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Abstract

We study the displacement operators within the framework of quantum white
noise calculus. The displacement operators are characterized by implementation
problems which are equivalent to linear differential equations associated with the
quantum white noise derivatives for white noise operators. Then the displacement
operators are applied to study a generalization of the Cameron−Martin−Girsanov
theorem. More precisely, we prove that the affine transform, with an isometric
dilation and a regular drift, of a Brownian motion is again a Brownian motion
with respect to a new probability measure which is derived explicitly in terms of
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1 Introduction

Let  C_{0}([0,1], \mathbb{R}) be the (standard) Wiener space with the (standard) Wiener measure  P

and  H_{0} be the Cameron‐Martin space, i.e., the Hilbert space consisting of all absolutely‐
continuous functions on  [0,1] such that their derivatives are square integrable. Then
famous Cameron‐Martin translation theorem [2] states that the measure  P is quasi‐
invariant under the transformation

 C_{0}([0,1], \mathbb{R})\ni\omega\mapsto T_{x_{0}}(\omega)=\omega+x_{0}\in 
C_{0}([0,1], \mathbb{R}) , (1.1)
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where  x_{0}\in \mathcal{H} with  x_{0}(0)=0 . Furthermore, the Radon‐Nikodym derivative is given by

  \frac{dP(T_{x_{0}}(\omega))}{dP(\omega)}=\exp\{-\int_{0}^{1}x_{0}'(s)
d\omega(s)-\frac{1}{2}\int_{0}^{1}(x_{0}'(s))^{2}ds\} . (1.2)

For each  t\in[0,1] , consider the random variable  B_{t} :  C_{0}([0,1], \mathbb{R})arrow \mathbb{R} defined as the
evaluation map, i.e.,  B_{t}(\omega)=\omega(t) for any  \omega\in C_{0}([0,1], \mathbb{R}) . Then the stochastic process

 \{B_{t}\}_{t\in[0,1]} is called  a (standard) Wiener process or Brownian motion satisfying that

(B1)  P(\{\omega;B_{0}(\omega)=0\})=1 ;

(B2) for each  0\leq s<t\leq 1,  B_{t}-B_{s} is a Gaussian random variable with mean  0 and
variance  t-s ;

(B3)  \{B_{t}\}_{t\in[0,1]} has independent increments, i.e., for any   0\leq tı  < t2  <  <t_{n}\leq 1 , the
random variables  B_{t_{1}},  B_{t_{2}}-B_{t_{1}},  B_{t_{n}}-B_{t_{n-1}} are independent;

(B4) almost all sample paths of  \{B_{t}\}_{t\in[0,1]} are continuous.

In general, a stochastic process  \{B_{t}\}_{t\in[0,1]} satisfying the properties  (B1)-(B4) is called a
Brownian motion, see [17]. In fact, the condition (B4) can be proved from the condition
(B2) by applying the Kolmogorov continuity theorem.

The Cameron‐Martin translation theorem has been extended by Girsanov [4] to the
shifts of a Brownian motion and then Girsanov proved that a Brownian motion with a
regular drift is again a Brownian motion with respect a new probability measure which
is called the Girsanov transform (see also [21]).

On the other hand, the displacement operator in the quantum field theory plays
an important role in the study of coherent and squeezed states. Since the meaning
of the displacement operator is realized by its quadrature representation, we can find
some relations between the Cameron‐Martin translation theorem and the quadrature
representation of the displacement operator. In this paper, motivated from this obser‐
vation, we study the Cameron−Martin−Girsanov theorem in terms of the displacement
operators.

Main purpose of this paper is to study an affine transform of a Brownian motion and
then we prove that the affine transform, with an isometric dilation and a regular drift,
of a Brownian motion is again a Brownian motion with respect to a new probability
measure which is explicitly described.

For our purpose, we basically accept the idea used in [14]. Based on the quantum
white noise calculus, we first study the displacement operators which is a slight gener‐
alization of the typical displacement operators in the quantum field theory. Then the
displacement operators are characterized by implementation problems which are equiva‐
lent to linear differential equations associated with the quantum white noise derivatives
for white noise operators. From the implementation problems we induce an implemen‐
tation problem for a Brownian motion and its affine transform. Then the (generalized)
displacement operators as the solution of the implementation problem are applied to
study a generalization of the Cameron−Martin−Girsanov theorem to the affine trans‐
form of a Brownian motion. More precisely, we prove that the affine transform, with an
isometric dilation and a regular drift, of a Brownian motion is again a Brownian motion
with respect to a new probability measure which is derived explicitly in terms of the
displacement operators.
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This paper is organized as follows. In Section 2, we briefly review the basic notions
in quantum white noise calculus. In Section 3, we recall the quantum white noise
derivatives, the Wick derivations and differential equations of Wick type. In Section 4,
we study the displacement operators as solutions of implementation problems and their
properties. In Section 5, we establish a generalization of the Cameron−Martin−Girsanov
theorem to the affine transform of a Brownian motion.

Acknowledgements. This work was supported by Basic Science Research Pro‐
gram through the NRF funded by the MEST (NRF‐2013R1A1A2013712) and the Korea‐
Japan Basic Scientific Cooperation Program “Non‐commutative Stochastic Analysis:
New Prospects of Quantum White Noise and Quantum Walk” (2015‐2016) through the
NRF funded by the MEST (No. NRF‐2015K2A2A4000164).

2 White Noise Operators

2.1 Gaussian Spaces

Let  H=L^{2}(I, dt) be the complex Hilbert space of square‐integrable functions on an
interval  I , where  I=\mathbb{R}^{n} or  I=[0, T]^{n} for  T>0 and  n\in \mathbb{N} . The canonical  \mathbb{C}‐bilinear
form on  H and the norm are defined by

  \langle\xi, \eta\}=\int_{I}\xi(t)\eta(t)dt, |\xi|_{0}^{2}=
\langle\overline{\xi}, \xi)=\int_{I}|\xi(t)|^{2}dt,
respectively.

Let  A be a positive, selfadjoint operator densely defined in  H with Hilbert‐Schmidt
inverse, and assume that  A is real, i.e., if  \xi is a  \mathbb{R}‐valued function, so is   A\xi . For each
 p\geq 0 , the power  A^{p} becomes canomically a selfadjoint operator with a dense domain
Dom  (A^{p})\subset H . Then, the domain  E_{p}  := Dom  (A^{p}) itself becomes a Hilbert space
equipped with the norm

 |\xi|_{p}=|A^{p}\xi|_{0},  \xi\in Dom (Ap).

For a positive  p>0 , we define  E_{-p} to be the Hilbert space by taking the completion of
 H with respect to the norm:

 |\xi|_{-p}=|A^{-p}\xi|_{0}, \xi\in H.

Then we come to a chain of Hilbert spaces and their limit spaces:

 E\subset \subset E_{p}\subset \subset H\subset \subset E_{-p}\subset \subset E^
{*} , (2.1)

where

 E= proj 1 \dot{{\imath}}mE_{p}parrow\infty,  E^{*}=ind1\dot{{\imath}}mE_{-p}parrow\infty.
Since the natural injection  E_{p+1}arrow E_{p} is of Hilbert‐Schmidt type by assumption on  A,
we know that  E is a nuclear space. Hence we construct a Gelfand triple:  E\subset H\subset E^{*}

of which the real Gelfand triple is denoted by  E_{\mathbb{R}}\subset H_{R}\subset E_{\mathbb{R}}^{*}.
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By the Bochner−Minlos−Yamasaki theorem there exists a unique probability measure
 \mu on  E_{\mathbb{R}}^{*} such that

  \exp(-\frac{1}{2}|\xi|_{0}^{2})=\int_{E_{R}^{*}}e^{i(x,\xi\rangle}\mu(dx) , 
\xi\in E_{\mathbb{R}}.
This  \mu is referred to as the (standard) Gaussian measure and the probability space
 (E_{\mathbb{R}}^{*}, \mu) as a white noise space or a  Gau\mathcal{S}sian space. In general,  a (generalized) function
on the white noise space is called a white noise function.

2.2  Hida-Kubo−Takenaka Space

The (Boson) Fock space over the Hilbert space  H is defined by

  \Gamma(H)=\{\phi=(f_{n});f_{n}\in H^{\otimes n}\wedge, \Vert\phi\Vert^{2}=
\sum_{n=0}^{\infty}n!|f_{n}|_{0}^{2}<\infty\},
where  |f_{n}|_{0} is the usual norm of the  n‐fold symmetric tensor power  H^{\otimes n}\wedge=L_{sym}^{2}(I^{n}) .
Constructing Fock spaces over the chain of Hilbert spaces (2.1), we obtain a chain of
Fock spaces and their limit spaces:

 (E)\subset \subset\Gamma(E_{p})\subset \subset\Gamma(H)\subset \subset\Gamma(E_
{-p})\subset \subset(E)^{*} , (2.2)
where

 (E)= proj   \lim\Gamma(E_{p}) ,  (E)^{*}= ind\lim_{arrow p\infty}\Gamma(E_{-p}) .
  parrow\infty

In particular, we come to the Gelfand triple:

 (E)\subset\Gamma(H)\subset(E)^{*} , (2.3)

which is referred to as the Hida−Kubo−Takenaka space [15] (see also [16, 20]). By con‐
struction, (E) is a countable Hilbert nuclear space whose topology is defined by the
norms

  \Vert\phi\Vert_{p}^{2}=\sum_{n=0}^{\infty}n!|f_{n}|_{p}^{2}, \phi=(f_{n})
\in(E) , p\in \mathbb{R},
and  (E)^{*} is the strong dual space of (E) . The canonical  \mathbb{C}‐bilinear form  \langle\{\cdot,  \cdot\}\rangle on
 (E)^{*}\cross(E) takes the form:

  \langle\langle\Phi, \phi\}\}=\sum_{n=0}^{\infty}n!\{F_{n}, f_{n}\}, \Phi=
(F_{n})\in(E)^{*}, \phi=(f_{n})\in(E) ,

where  \{F_{n}, f_{n}\} is the canonical  \mathbb{C}‐bilinear form on  (E^{\otimes n})^{*}\cross E^{\otimes n}.
There is a canonical isomorphism, referred to as the Wiener‐Itô‐Segal isomorphism,

between  L^{2}(E_{R}^{*}, \mu) and  \Gamma(H) determined uniquely by the correspondence

  \phi_{\xi}(x)\equiv\exp(\langle x, \xi\rangle-\frac{1}{2}\{\xi, \xi\})  rightarrow  (1,  \xi, \frac{\xi^{\otimes 2}}{2!}, \cdots, \frac{\xi^{\otimes n}}{n!}, 
\cdots) ,  \xi\in E.

The above  \phi_{\xi} is called an exponential vector or a coherent vector. If  \phi\in L^{2}(E_{\mathbb{R}}^{*}, \mu) and
 (f_{n})\in\Gamma(H) are related under the Wiener‐Itô‐Segal isomorphism, we write  \phi=(f_{n}) for
simplicity. In that case it holds that

  \Vert\phi\Vert_{0}^{2}\equiv\int_{E_{R}^{*}}|\phi(x)|^{2}\mu(dx)=\sum_{n=0}
^{\infty}n!|f_{n}|_{0}^{2} . (2.4)
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2.3 White Noise Operators

A continuous linear operator from (E) into  (E)^{*} is called a white noise operator. The
space of all white noise operators from (E) into  (E)^{*} is denoted by  \mathcal{L}((E), (E)^{*}) and is
equipped with the bounded convergence topology.

For each  \Xi\in \mathcal{L}((E), (E)^{*}) we denote by  \Xi^{*}\in \mathcal{L}((E), (E)^{*}) the adjoint operator with
respect to the canonical bilinear form, i.e.,

 \{\langle\Xi\phi, \psi\}\}=\{\langle\Xi^{*}\psi, \phi\}\}, \phi, \psi\in(E) .

The hermitian inner product of  \Gamma(H) is denoted by

 ( \langle\phi|\psi\}\}=(\langle\overline{\phi}, \psi\}\}=\sum_{n=0}^{\infty}
n!\langle\overline{f}_{n}, g_{n}\}, \phi=(f_{n}) , \psi=(g_{n})\in\Gamma(H) ,

and then the hermitian adjoint  \Xi\dagger of  \Xi\in \mathcal{L}(\Gamma(H), \Gamma(H)) satisfies that

 \{\langle\Xi\phi|\psi\}\}=\langle\langle\phi|\Xi^{\dagger}\psi\}\}, \phi, 
\psi\in\Gamma(H) .

We have a simple relation:

 \Xi^{\dagger}\phi=\overline{---*\overline{\phi}}, \phi\in\Gamma(H) .

With each  x\in E^{*} we associate a white noise operator, called the annihilation oper‐
ator, uniquely specified by

 a(x) :  (0, \ldots, 0, \xi^{\otimes n}, 0, \ldots)\mapsto(0, \ldots, 0, n\langle x, \xi
\rangle\xi^{\otimes(n-1)}, 0, \ldots) ,  \xi\in E,

and the adjoint  a^{*}(x) , called the creation operator, is uniquely specified by

 a^{*}(x):(0, \ldots, 0, \xi^{\otimes n}, 0, \ldots)\mapsto(0, \ldots, 
0_{X\otimes\xi^{\otimes n},0}^{\wedge}, \ldots) , \xi\in E.

These are unbounded operators in Fock space  \Gamma(H) , but become white noise operators.

Lemma 2.1. Let  x\in E^{*} be given.

(1) We have  a(x)\in \mathcal{L}((E), (E)) and  a^{*}(x)\in \mathcal{L}((E)^{*}, (E)^{*}) .

(2) If  x\in E , then both  a(x) and  a^{*}(x) belong to  \mathcal{L}((E), (E))\cap \mathcal{L}((E)^{*}, (E)^{*}) .

Proof. The proof is by routine application of Schwarz inequality, for relevant argument
see [20].  \square 

Note also that the canonicaı commutation relation (CCR) takes the form:

 [a(\eta), a(\zeta)]=[a^{*}(\eta), a^{*}(\zeta)]=0, [a(\eta), a^{*}(\zeta)]=
\{\eta, \zeta\} , (2.5)

where  \eta and  \zeta are members of  E or may be taken from  E^{*} whenever the commutators
are well‐defined according to Lemma 2.1.

The annihilation and creation operators at a point  t\in I are defined by

 a_{t}=a(\delta_{t}) , a_{t}^{*}=a^{*}(\delta_{t}) ,

57



58

respectively. We often refer to  \{a_{t}, a_{t}^{*};t\in I\} as the quantum white noise over  I . For
each  \kappa\in(E^{\otimes(l+m)})^{*} , a white noise operator  \Xi_{l,m}(\kappa_{l,m})\in \mathcal{L}((E), (E)^{*}) is defined by

  \Xi_{l,m}(\kappa_{l,m})=\int_{I^{l+m}}\kappa_{l,m}(s_{1}, \cdots, s_{l}, t_{1}
, \cdots, t_{m})
 \cross a_{s_{1}}^{*}\cdots a_{s_{l}}^{*}a_{t_{1}}\cdots a_{t_{m}}ds_{1}\cdots 
ds_{\iota}dt_{1}\cdots dt_{m}

and is called an integral kernel operator. The above integral expression is instructive
but formal, for the precise definition see [6, 20]. Similar expressions have been used in
common literatures along different formulations [1, 5, 18]. By definition, for each  x\in E^{*},
we have

 a(x)= \Xi_{0,1}(x)=\int_{I}x(t)a_{t}dt, a^{*}(x)=\Xi_{1,0}(x)=\int_{I}x(t)a_{t}
^{*}dt . (2.6)

By the nuclear kernel theorem we have  \mathcal{L}(E, E^{*})\cong(E\otimes E)^{*} , where the correspon‐
dence is given by

 \langle\tau_{S}, \eta\otimes\xi\rangle=\{S\xi, \eta\rangle, \xi, \eta\in E,

or even formally,

 S \xi(s)=\int_{I}\tau_{S}(s, t)\xi(t)dt.
With each  S\in \mathcal{L}(E, E^{*}) , we associate the integral kernel operator defined by

  \Lambda(S)=\Xi_{1,1}(\tau_{S})=\int_{I\cross I}\tau_{S}(s, t)a_{s}^{*}a_{t}
dsdt,
which is called a conservation operator. It is known that  \Lambda(S)\in \mathcal{L}((E), (E)^{*}) and that
 \Lambda(S)\in \mathcal{L}((E), (E)) if and only if  S\in \mathcal{L}(E, E) , or equivalently  \tau_{S}\in E\otimes E^{*} . For a more
detailed study of white noise operators, we refer to [6, 13, 19, 20].

3 Wick Derivations and Associated Equations

3.1 Creation and Annihilation Derivatives

For  \zeta\in E and  \Xi\in \mathcal{L}((E), (E)^{*}) , we define

 D_{\zeta}^{+}\Xi=[a(\zeta), \Xi]=a(\zeta)\Xi-\Xi a(\zeta) , (3.1)

  D_{\zeta}^{-}\Xi=-[a^{*}(\zeta), \Xi]=\Xi a^{*}(\zeta)-a^{*}(\zeta)\Xi , (3.2)

where the composition of white noise operators in the right‐hand sides are well‐defined
by (2) in Lemma 2.1. Then   D_{\zeta}^{+}\Xi and   D_{\zeta}^{-}\Xi are called the creation derivative and
annihilation derivative of  \Xi , respectively, and both together is called the quantum white
noise derivatives (see [8, 9, 10]). By definition,

 (D_{\zeta}^{+}\Xi)^{*}=D_{\zeta}^{-}\Xi^{*}, (D_{\zeta}^{-}\Xi)^{*}=D_{\zeta}^{
+}\Xi^{*} (3.3)

Moreover, it is proved [11] that  (\zeta, \Xi)\mapsto D_{\zeta}^{\pm}\Xi is a continuous bilinear map from   E\cross

 \mathcal{L}((E), (E)^{*}) into  \mathcal{L}((E), (E)^{*}) .
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In view of the definition (3.1) the quantum white noise derivative  D_{x}^{+} is defined for
 x\in E^{*} if the action is restricted to  \mathcal{L}((E), (E)) . In fact,  (x, \Xi)\mapsto D_{x}^{+}\Xi becomes a
continuous bilinear map from  E^{*}\cross \mathcal{L}((E), (E)) into  \mathcal{L}((E), (E)) . Similarly,  (x, \Xi)\mapsto
  D_{x}^{-}\Xi becomes a continuous bilinear map from  E^{*}\cross \mathcal{L}((E)^{*}, (E)^{*}) into  \mathcal{L}((E)^{*}, (E)^{*}) .
These assertions are shown by simple application of Lemma 2.1. For  x=\delta_{t} we come to
a pointwisely defined derivatives   D_{t}^{\pm}\Xi , in this connection see [9, 10].

Example 3.1. Let  x\in E^{*} and  S\in \mathcal{L}(E, E^{*}) . Then for each  \zeta\in E , it hoıds that

 D_{\zeta}^{-}a(x)=\{x, \zeta\}, D_{\zeta}^{+}a(x)=0,
 D_{\zeta}^{-}a^{*}(x)=0, D_{\zeta}^{+}a^{*}(x)=\langle x, \zeta\rangle,
 D_{\zeta}^{-}\Lambda(S)=a^{*}(S\zeta) , D_{\zeta}^{+}\Lambda(S)=a(S^{*}\zeta) . (3.4)

3.2 Wick Derivations

It is known that  \{\phi_{\xi};\xi\in E\} is linearly independent and spans a dense subspace of (E) .
Hence every white noise operator  \Xi\in \mathcal{L}((E), (E)^{*}) is uniquely determined by its symbol
defined by

 ---\wedge(\xi, \eta)=\{\langle\Xi\phi_{\xi}, \phi_{\eta}\rangle\}, \xi, \eta\in
E.
More precisely, the operator symbols of white noise operators are characterized by certain
analytic and growth conditions, so called the analytic characterization [19, 20]. Similar
results have been obtained for various classes of white noise operators, see e.g., [7] and
references cited therein.

For each  \Xi_{1},  \Xi_{2}\in \mathcal{L}((E), (E)^{*}) , by applying the analytic characterization of symbols,
we see that there exists a unique white noise operator  \Xi\in \mathcal{L}((E), (E)^{*}) such that

 ---(\xi, \eta)--(\xi, \eta)_{-2}^{-}-(\xi, \eta)e^{-\langle\xi,\eta\rangle}, 
\xi, \eta\in E.

The above : is called the Wick product or normal‐ordered product and is denoted by

 \Xi=\Xi_{1^{\langle\succ}}\Xi_{2}.

Equipped with the Wick product,  \mathcal{L}((E), (E)^{*}) becomes a commutative  *‐algebra. For
more discussion, see [3].

A continuous linear map  \mathcal{D} :  \mathcal{L}((E), (E)^{*})arrow \mathcal{L}((E), (E)^{*}) is called a Wick derivation
if

 \mathcal{D}(\Xi_{1^{\prec\rangle}}\Xi_{2})=(\mathcal{D}\Xi_{1})\langle\rangle  \Xi 2  +\Xi ı  \langle\rangle(\mathcal{D}\Xi_{2}) ,  \Xi_{1},  \Xi_{2}\in \mathcal{L}((E), (E)^{*}) .

The following result is important to our approach.

Theorem 3.2 ([12]). For any  \zeta\in E , the creation and annihilation derivatives  D_{\zeta}^{\pm} are
Wick derivations from  \mathcal{L}((E), (E)^{*}) into itself.

Remark 3.3. Roughly speaking, every Wick derivation is a linear combination of the
quantum white noise derivatives. For more details, see [12, Theorem 3.7].
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3.3 Differential Equations Associated with Wick Derivations

Given a Wick derivation  \mathcal{D} :  \mathcal{L}((E), (E)^{*})arrow \mathcal{L}((E), (E)^{*}) and a white noise operator
 G\in \mathcal{L}((E), (E)^{*}) , we consider a differential equation of the form:

 \mathcal{D}\Xi=G\langle\rangle\Xi . (3.5)

As in the case of ordinary differential equations, the solution is described by a type of
the exponential function. For a white noise operator  Y , the Wick exponential is defined
by

wexp  Y= \sum_{n=0}^{\infty}\frac{1}{n!}Y^{on}
whenever the series converges in  \mathcal{L}((E), (E)^{*}) , see [3, 12].

Theorem 3.4 ([12]). Let  \mathcal{D} :  \mathcal{L}((E), (E)^{*})arrow \mathcal{L}((E), (E)^{*}) be a Wick derivation and let
 G\in \mathcal{L}((E), (E)^{*}) be a white noise operator. Assume that there exists an operator   Y\in

 \mathcal{L}((E), (E)^{*}) such that  \mathcal{D}Y=G and wexp  Y is defined as an operator in  \mathcal{L}((E), (E)^{*}) .
Then every solution to (3.5) is given by

 \Xi=F\langle> wexp  Y, (3.6)

where  F\in \mathcal{L}((E), (E)^{*})\mathcal{S}atisfying  \mathcal{D}F=0.

Example 3.5. Let  \Xi\in \mathcal{L}((E), (E)^{*}) be given. Then  D_{\zeta}^{+}\Xi=D_{\zeta}^{-}\Xi=0 for all  \zeta\in E if
and only if  \Xi is a scalar operator (see Lemma 3.9 in [9]).

For each  S\in \mathcal{L}(E, E^{*}) , the second quantized operator  \Gamma(S)\in \mathcal{L}((E), (E)^{*}) is defined
by

 \Gamma(A)\phi=(A^{\otimes n}f_{n}) , \phi=(f_{n})\in(E) .

It is noted that  \Gamma(S) is expressible in terms of Wick exponential as follows.

Lemma 3.6. For  S\in \mathcal{L}(E, E^{*}) , we have

 \Gamma(S)= wexp  \Lambda(S-1) .

4 Displacement Operators

For each  S\in \mathcal{L}(E, E),  x\in E^{*} and  \xi\in E , put

 b_{S,x}(\xi)=a(S\xi)-\langle x, \xi\rangle, b_{S,x}^{*}(\xi)=a^{*}(S\xi)-
\langle x, \xi\}.

We note that

 (b_{S,,x}(\xi))^{\dagger}=\overline{(a(S\xi)-\{x,\xi\rangle)^{*}}=a^{*}
(\overline{S}\overline{\xi})-\langle\overline{x}, \overline{\xi}\rangle
 =b \frac{*}{S},\overline{x}(\overline{\xi}) .

In particular, the operators  b_{I,x}(\xi) and  b_{I,x}^{*}(\xi) are denoted by  b_{x}(\xi) and  b_{x}^{*}(\xi) , respec‐
tively.
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Lemma 4.1.  \{b_{S,x}(\zeta), b_{\overline{S},x}^{*}(\zeta);S\in \mathcal{L}(E, E), x\in E^
{*}, \zeta\in E\} satisfies the canonical
commutation relation if and only if

 S^{\dagger}S=I . (4.1)

Proof. For each  S\in \mathcal{L}(E, E),  x\in E^{*} and  \eta,  \zeta\in E , we obtain that

 [b_{S,x}(\eta), b_{\overline{S},x}^{*}(\zeta)]=[a(S\eta), a^{*}(\overline{S}
\zeta)]=\langle S\eta, \overline{S}\zeta\rangle,
which implies the assertion.  \square 

Let  S\in \mathcal{L}(E, E) and  x\in E^{*} . We now consider the problem to find an operator
 D_{S,x}\in \mathcal{L}((E), (E)^{*}) satisfying the intertwining properties:

 D_{S,x}a(\xi)=b_{S,x}(\xi)D_{S,x} , (4.2)

 D_{S,x}a^{*}( \xi)=b\frac{*}{S},\overline{x}(\xi)D_{S,x} (4.3)

for any  \xi\in E . In particular, for simple notation,  D_{I,x} is denoted by  D_{x} and it is called
the displacement operator associated with  x . Therefore, the operator  D_{S,x} as a solution
of the implementation problems (4.2) and (4.3) can be considered as a generalization
of the displacement operator. The displacement operator  D_{x} satisfies the intertwining
properties:

 D_{x}a(\xi)=b_{x}(\xi)D_{x}, D_{x}a^{*}(\xi)=b_{\overline{x}}^{*}(\xi)D_{x} (4.4)

for any  \xi\in E.
Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) . Then  S can be extended to  E^{*} as a

continuous linear operator acting on  E^{*} by

 \langle Sw,  \xi\rangle=\{w,   S^{*}\xi\rangle

for any  w\in E^{*} and  \xi\in E . For the extension, we used the same symbol  S.

Theorem 4.2. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in E^{*} . Suppose that  S

is an isometry. Then  D_{S,x}\in \mathcal{L}((E), (E)^{*}) is a solution of the implementation problem
given as in (4.2) and (4.3) if and only if it is of the form

 D_{S,x}=H\langle\rangle e^{a^{*}(\overline{S}x)}\Gamma(\overline{S})e^{-
a(\overline{x})} (4.5)

for some  H\in \mathcal{L}((E), (E)^{*}) such that  D_{S\xi}^{+}H=0 and  D_{\xi}^{-}H=0 . In particular, for any
constant  c\in \mathbb{C} , the white noise operator  D_{S,x}\in \mathcal{L}((E), (E)^{*}) given by

 D_{S,x}=ce^{a^{*}(\overline{S}x)}\Gamma(\overline{S})e^{-a(\overline{x})} (4.6)

is a solution of the implementation problem given as in (4.2) and (4.3).

Proof. Let  \Xi\in \mathcal{L}((E), (E)^{*}) be a solution of the implementation problem given as in
(4.2) and (4.3). Then  \Xi satisfies the following equations:

 \Xi a(\xi)=(a(S\xi)-\langle x, \xi\rangle)\Xi,

 \Xi a^{*}(\xi)=(a^{*}(\overline{S}\xi)-\langle\overline{x}, \xi\rangle)\Xi
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for any  \xi\in E , which is equivalent to the differential equations associated with the
quantum white noise derivatives:

  D_{S\xi}^{+}\Xi=(a((I-S)\xi)+\langle x, \xi\rangle)\langle\rangle\Xi , (4.7)

  D_{\xi}^{-}\Xi=(a^{*}((\overline{S}-I)\xi)-\langle\overline{x}, \xi\})
<\prime\Xi (4.8)

for any  \xi\in E . On the other hand, by applying Example 3.1 we obtain that

 D_{S\xi}^{+}(\Lambda(\overline{S}-I)+a^{*}(\overline{S}x))=a((I-S)\xi)+
\langle\overline{S}x, S\xi\rangle=a((I-S)\xi)+\langle x, \xi\},
from which, by applying Theorem 3.4, the solution : of (4.7) is of the form

 \Xi=F\langle\rangle wexp  \{\Lambda(\overline{S}-I)+a^{*}(\overline{S}x)\} (4.9)

for some  F\in \mathcal{L}((E), (E)^{*}) such that  D_{S\xi}^{+}F=0 . Also, by applying Example 3.1 again
we obtain that

 D_{\xi}^{-}(\Lambda(\overline{S}-I)-a(\overline{x}))=a^{*}((\overline{S}-I)\xi)
-\{\overline{x}, \xi\rangle,
which implies that the solution : of (4.8) is of the form

 \Xi=G\langle\rangle wexp  \{\Lambda(\overline{S}-I)-a(\overline{x})\} (4.10)

for some  G\in \mathcal{L}((E), (E)^{*}) such that  D_{\xi}^{-}G=0 . Therefore, from (4.9) and (4.10),  a

solution : of (4.7) and (4.8) is of the form

 \Xi=Ho wexp  \{a^{*}(\overline{S}x)+\Lambda(\overline{S}-I)-a(\overline{x})\}

for some  H\in \mathcal{L}((E), (E)^{*}) such that  D_{S\xi}^{+}H=0 and  D_{\xi}^{-}H=0 . Since wexp  \Lambda(S-I)=
 \Gamma(S) from Lemma 3.6, we complete the proof.  \square 

Corollary 4.3. Let  x\in E^{*} be given. Then  D_{x}\in \mathcal{L}((E), (E)^{*}) is the displacement
operator associated with  x , i. e., it is a solution of the implementation problem given as
in (4.4) if and only if it is of the form

 D_{x}=ce^{a^{*}(x)}e^{-a(\overline{x})} (4.11)

for some constant  c\in \mathbb{C}.

Proof. By Theorem 4.2, the solution of (4.4) is given as in (4.5) with  S=I and   H\in

 \mathcal{L}((E), (E)^{*}) such that  D_{\xi}^{+}H=D_{\xi}^{-}H=0 , and then by Example 3.5,  H is a scalar
operator. Hence the proof is completed.  \square 

Theorem 4.4. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H . Suppose that  S is
an isometry. Then the operator  D_{S,x}\in \mathcal{L}((E), (E)^{*}) given as in (4.6) is an isometry if
and only if  c=ze^{-|x|_{0}^{2}/2} for some  z\in \mathbb{C} with  |z|=1.

Proof. From (4.6), we have

 D_{S,x}^{\dagger}=\overline{c}e^{-a^{*}(x)}\Gamma(S^{*})e^{a(S\overline{x})} (4.12)

Note that

 e^{a(f)}e^{a^{*}(g)}=e^{\langle f,g\rangle}e^{a^{*}(g)}e^{a(f)},

 \Gamma(S)e^{a^{*}(\zeta)}=e^{a^{*}(S\zeta)}\Gamma(S) ,

 e^{a(\zeta)}\Gamma(S)=\Gamma(S)e^{a(S^{*}\zeta)} (4.13)
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Therefore, since  S is an isometry, i.e.,  s\dagger s=1 , by applying (4.13), we obtain that

 D_{S,x}^{\dagger}D_{S,x}=|c|^{2}e^{-a^{*}(x)}\Gamma(S^{*})e^{a(S\overline{x})}
e^{a^{*}(\overline{S}x)}\Gamma(\overline{S})e^{-a(\overline{x})}
 =|c|^{2}e^{\langle s_{\overline{x}},\overline{s}_{X}\rangle}e^{-a^{*}(x)}\Gamma
(S^{*})e^{a^{*}(\overline{S}x)}e^{a(S\overline{x})}\Gamma(\overline{S})e^{-
a(\overline{x})}
 =|c|^{2}e^{\langle\overline{x},x\rangle}e^{-a^{*}(x)}e^{a^{*}(S^{*}\overline{S}
x)}\Gamma(S^{*})\Gamma(\overline{S})e^{a(s\dagger s_{\overline{x})}}e^{-
a(\overline{x})}
 =|c|^{2}e^{|x|_{0}^{2}}.

Hence  D_{S,x} is an isometry if and only if  |c|^{2}e^{|x|_{0}^{2}}=1 if and only if  c=ze^{-|x|_{0}^{2}/2} with
 |z|=1.  \square 

From now on, we consider the isometric operator  D_{S,x} given by

 D_{S,x}=e^{-\frac{1}{2}|x|_{0}^{2}}e^{a^{*}(\overline{S}x)}\Gamma(\overline{S})
e^{-a(\overline{x})} , (4.14)

with isometry  S and  x\in H . If  S is real, i.e.,  \overline{S}=S , then the isometric operator  D_{S,x} is
given by

 D_{S,x}=e^{-\frac{1}{2}|x|_{0}^{2}}e^{a^{*}(Sx)}\Gamma(S)e^{-a(x)} , (4.15)

Corollary 4.5. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H. Suppose that  S

and  x are real and  S is an isometry. Then the isometric operator  D_{S,x} given as in (4.15)
satisfies the intertwining properties:

 D_{S,x}a(\xi)=b_{S,x}(\xi)D_{S,x},
 D_{S,x}a^{*}(\xi)=b_{S,x}^{*}(\xi)D_{S,x} (4.16)

for any  \xi\in E.

Proof. The proof is immediate from Theorems 4.2 and 4.4.  \square 

Theorem 4.6. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H . Suppose that  S is
unitary. Then the operator  D_{S,x}\in \mathcal{L}((E), (E)^{*}) given as in (4.14) is unitary.

Proof. By Theorem 4.4, the operator  D_{S,x} given as in (4.14) is an isometry. Also, by
similar computations used in the proof of Theorem 4.4, for  c=e^{-|x|_{0}^{2}/2} , we obtain that

 D_{S,x}D_{S,x}^{\dagger}=|c|^{2}e^{a^{*}(\overline{S}x)}\Gamma(\overline{S})e^{
-a(\overline{x})}e^{-a^{*}(x)}\Gamma(S^{*})e^{a(S\overline{x})}
 =|c|^{2}e^{\langle\overline{x},x\rangle}e^{a^{*}(\overline{S}x)}
\Gamma(\overline{S})e^{-a^{*}(x)}e^{-a(\overline{x})}\Gamma(S^{*})e^{a(x)}
 =|c|^{2}e^{\langle\overline{x},x\rangle}e^{a^{*}(\overline{S}x)}e^{-a^{*}
(\overline{S}x)}\Gamma(\overline{S})\Gamma(S^{*})e^{-a(S\overline{x})}
e^{a(S\overline{x})}
 =I.

Therefore, the operator  D_{S,x} is a coisometry and so it is unitary.  \square 

Let  \mathcal{U}(H) be the family of all unitary operators in  \mathcal{L}(H, H) . Then the set  \mathcal{U}(H)\cross H
becomes a group, denoted by  U(H)\ltimes H , with the group operation defined by

 (S, x)\cdot(T, y)=(ST, T^{*}x+y) , (S, x), (T, y)\in U(H)\cross H . (4.17)

Also, the set  \mathbb{T}\cross \mathcal{U}(H)\cross H becomes a group, denoted by  \mathbb{T}\cross \mathcal{U}(H)\ltimes H , with the group
operation defined by

 (\alpha, S, x)\cdot(\beta, T, y)=(\alpha\beta e^{i{\rm Im}((x,T\overline{y}
\rangle)}, ST, T^{*}x+y) (4.18)

for any  (\alpha, S, x),  (\beta, T, y)\in \mathbb{T}\cross \mathcal{U}(H)\ltimes H , where  \Gamma=\{z\in \mathbb{C};|z|=1\}.
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Theorem 4.7. For any  (S, x),  (T, y)\in \mathcal{U}(H)\cross H , it holds that

 D_{S,x}D_{T,y}=e^{i{\rm Im}(\langle x,\mathcal{I}\overline{y}\rangle)}D_{ST,T^{
*}x+y} . (4.19)

 D_{S,x}D_{S,y}=e^{i{\rm Im}((x,S\overline{y}\rangle)}D_{S^{2},S^{*}x+y} , (4.20)

 D_{S,x}^{-1}=D_{S,x}^{\dagger}=D_{S\dagger,-\overline{S}x} . (4.21)

Proof. By direct computation using the intertwining properties given as in (4.13), we
obtain that

 D_{S,x}D_{T,y}=e^{-\frac{1}{2}(|x|_{0}^{2}+|y|_{0}^{2})}e^{a^{*}(\overline{S}x)
}\Gamma(\overline{S})e^{-a(\overline{x})}e^{a^{*}(\overline{T}y)}
\Gamma(\overline{T})e^{-a(\overline{y})}
 =e^{-\frac{1}{2}(|x|_{0}^{2}+|y|_{0^{+2}}^{2}\langle\overline{x},\overline{T}
y\})_{e^{a^{*}(\overline{S}x)}\Gamma(\overline{S})e^{a^{*}(\overline{T}y)}e^{-a(
\overline{x})}\Gamma(\overline{T})e^{-a(\overline{y})}}}
 =e^{-\frac{1}{2}(|x|_{0}^{2}+|y|_{0}^{2}+2\langle\overline{\tau}_{y}\rangle)
_{e^{a^{*}(\overline{S}x+\overline{S}\overline{T}y)}\Gamma(\overline{S}\overline
{T})e^{-a(\tau\dagger_{\overline{x}+\overline{y})}}}}\overline{x},
 =e^{-\frac{1}{2}(|x|_{0}^{2}+|y|_{0}^{2}+2\langle\overline{\tau}_{y}\}-|T^{*}x+
y|_{0}^{2})_{D_{ST,T^{*}x+y}}}\overline{x},
 =e^{-\frac{1}{2}(\overline{x},\overline{T}y}\langle\}-\neg_{D_{ST,T^{*}x+y}}
 =e^{i{\rm Im}((x,\mathcal{I}y\rangle)}D_{ST,T^{*}x+y}arrow,

which gives the proof of (4.19). The proofs of (4.20) and (4.21) are straightforward from
(4.19).  \square 

Let  \mathcal{U}(H_{\mathbb{R}}) be the family of all real and unitary operators in  \mathcal{L}(H_{\mathbb{R}}, H_{\mathbb{R}}) . Then
 \mathcal{U}(H_{\mathbb{R}})\ltimes H_{R} and  \mathbb{T}\cross \mathcal{U}(H_{\mathbb{R}})\ltimes H_{\mathbb{R}} are subgroups of  \mathcal{U}(H)\ltimes H and  \mathbb{T}\cross \mathcal{U}(H)\ltimes H,
respectively.

Corollary 4.8. Let  (S, x)\in \mathcal{U}(H_{\mathbb{R}})\ltimes H_{R} . Then the unitary operator  D_{S,x} on  \Gamma(H)
given as in (4.15) satisfies the intertwining properties given as in (4.16).

Proof. The proof is immediate from Corollary 4.5 and Theorem 4.6.  \square 

5 Generalized Girsanov Transforms

For each  \zeta\in H , there exists a sequence  \{\zeta_{n}\}_{n=1}^{\infty}\subset E such that  \{\zeta_{n}\}_{n=1}^{\infty} converges to  \zeta
in  H . On the other hand, for each  n\in \mathbb{N},  X_{\zeta_{n}}=\langle\cdot,  \zeta_{n}\rangle is a Gaussian random variable
defined on  E_{\mathbb{R}}^{*} and  \{X_{\zeta_{n}}\}_{n=1}^{\infty} is a Cauchy sequence in  L^{2}(E_{\mathbb{R}}^{*}, \mu) . In fact, it holds that

  \int_{E_{1R}^{*}}|X_{\zeta_{n}}-X_{\zeta_{m}}|^{2}d\mu=\int_{E_{R}^{*}}
|X_{\zeta_{n}-\zeta_{m}}|^{2}d\mu=|\zeta_{n}-\zeta_{m}|_{0}^{2}
for any  n,  m\in \mathbb{N} . Therefore, we can define the random variable  X_{\zeta}  :=\{\cdot,  \zeta\rangle on  E_{\mathbb{R}}^{*} by

 X_{\zeta}=narrow\infty 1\dot{{\imath}}mX_{\zeta_{n}} in  L^{2}(E_{\mathbb{R}}^{*}, \mu) . (5.1)

Then  X_{\zeta} is a Gaussian random variable with mean  0 and variance  |\zeta|_{0}^{2} . Also,  X_{\zeta} can be
considered as a multiplication operator in  \mathcal{L}((E), (E)^{*}) and then we obtain that

 \langle\langle X_{\zeta}\phi_{\xi}, \phi_{\eta}\rangle\rangle=\{\langle 
X_{\zeta}, \phi_{\xi}\phi_{\eta}\}\}=e^{\langle\xi,\eta\rangle}
\langle\{X_{\zeta}, \phi_{\xi+\eta}\rangle\rangle=\{\zeta, \xi+\eta\rangle 
e^{(\xi,\eta\rangle}
 =\{\langle(a(\zeta)+a^{*}(\zeta))\phi_{\xi}, \phi_{\eta}\rangle\rangle,
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which implies that
 X_{\zeta}=a(\zeta)+a^{*}(\zeta) , (5.2)

which is called the quantum decomposition of  X_{\zeta} (see [20]).
Let  \zeta\in H . Then from (5.2), it is obvious that

 Dom(X_{\zeta})=Dom(a(\zeta))\cap Dom(a^{*}(\zeta)) ,

and so for any  \xi\in H,  \phi_{\xi}\in Dom(X_{\zeta}) .

Lemma 5.1. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  \zeta\in H. Then for any
 \xi,  x\in H,  D_{S,x}\phi_{\xi}\in Dom(X_{S\zeta}) .

Proof. Let  \xi,  x\in be given. Then we obtain that

 D_{S,x}\phi_{\xi}=e^{-\frac{1}{2}|x|_{0}^{2}}e^{a^{*}(Sx)}\Gamma(S)e^{-a(x)}
\phi_{\xi}=e^{-\frac{1}{2}|x|_{0}^{2}-\langle x,\xi\rangle}e^{a^{*}(Sx)}
\phi_{S\xi}
 =e^{-\frac{1}{2}|x|_{0}^{2}-\langle x,\xi\rangle}\phi_{S(x+\xi)}.

Therefore,  D_{S,x}\phi_{\xi}\in Dom(X_{S\zeta}) .  \square 

Theorem 5.2. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H. Suppose that  S

and  x are real and  S is an isometry. Then for each  \zeta\in H , it holds that

 D_{S,x}X_{\zeta}=(X_{S\zeta}-2\langle x, \zeta\})D_{S,x} (5.3)

on  LS(\{\phi_{\xi};\xi\in H\}) , where  D_{S,x} is the isometric operator given as in (4.15) and  LS(Y)
is the linear span of  Y\subset\Gamma(H) .

Proof. There exists a sequence  \{\zeta_{n}\}_{n=1}^{\infty}\subset E such that  \{\zeta_{n}\}_{n=1}^{\infty} converges to  \zeta in  H

and  \{X_{\zeta_{n}}\}_{n=1}^{\infty} converges to  X_{\zeta} in  L^{2}(E_{\mathbb{R}}^{*}, \mu)\cong\Gamma(H) . Then for any  n\in \mathbb{N} , by applying
Corollary 4.5, we see that the isometric operator  D_{S,x} given as in (4.15) satisfies the
intertwining properties:

 D_{S,x}a(\zeta_{n})=b_{S,x}(\zeta_{n})D_{S,x} , (5.4)

 D_{S,x}a^{*}(\zeta_{n})=b_{S,x}^{*}(\zeta_{n})D_{S,x} , (5.5)

which implies that
 D_{S,x}X_{\zeta_{n}}=(X_{S\zeta_{n}}-2\{x, \zeta_{n}\rangle)D_{S,x}.

Therefore, for any  \phi\in LS(\{\phi_{\xi};\xi\in H\}) , we obtain that

  D_{S,x}X_{\zeta} \phi=narrow\infty 1\dot{{\imath}}mD_{S,x}X_{\zeta_{n}}\phi=
\lim_{narrow\infty}(X_{S\zeta_{n}}-2\langle x, \zeta_{n}\rangle)D_{S,x}\phi
 =(X_{S\zeta}-2\langle x, \zeta\rangle)D_{S,x}\phi,

which proves (5.3).  \square 

Remark 5.3. The isometric operator  D_{S,x} given as in (4.15) as a solution of the imple‐
mentation problem given as in (5.3) is independent of the choice of  \zeta\in H.

Theorem 5.4. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H. Suppose that  S

and  x are real and  S is unitary. Then for each  \zeta\in H , it holds that

 D_{S,x}X_{\zeta}=(X_{S\zeta}-2\{x, \zeta\rangle)D_{S,x} (5.6)

on  LS(\{\phi_{\xi};\xi\in H\}) , where  D_{S,x} is the unitary operator given as in (4.15).

65



66

Proof. The proof is straightforward from Theorems 4.6 and 5.2.  \square 

Remark 5.5. As a solution of the implementation problem given as in (5.3), the iso‐
metric operator  D_{S,x} is called a quantum Girsanov transform, see [14].

Keeping the same notations and assumptions as in Theorem 5.2, we see from (5.3)
that

 D_{S,x}X_{\zeta}^{m}=(X_{S\zeta}-2\{x, \zeta\})^{m}D_{S,x}
for  m=0,1,2 , Then since  D_{S,x} is an isometry, we have

 \{\langle D_{S,x}\phi_{0}|(X_{S\zeta}-2\langle x, \zeta\rangle)^{m}D_{S,x}\phi_
{0}\}\rangle=\langle\langle D_{S,x}\phi_{0}|D_{S,x}X_{\zeta}^{m}\phi_{0}
\rangle\rangle
 =\langle\langle\phi_{0}|X_{\zeta}^{m}\phi_{0}\rangle\rangle , (5.7)

where  \{\{\cdot|\cdot\rangle\} is the hermitian inner product of  \Gamma(H) . Therefore, following quantum
probabilistic language, we see that the spectral distribution of  X_{S\zeta}-2\{x, \zeta\} in the
transformed vacuum state  D_{S,x}\phi_{0}=e^{-\frac{1}{2}|x|_{0}^{2}}\phi_{Sx} coincides with that of  X_{\zeta} in the vacuum

state  \phi_{0} . Here  D_{S,x}\phi_{0} is given by

 D_{S,x}\phi_{0}=e^{-\frac{1}{2}|x|_{0}^{2}}\phi_{Sx}=e^{\langle\cdot,Sx\rangle-
|x|_{0}^{2}}.
From (5.7) we obtain that

  \int_{E_{R}^{*}}\{z, \zeta\}^{m}\mu(dz)=\int_{E_{R}^{*}}(\langle z, S\zeta\}-2
\{x, \zeta\rangle)^{m}(D_{S,x}\phi_{0}(z))^{2}\mu(dz)
 = \int_{E_{R}^{*}}(\{z, S\zeta\}-2\{x, \zeta\rangle)^{m}e^{2\langle z,Sx\rangle
-2\langle x,x\rangle}\mu(dz)
 = \int_{E_{R}^{*}}\{S^{*}z-2x, \zeta\}^{m}\phi_{2Sx}(z)\mu(dz) ,

which implies that

  \int_{E_{R}^{*}}\langle z, \zeta\}^{m}\mu(dz)=\int_{E_{R}^{*}}\{S^{*}z-2x, 
\zeta\}^{m}\phi_{2Sx}(z)\mu(dz) . (5.8)

On the other hand, the Cameron‐Martin theorem says that the Gaussian measure  \mu on
 E_{\mathbb{R}}^{*} is quasi‐invariant under the translation by  \eta\in E_{R} (in fact,  \eta\in H_{R} is necessary and
sufficient) and the Radon‐Nikodym derivative is given by

  \frac{\mu(dz-\eta)}{\mu(dz)}=\phi_{\eta}(z) , z\in E_{\mathbb{R}}^{*}.
We thus observe that (5.8) produces a generalization of the Cameron‐Martin theorem.

For each  t\geq 0 , put

 B_{t}=X_{1_{[0,t]}}=\langle\cdot, 1_{[0,t]}\rangle.
Then  \{B_{t}\}_{t\geq 0} is called a realization of Brownian motion. Let  S\in \mathcal{L}(E, E) be real and
an isometry. Suppose that  S^{*}\in \mathcal{L}(E, E) . Then for each  t\geq 0 , put

 B_{t}^{S}= \langle S^{*}\cdot, 1_{[0,t]}\rangle, \overline{B}_{t}^{S}:=B_{t}
^{S}-\int_{0}^{t}x(s)ds
for some  x\in H_{\mathbb{R}} . Here if  I=[0, T]^{n} , then  1_{[0,t]} is the vector in  L^{2}([0, T]^{n}, dt) , i.e.,

 1 [0,t]= (1_{[0,t]}, \cdots , 1[0,t])\in L^{2}([0, T]^{n}, dt) ,

and so  \{B_{t}\}_{t\geq 0} is called a realization of  n‐dimensional Brownian motion.
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Theorem 5.6. Let  S\in \mathcal{L}(E, E) such that  S^{*}\in \mathcal{L}(E, E) and  x\in H. Suppose that  S

and  x are real and  S is an isometry. Then for each  t\geq 0 , it holds that

 D_{S,x/2}B_{t}=\overline{B}_{t}^{S}D_{S,x/2} (5.9)

on  LS(\{\phi_{\xi)}\cdot\xi\in H\}) , where  D_{S,x/2} is the isometric operator given by

 D_{S,x/2}=e^{-\frac{1}{8}|x|_{0}^{2}}e^{\frac{1}{2}a^{*}(Sx)}\Gamma(S)e^{-\frac
{1}{2}a(x)} . (5.10)

Proof. The proof is immediate from Theorem 5.2. Here from Remark 5.3, the isometric
operator  D_{S,x/2} dose not depend on  t.  \square 

Theorem 5.7. Notations and assumptions being as in Theorem 5.6,  \{\overline{B}_{t}^{S}\}_{t\geq 0} is a Brow‐
nian motion with respect to the probability measure  Q_{S,x} given by

  \frac{dQ_{S,x}(z)}{d\mu(z)}=[(D_{S,x/2}\phi_{0})(z)]^{2}=e^{\langle z,
Sx\rangle-\frac{1}{2}|x|_{0}^{2}}=\phi_{Sx}(z) .

Proof. The proof is straightforward from Theorem 5.6, i.e., we can prove that  \{\overline{B}_{t}^{S}\}_{t\geq 0}
satisfies the properties  (B1)-(B4) stated in Introduction. In fact, it is obvious that
 \overline{B}_{0}^{S}=0 . By applying Theorem 5.6, we see that

  \int_{E_{R^{*}}}e^{i\lambda\overline{B}_{t}^{S}}dQ_{S,x}=e^{-\frac{{\imath}}
{2}\lambda^{2}t},
which implies that  \overline{B}_{t}^{S} is a Gaussian random variable with mean  0 and variance  t . Also,
for any  0\leq s<t\leq u<v , by direct computation, we have

  \int_{E_{R}^{*}}(\overline{B}_{t}^{S}-\overline{B}_{s}^{S})(\overline{B}_{v}
^{S}-\overline{B}_{u}^{S})dQ_{s,x}=\langle S1_{[s,t]}, S1_{[u,v]}\rangle=0,
which implies that  \overline{B}_{t}^{S}-\overline{B}_{s}^{S} and  \overline{B}_{v}^{S}-\overline{B}_{u}^{S} are independent. Finally, by applying Kol‐
m‐ogorov’s continuity theorem with Theorem 5.6, we see that almost all sample paths of
 \{B_{t}^{S}\}_{t\geq 0} are continuous.  \square 

For the case of  S=I the identity operator, put  \overline{B}_{t}=\overline{B}_{t}^{S} for each  t\geq 0.

Corollary 5.8 (Girsanov Theorem). The stochastic process  \{\overline{B}_{t}\}_{t\geq 0} is a Brownian mo‐
tion with respect to the probability measure  Q_{x} given by

  \frac{dQ_{x}(z)}{d\mu(z)}=[(D_{I,x/2}\phi_{0})(z)]^{2}=e^{\langle z,x\rangle-
\frac{1}{2}|x|_{0}^{2}}=\phi_{x}(z) .

Proof. The proof is immediate from Theorem 5.7.  \square 

Remark 5.9. In the literature, the statement of Corollary 5.8 is called the Cameron‐
Martin‐Girsanov theorem. Also, since the measure  Q_{x} given as in Corollary 5.8 is called
a Girsanov transform, the measure  Q_{S,x} given as in Theorem 5.7 can be considered as a
generalization of Girsanov transform.
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Example 5.10. Let  E\equiv \mathcal{S} be the Schwartz space of rapidly decreasing  C^{\infty}‐functions
on  \mathbb{R}_{+}=[0, \infty) and  E^{*}\equiv \mathcal{S}' the space of tempered distributions on  \mathbb{R}_{+}.

(1) (Time inversion) We now consider the time inversion property of a Brownian
motion which is a powerful tool to study path properties of a Brownian motion.

Define a linear operator  S:Earrow E by

 (S \eta)(s)=\int_{0}^{1/s}\eta(u)du-\frac{1}{s}\eta(1/s) , \eta\in E . (5.11)

Then we can easily see that  S is a continuous linear operator from  E into itself. Also,
by applying the integration by parts formula and change of variable formula, for any
 \xi,  \eta\in E , we can see that

  \langle\eta, S^{*}\xi\}=\{S\eta, \xi\}=\int_{0}^{\infty}\eta(t)(\int_{0}^{1/t}
\xi(s)ds-\frac{1}{t}\xi(1/t))dt,
which implies that

 S^{*} \xi(t)=\int_{0}^{1/t}\xi(s)ds-\frac{1}{t}\xi(1/t) . (5.12)

Therefore, the operator  S is self‐adjoint (symmetric and real). Moreover, we obtain that

 S^{*}(S \eta)(t)=\int_{0}^{1/t}[\int_{0}^{1/s}\eta(u)du-\frac{1}{s}\eta(1/s)]ds
-\frac{1}{t}[\int_{0}^{t}\eta(u)du-t\eta(t)]
 = \eta(t)+\int_{0}^{1/t}(\int_{0}^{1/s}\eta(u)du)ds-\int_{0}^{1/t}\frac{1}{s}
n(1/s)ds-\frac{1}{t}\int_{0}^{t}\eta(u)du
 =\eta(t) ,

which implies that  S is an isometry. On the other hand, we see that

Sl  [0,t]=t1[0,1/t]

for any  t>0 . Therefore, by Theorem 5.7,  \{\overline{B}_{t}^{S}\}_{t\geq 0} is a Brownian motion with respect
to the probability measure  Q_{S,x} given by

  \frac{dQ_{S,x}(z)}{d\mu(z)}=[(D_{S,x/2}\phi_{0})(z)]^{2}=e^{\langle z,
Sx\rangle-\frac{1}{2}|x|_{0}^{2}}=\phi_{Sx}(z) ,

where  x\in H and

  \overline{B}_{t}^{S} :=B_{t}^{S}-\int_{0}^{t}x(s)ds=tB_{\frac{1}{t}}-\int_{0}^
{t}x(s)ds.
In particular, the time inversion  \{tB_{\frac{1}{t}}\}_{t\geq 0} of the Brownian motion  \{B_{t}\}_{t\geq 0} is also a
Brownian motion with respect to the initial Gaussian measure  \mu.

(2) (Scaling invariance) Let  a\in \mathbb{R} with  a\neq 0 be given. Define a linear operator
 S:Earrow E by

 (S \eta)(s)=\frac{1}{a}\eta(\frac{t}{a^{2}}) , \eta\in E . (5.13)
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Then it is obvious that  S is continuous and

 S^{*}\xi(t)=a\xi(a^{2}t) , (5.14)

and  S is an isometry. On the other hand, we have

 S1_{[0,t]}= \frac{1}{a}1_{[0,a^{2}t]}, t\geq 0.
Therefore, by Theorem 5.7,  \{\overline{B}_{t}^{S}\}_{t\geq 0} is a Brownian motion with respect to the probability
measure  Q_{S,x} given by

  \frac{dQ_{S,x}(z)}{d\mu(z)}=[(D_{S,x/2}\phi_{0})(z)]^{2}=e^{\langle z,
Sx\rangle-\frac{1}{2}|x|_{0}^{2}}=\phi_{Sx}(z) ,

where  x\in H and

  \overline{B}_{t}^{S} :=B_{t}^{S}-\int_{0}^{t}x(s)ds=\frac{1}{a}B_{a^{2}t}-
\int_{0}^{t}x(s)ds.
In particular, the time scaling   \{\frac{1}{a}B_{a^{2}t}\}_{t\geq 0} of the Brownian motion  \{B_{t}\}_{t\geq 0} is also a
Brownian motion with respect to the initial Gaussian measure  \mu.
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