s)time(ms)}{103703694.70.0507true}
50 1490 1489 23.3 0.2207 true

100 2890 2889 48.4 0.4332 true

200 5690 5689 115.0 0.8582 true

233 6614 6613 1_{l}18_{l}5 0_{:}998.5 . true
 30\ddot{0} 849Ô 84\dot{8}9 149.9 i\cdot.\cdot\dot{2}832 f^{r}alse

The experimental results showed the effectiveness of
the proposed approach. We implement model checker
in order to verify whether timed Kripke structure
satisfies RTCTL formulas. These resulting data show
that it can be verified whether or not lights up Tota1_{\iota_{ed}}
times within the time constraint k . Moreover, as a

result, we showed that the maximum number of LED

lights up within the time constraint k . As shown in
Table I, if n increases, the number of states and the

number of transition relations polynomially increases.
Therefore, the verification time and execution time

polynomially increases. Further, when n becomes 234
or more, the verification result becomes false.

VII. CONCLUSION

In this paper, we have developed a verification
system. Model checker after generating timed Kripke
structure by using RTCTL formula verifies whether
timed Kripke structure satisfies real‐time properties.

In the case of RTCTL model checking after gener‐
ating timed Kripke structure, when the timed Kripke
structure satisfies E(pUq) and does not satisfy time
constraint k, we can figure out the execution time of
that path by calculation. By doing so, when we repeat
the experiment, we can know the time constraint is
nearly satisfied with that path.

As future work, we will develop model checking
of embedded systems using counterexample‐guided ab‐
straction refinement (CEGAR). And we will compare
with model checking while after generating all states.

Beside this, we want to detect other properties in
embedded systems.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Research Institute
for Mathematical Sciences, a Joint Usage/Research
Center located in Kyoto University.

12

13

REFERENCES

[1] Ranjit Jhana, Rupak Majumdar, ”Software modeı checking
ACM Computing Surveys (CSUR) 41 (4), 2009: 21.

[2] Leonardo de Moura, Nikolaj Bjorner, “Z3: An Ecient SMT
Solver,’‘ LNCS 4963, pp. 337‐340, 2008.

[3] S. Yamane, R. Konoshita, T. Kato, ’‘Model checking of embed‐
ded assembly program based on simulation IEICE Trans. In‐
formation and systems, Vol.E100‐D, No.8, pp1819‐1826, 2017.

[4] Schlich, B, “’Model Checking of Software for Microcontrollers
ACM Transactions on Embedded Computing Systems 9 (4),
20ı0: 36

[5] E. A. Emerson, A. K. Mok, A. P. Sistla, J. Srinivasan, ”Quanti‐
tative Temporal Reasoning Real‐Time Systems 4 (4) pp. 331‐
352, 1992.

[6] R. Alur, D. L. Dill: “A theory of timed automata,’‘ TCS, ı26(2),
pp. 183‐235, 1994.

[7] Edmund M. Clarke Jr., Orna Grumberg, Doron Peled, “Model
Checking MIT Press, 1999.

[8] Corporation, R. E. : Renesas Electronics, Renesas Electronics
Corporation (online), http://japan.renesas.com/

[9] nuvo WHEEL: ZMP, http://www.zmp.co.jp/products/wheel
[10] Klein, G.: JFlex ‐ The Fast Scanner Generator for Java, CSE

UNSW (online) , available from (http://jflex. de/)
[11] Jones, M. P.: Jacc: just another compiler compiler for Java,

Department of Computer Science and Engineering at the OGI
School of Science & Engineering at OHSU (online) , avaiıable
from (http://jfiex.de/)

13

