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Brownian motion, which was first observed by Brown in 1827, is a well‐

known physical phenomenon concerning the dynamics of a small particle

immersed into a fluid in equilibrium, e.g., a grain of pollen in a glass of water

[15]. It is always an interesting problem in mathematical physics to describe
the Brownian motion phenomenology by classical mechanical models.

The first physical explanation of Brownian motion was given by Einstein:

the motion is coming about as a result of the repeated collisions of the massive

particle with the numerous much smaller but faster fluid atoms. In more

mathematical terms the explanation is often presented in the following rough

way: since the massive particle is collided by a big number of very light water

particles, if we could assume that the interactions from each light particle

at each time are independent, then by the central limit theorem for the sum

of i.i.d. random variables, this will give in a suitable limit the Brownian
motion.

However, this assumption of independence can hardly be justified, even

in a model where only interactions through collisions are considered, since

there exists the possibility of re‐collisions. This becomes a more evident and

significant drawback when considering the model of interactions caused by

potentials. Therefore, the actual motion of the massive particle can not be

explained as resulting from a sum of i.i.d . random variables, it is not even a

Markov process.
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So in order to study this phenomenon more precisely, one needs to con‐

struct some model which is consistent with the mentioned dependence on the

past. In such a model, a massive particle interacts with a gas of infinitely

many light particles, with the dynamics fully deterministic and Newtonian,

as long as the initial condition is given. The only source of randomness is

from the initial configuration of the light particles. The problem we will

be concerned with is to describe the motion of the massive particle in the

Brownian limit, where the mass  m of the light particles goes to  0 , while the

density and the velocities of them have order m‐ı/2 The scaling is done
in such a way that the variance of the momentum transfer stays of order 1.

See the introductions of [12] and [13] for a more detailed explanation with
respect to the reason of this scaling.

This type of model, called a mechanical model of Brownian motion, was

first introduced and studied by Holley [9], for the case where the whole system
is in dimension  d=1 , and the interactions are given by collisions. This model

was later extended by, e.g., Dürr‐Goldstein‐Lebowitz [6], [7], [8], Calderoni‐
Dürr‐Kusuoka [2], to the case of higher dimensional spaces. Szász‐Tóth [16]
also considered some related problem. We notice that in all these papers,

the interactions were just of the collisions type.
We consider such a model where the interactions between the massive

particle and the light particles are given by a spherical‐symmetric compactly

supported smooth potential function  U . So we are assuming the following:

Ul.  U\in C_{0}^{\infty}(R^{d}) , and there exists a constant  R_{U}>0 and a smooth func‐

tion  h :  [0, \infty )  arrow[0, \infty ) such that  U(x)=h(|x|) for any  x\in R^{d} and
 U(x)=0 if  |x|\geq R_{U}.

Write the initial condition of our system as  (X_{0}, V_{0}) and  \overline{\omega}:(X_{0}, V_{0}) is

the initial state (i.e., the position and the velocity) of the massive particle,
and  \overline{\omega}\in Conf  (R^{d}\cross R^{d}) gives us the initial condition of the light particles

 -(x, v)\in\overline{\omega} means that there exists an environmental particle with position
 x and velocity  v at time  0 . Here Conf  (*) stands for the set of all non‐
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empty closed subsets of  * which have no cluster point. The distribution of
 \overline{\omega} will be given later. As soon as the initial condition of the system is given,

our system is totally deterministic, Newtonian, with the Hamilton given by

  \frac{{\imath}}{2}|V|^{2}+\Sigma_{(x,v)}\frac{m}{2}|v|^{2}+\Sigma_{(x,v)}U(X-
x) .

For any initial condition  \tilde{\omega} and time   t\in[0, \infty), let  (X^{(m)}(t,\tilde{\omega}), V^{(m)}(t,\tilde{\omega}))
denote the state of the massive particle at time  t , and for any  (x, v)\in\tilde{\omega} , let

 (x^{(m)}(t, x, v,\tilde{\omega}), v^{(m)}(t, x, v,\overline{\omega})) denote the state at time  t of the light particle

which had state  (x, v) at time  0 . So our dynamical system is given by the

following infinite system of ordinary differential equations:

 \{\begin{array}{l}
\frac{d}{dt}X^{(m)}(t,\overline{\omega})=V^{(m)}(t,\overline{\omega}) ,
\frac{d}{dt}V^{(m)}(t,\overline{\omega})=-\int_{R^{d}\cross R^{d}}\nabla 
U(X^{(m)}(t,\overline{\omega})-x^{(m)}(t, x, v,\overline{\omega}))\mu_{\overline
{\omega}}(dx, dv) ,
(X(m)(0,\overline{\omega}), V^{(m)}(0,\overline{\omega}))=(X_{0}, V_{0}) ,
\frac{d}{dt}x^{(m)}(t, x, v,\overline{\omega})=v^{(m)}(t, x, v,\overline{\omega}
) ,
m\frac{d}{dt}v^{(m)}(t, x, v,\overline{\omega})=-\nabla U(x^{(m)}(t, x, v,
\overline{\omega})-X^{(m)}(t,\overline{\omega})) ,
(x^{(m)}(0, x, v,\overline{\omega}), v^{(m)}(0, x, v,\overline{\omega}))=(x, v) 
, (x, v)\in\overline{\omega}.
\end{array}
(1)

Here  \mu_{\overline{\omega}}  () is the counting measure determined by  \overline{\omega}:\mu_{\overline{\omega}}(A)=\#(\overline{\omega}\cap A)
for any  A\in \mathcal{B}(R^{d}\cross R^{d}) .  (\#  () thus denoting the number of points in the

argument).
The only randomness of our model comes from the distribution of the

environmental initial condition  \overline{\omega} , which is given by the following. Let  \rho :

 [0, \infty)\cross R^{d}arrow[0, \infty) be a measurable function such that   \sup_{z\in R^{d}}\rho(u, z)arrow 0
rapidly as   uarrow\infty . Let  \overline{\lambda_{m}} be the non‐atomic Radon measure on  R^{d}\cross R^{d}

given by

  \overline{\lambda_{m}}(dx, dv)=m^{\frac{d-1}{2}}\rho(\frac{m}{2}|v|^{2}, x-
X_{0})dxdv,
and let  \overline{P_{m}}(d\overline{\omega}) be the Poisson point process with the intensity measure  \overline{\lambda_{m}}.
So  \overline{P_{m}} is a probability measure on  \overline{\Omega}=Conf(R^{d}\cross R^{d}) . We assume that the
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distribution of di is given by  \overline{P_{m}} . (See, e.g., [10] for more details with respect
to Poisson point processes).

We assume the following assumptions with respect to  \rho :

Al. There exists a constant  \overline{v}>0 such that  \rho(u, z)=0 for any  u< \frac{1}{2}\overline{v}^{2}
and  z\in R^{d}.

A2.  \rho(u, -z)=\rho(u, z) for any  z\in R^{d} and   u\in[0, \infty ). Also, there exist
a function  \rho_{0} :  [0, \infty )  arrow[0, \infty ) and a constant  R_{1}>0 such that
 \rho(u, z)=\rho_{0}(u) as long as  |z|\geq R_{1} for any   u\in[0, \infty ).

A3.   \int_{R^{d}}(1+|v|^{3})\rho_{\max}(\frac{{\imath}}{2}|v|^{2})dv<\infty . Here  \rho_{\max}(u)  := \sup_{z\in R^{d}}\rho(u, z),   u\in

 [0 , oo  ) .

Although as explained, the behavior of the massive particle is not Marko‐

vian, we notice that one expects that the non‐Markovian character of the

dynamics disappears when  marrow 0 , heuristically because at least when the

initial velocities of light particles are fast enough, the effective interaction

durations should be short enough.

As announced, we are going to prove that under certain condition, when
 marrow 0 , the distribution of the stochastic process  \{(X^{(m)}(t), V^{(m)}(t));t\in
 [0, \infty)\} converges weakly to a diffusion, with our metric on  C([0, \infty);R^{2d})
given by

dist  (w_{1}, w_{2}):= \sum_{k=1}^{\infty}2^{-\prime}(1\wedge\max_{t\in[0,k]}|w_{1}
(t)-w_{2}(t)|) ,  w_{1},  w_{2}\in R^{2d}

Let us start our discussion with a technical assumption that all light par‐

ticles are sufficiently fast. Precisely, we assume for a while that the constant
 \overline{v} of (A1) satisfies  \overline{v}\geq 2C_{0}+1 , with  C_{0}  :=\sqrt{2R_{U}\Vert\nabla U\Vert_{\infty}} . As proved in [12],
this assumption ensures that all light particles cross the effective interac‐

tion range in a bounded time, and never reenter the valid range. Therefore,

when considering the behavior of the light particles, we could use the ap‐

proximation that the massive particle is frozen. This is the so‐called freezing

approximation, see  \varphi and  \psi defined below.
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We prepare several notations in order to formulate our limiting pro‐

cess. First of all, for any  X\in R^{d} and  (x, v)\in R^{2d} , let  \varphi(t, x, v;X)=
 (\varphi^{0}(t, x, v;X), \varphi^{1}(t, x, v;X)) denote the solution of the following system of

ordinary differential equations:

 \{\begin{array}{l}
\frac{d}{dt}\varphi^{0}(t, x, v;X)=\varphi^{1}(t, x, v;X)
\frac{d}{dt}\varphi^{1}(t, x, v;X)=-\nabla U(\varphi^{0}(t, x, v;X)-X)
(\varphi^{0}(0, x, v;X), \varphi^{1}(0, x, v;X))=(x, v) .
\end{array} (2)

We notice that (2) is the same as the second half of (1) with  m=1 , except
that the quantity  X^{(1)}(t) of (1) is substituted by  X in (2).

Next, let

 E = \{(x, v)\in R^{d}\cross(R^{d}\backslash \{0\});x\cdot v=0\},

 E_{v} = \{x\in R^{d};x\cdot v=0\}, v\in R^{d}\backslash \{0\},

and let  \nu(dx, dv) be the measure on  E given by  \nu(dx, dv)=|v|\overline{\nu}(dx;v)dv,
where  \overline{\nu}(dx;v) is the Lebesgue measure on  E_{v} . We define the ray represen‐
tation  \Psi as follows:

 \Psi :  R\cross Earrow R^{d}\cross(R^{d}\backslash \{0\}) ,

 (s, (x, v))\mapsto\Psi(s, (x, v))=(x-sv, v) . (3)

In words, we decompose the position of each environmental particle into two

parts: one parallel to its velocity and the other orthogonal to its velocity.

We remark that in this new space  R\cross E,  v is still the initial velocity of the

light particle, while  x is not the initial position of it anymore: now  x is only

the component of its initial position that is perpendicular to the velocity.

Also,  s gives us approximately the time that this particle enters the effective

interaction range.

For any  X\in R^{d} and  (x, v)\in E , we have that

  \psi(t, x, v;X):=(\psi^{0}(t, x, v;X), \psi^{1}(t, x, v;X)):=
\lim_{sarrow\infty}\varphi(t+s, x- sv, v;X)
(4)
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is well‐defined. As explained,  \varphi^{0}(m^{\frac{1}{2}}t, \Psi(m^{-\frac{1}{2}}, x, v);X) and  \psi(t-m^{-\frac{1}{2}}r, x, v;X)
with some proper  X are our freezing‐approximations of  x(t, \Psi(r, x, m^{-\frac{1}{2}}v)) .

Also, for any  (x, v)\in E,  X,  V\in R^{d} and  a\in R , let  z(t;x, v, X, V, a)
denote the solution of

 \{\begin{array}{l}
\frac{d^{2}}{dt^{2}}z(t)=-\nabla^{2}U(\psi^{0}(t, x, v, X)-X)(z(t)-(t+a)V) ,
\lim_{tarrow-\infty}z(t)=\lim_{tarrow-\infty}\frac{d}{dt}z(t)=0.
\end{array} (5)

 z_{\backslash }(t;x, v, X, V, a) with proper  X,  V and  a gives us the first order of the approx‐

imation error of our freezing‐approximation. We notice that  z(t;x, v, X, V, a)
is a linear function of  V.

Our limiting diffusion generator  L on function over  R^{2d} is given by the

following:

 L= \frac{1}{2}\sum^{d}a_{kl}\frac{\partial^{2}}{\partial V_{k}\partial V_{l}}+
\sum^{d}b_{kl}V_{l}\frac{\partial}{\partial V_{k}}+\sum^{d}V_{k}\frac{\partial}{
\partial X_{k}} , (6)
k,l  = ı  k,l=1  k=1

with

 a_{kl}  =   \int_{E}(\int_{-\infty}^{\infty}\nabla_{k}U(\psi^{0}(t, x, v;X)-X)dt)
  \cross(\int_{-\infty}^{\infty}\nabla\iota U(\psi^{0}(t, x, v;X)-X)dt)\rho_{0}(
\frac{1}{2}|v|^{2})\nu(dx, dv) ,

and  b_{kl} :  R^{d}arrow R,  k,  l=1,  \cdots,  d , are  C^{\infty}‐fUnctions determined by the

following relation:

 - \int_{E}(\int_{-\infty}^{\infty}\nabla^{2}U(\psi^{0}(t, x, v, X)-X)z(t, x, v,
X, V, -t)dt)\rho_{0}(\frac{1}{2}|v|^{2})\nu(dx, dv)
 = \sum_{l=1}^{d}b_{kl}V_{l}^{\ell}

The coefficients  a and  b correspond to the  0‐order and the 1‐order approxima‐

tions, respectively, of our freezing‐approximation. We notice that as proved

in [13, pages 248−249], since there is only one massive particle in our model,
 a and  b are indeed independent of  X , so our limiting process coincides with
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that for the model with hard core (see [6]). We also remark that the integrals
with respect to  t in the definitions of  a_{k\iota} and  b_{k\iota} are finite.

Now we are ready to formulate our first result.

Theorem 1 ([12]) Assume (Ul), (A2) and (A3). Also, assume (A1) with
 \overline{v}\geq 2C_{0}+1 . Then when  marrow 0 , the distribution of  \{(X^{(m)}(t), V^{(m)}(t));t\geq
 0\} under  \overline{P_{m}} converges weakly to the diffusion process with generator  L in

 (C([0, \infty);R^{2d}) , dist  ) .

Remark 2 To be  preci_{\mathcal{S}}e,  [12] considered a more general model where there

might be more than one massive particles,  a\mathcal{S} a result, (when  re\mathcal{S}trict it to
the case where their is only one massive particle as in our present model) the
assumption in [12] with respect to  \rho is actually a special  ca\mathcal{S}e of our model:
[12] assumed that there exists a  \overline{\rho} such that  \rho(u, x)=\overline{\rho}(u+U(z-X_{0})) for
any  (u, z)\in[0, \infty)\cross R^{d} , and that  \overline{\rho}(s)=0 for any  s \leq\frac{1}{2}(2C_{0}+1)^{2}+\Vert U\Vert_{\infty}.
Nevertheless, we can get Theorem 1 by using exactly the  \mathcal{S}ame method and

estimates of [12].

[13] also  co\dot{n}sidered this model under the assumption that all light parti‐
cles are sufficiently fast  (i.e., \overline{v}\geq 2C_{0}+1) .

In a physically more relevant model, there also might exist light particles

with initial energies less than  2C_{0}+1 , equivalently, with initial velocities less

than  m^{-1/2}(2C_{0}+1) . We consider this case from now on. As explained,

this could not be covered by [12] — the effective interaction time duration
could not be bounded. Indeed, in a continuous interaction potential model

with possibly not sufficiently fast light particles, the effective interaction time

durations between particles might be unbounded. This is heuristically clear

by considering the much simpler model with the massive particle frozen‐

if the initial relative position  x-X between a light particle and the frozen

massive particle is parallel to its initial velocity  v but with opposite directions,

and the energy   \frac{m}{2}|v|^{2}+U(x-X) is equal to the maximum of the potential  U

(which is assumed to be finite now), then after its first hit, the light particle
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will stop at the position that attains the maximum of the potential, hence

the effective interaction time duration would be infinity.

For the model with light particles not sufficiently fast, we restrict ourselves

to the case where the interactions between particles are repulsive. So we are

assuming the following in addition:

U2.  h'(a)<0 for any  a\in(0, R_{U}) . Also, we assume that  h"(0)<0.

In this case, at least for a light particle in a freezing‐approximation model,

as long as its initial relative position  x-X is not totally parallel to its initial

velocity  v , even if  |v|\leq 2C_{0}+1 , the particle could leave the effective inter‐

action range at some finite time. Certainly, the observation above suggests

that the effective interaction time duration could nevertheless be very long.

The situation for the light particles without freezing‐approximation is even

more complicated since the massive particle is also evolving.

By estimating the effective interaction time durations accurately, we can

prove the following.

Theorem 3 ([14]) Assume (U1) (U2) and  (Al)\sim (A3). Also,  a\mathcal{S}sume that
 d>2(1+\Vert h"||_{\infty})(-h"(0))^{-\frac{1}{2}}+1 . Then when  marrow 0 , the distribution of

 \{(X^{(m)}(t), V^{(m)}(t)) ;

 t\geq 0\} under  \overline{P_{m}} converges weakly to the diffusion process with generator  L

in  (C([0, \infty);R^{2d}) , dist  ) .

We remark that the assumption  d>2(1+\Vert h"\Vert_{\infty})(-h"(0))^{-1/2}+1 of

Theorem 3 implies that  d>5 . This assumption is closely related to our

estimation of the effective interaction time durations of the light particles. It

might by possible to relax this assumption if we can prove a sharper estimate.
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