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Abstract

A review on spectral analysis of infinite dimensional Dirac type operators
on an abstract boson-fermion Fock space is presented.

1 Introduction
For each pair (4, %) of complex Hilbert spaces, the tensor product Hilbert space
F(H, X)) = Fo(H) @ Fe(H)

of the boson Fock space

Fo(H) =P Q) # = {w = {2 ™ e @22, > ™| < oo}
s n=0

n=0 s

over 47 and the fermion Fock space

o P p (e 9]
Fi(H) =PNF = {aﬁ = {gP}2ol¢® € A\, Y 18P < oo}
p=0

p=0

over # is defined, where ®7.7¢ denotes the n-fold symmetric tensor product of J#
with ®25 := C, AP.#" denotes the p-fold anti-symmetric tensor product of # with
A°2¢ := C and, for a vector ¥ in a Hilbert space, ||¥|| denotes the norm of ¥. We call
the Hilbert space % (¢, %) the abstract boson-fermion Fock space over (4, %).
In a previous paper [2], the author introduced a general class of infinite-dimensional
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Dirac operators on .# (#, %) and clarified general mathematical structures behind
some supersymmetric quantum field models giving an abstract unification of them.
In particular, a path (functional) integral representation of analytical index of an
infinite dimensional Dirac operator was derived, which gives a kind of index theorem.
But spectral analysis of the infinite dimensional Dirac operators is still missing. Only
partial results are available [10]. In the present paper, we review some aspects of
spectral analysis of infinite dimensional Dirac operators.

2 Preliminaries

We first recall basic objects and facts associated with Fock spaces. See [11] for more
details.

In general, for a linear operator A from a Hilbert space to a Hilbert space, we
denote its domain by D(A).

For each vector f € 4%, there is a unique densely defined closed linear operator
a(f) on F, () such that its adjoint a(f)* takes the following form:

D(a(f)") = {¢ € Zo(A) Y IIVnSa(f @ p" )| < 00} ,
@)@ =0, (a(f)* )™ = VnSu(f @), n>1, ¢ € D(a(f)"),

where S, denotes the symmetrization operator (symmetrizer) on the n-fold tensor
product ®"5¢ of . The operator a(f) (resp. a(f)*) is called the boson annihila-
tion (resp. creation) operator with test vector f.

There is a distinguished vector

Qy == {1,0,0,--- } € Fp(H#),

called the boson Fock vacuum in %,(#¢), which is vanished by the annihilation
operator:

a(f)Q =0, Vf € .

The set {a(f),a(f)*|f € #} of boson annihilation operators and boson creation
operators obeys the canonical commutation relations (CCR) over ¢

[a(£),a(9)"] = (f,9)sr, la(f),alg)l =0, fgeH
on the bosonic finite particle subspace
Foo(H) = {1 € P ()| Fng € N s.t. ™ =0, Vn > ng},

where [X,Y] := XY —YX and (, ), denotes the inner product of # (linear in
the second variable).



In general, for a subset & of a vector space, span(&’) or spané denotes the
subspace generated by all the vectors of &.
It is well known that, for each dense subspace Z of ¢, the subspace

yb,ﬁn(@) = Span{Qba a(fl)* o 'a(fn)*len € N7 fj € @7 .7 = 1) .. .,Tl}
is dense in %, (). In fact, one has
yb,ﬁn(@) = ®:@7

the algebraic n-fold symmetric tensor product of 2.
We next move on to the fermion Fock space # (). For each u € £, there is a
unique bounded linear operator b(u) on % (%) such that b(u)* is given as follows:

(b(w)9)? =0, (b(w))? = VpA(f © "), p 21, ¢ € Fi(H),

where A, is the anti-symmetrization operator (anti-symmetrizer) on ®.%". The op-
erator b(u) (resp. b(u)*) is called the fermion annihilation (resp. creation) operator
with test vector u.

The vector

Q :={1,0,0,---} € F(X)
is called the fermion Fock vacuum in %#;(.¢"), which is vanished by b(u):
b(u)Qf = 0, Yu € X .

The set {b(u), b(u)*|u € £} obeys the canonical anti-commutation relations (CAR)
over & :
{b(u),b(v)*} = (u,v) 5, {b(u),b(v)} =0, wu,ve A,

where {X,Y} := XY 4+ Y X. It follows that
lo@)l = llull, o) I =llull, buw)?*=0, (b(u)*)*=0, Yue.X,

where, for a bounded linear operator 7" on a Hilbert space, ||T'|| denotes the operator
norm of T'.
For each dense subspace 2 of JZ, the subspace

Fi (D) = span{Qy, b(uy)* - - b(up)* Ulp e N, up € 2, k=1,...,p},

is dense in F(X).
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3 Exterior Differential Operators on the Boson-
Fermion Fock Space
For a linear operator L on a Hilbert space, we set
C*=(L) := My, D(L"),

the C*°-domain of L. If L is self-adjoint, then C*°(L) is dense.

Let A be a densely defined closed linear operator from 4% to J#. Then, by von
Neumann’s theorem, A*A and AA* are non-negative self-adjoint operators on %
and £ respectively and hence C*°(A*A) and C*(AA*) are dense in 5 and &
respectively. Therefore the algebraic tensor product

DY =Fp in(C°(A* A))®@Ft 5n (O (AAY))
is dense in the boson-fermion Fock space Z# (5, %).

Proposition 3.1 There exists a unique densely defined closed linear operator da on
F(,K) such that the following (i) and (ii) hold:

(i) 2% C D(da) and 25 is a core of da.
(ii) For each vector U e 9 of the form
U =a(f1)"--a(fa) D ©b(ur)™ - - b(up)*Q, 1, p 20,

where a(f1)* - a(fn)* QM (resp. blug)* - - b(u,)*Q) withn =0 (resp. p=0)
should read Qy, (resp. ), da acts as

da¥ =0 forn=0,

da¥ =" a(h) - a(f) -+ alf)" b @ B(AL) bur)" - blup)

for n > 1, where a(f;)* indicates the omission of a(f;)*. In particular, da
leaves 25 invariant.

Moreover, the following (iii)—(v) hold:
(i) 23 C D(dY) and d4¥ =0 forp =0,

a5 = Y (~D)a(Amw) a(f2)" - alfa) D © blun) - ) -+ - b(up)

forp > 1. In particular, d’ leaves 2%° invariant.



(iv) D(d%) = D(da) and, for all' V € D(da), d3¥ = 0.

(v) Let B be a bounded linear operator from H to K with D(B) = . Then,
for all ¥V e 9 and o, € C,

OldA\I/ + ﬂdB\I/ = daA-{-ﬂB\Il'

We call the operator d4 the exterior differential operator on # (5, %) associ-
ated with A.

4 Infinite Dimensional Dirac Operators
The Dirac operator on % (¢, %) associated with A is defined by
Qa:=ds+d}.
Theorem 4.1 The operator Q) 4 is self-adjoint and unbounded from above and below.

The Laplace-Beltrami-de Rham operator on % (5, %) associated with A is

defined by
Ay = d*AdA + dady.

Theorem 4.2 Ay = Q.

5 Supersymmetric Structure
Let

Ty = Fp(H) ® (D529 NP H)  (even forms),
F_ = P (H) @ (D52, NP ) (odd forms).
Then we have the orthogonal decomposition
F(H,H)=FL D F_.
Let Py : # (s, #) — F. be the orthogonal projections. Then the operator
[:=P, —P.

is unitary, self-adjoint and the grading operator for the above orthogonal decompo-
sition.
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Proposition 5.1 (anti-commutativity) Operator equality QaI' = —I'Q 4 holds.

Corollary 5.2 (spectral symmetry) The spectrum o(Qa) of Qa is reflection sym-
metric with respect to the origin of R: 0(Qa) = o(—Qa).

The quadruple SQFT , := (Z (2, X ), Qa, Aa,T) is a supersymmetric quantum
theory in the abstract sense [1], where Q4 is a self-adjoint supercharge, A, is the
supersymmetric Hamiltonian and I' is the state-sign operator. We remark that
SQFT, gives a unification of some supersymmetric free quantum field models |2,
3,4, 5, 6].

6 Relations with Second Quantization Operators

For each self-adjoint operator S on 4%, one can define the bosonic second quantiza-
tion of S by
dT'y(8) = &p2odl}”(S)

with

n jth
dr’(8) =0, dry’(8)=> I® - ®I® SI®--®I, n>1,

=1

where, for a closable operator T' on a Hilbert space, T' denotes the closure of T'. It
follows that dI'y(S) is self-adjoint. If S > 0, then dI'y(S) > 0. Moreover,

0e Up(de(S)), Oy, € ker(de(S))

Similarly, for each self-adjoint operator 1" on £, one can define the fermionic
second quantization of T" by

dL(T) = @2 dlP(T)

with

P jth
drO(T) =0, diP/(T) =D 1@ @I® T ®I®--®I, p>1
j=1

It follows that dI'¢(T') is self-adjoint. If T > 0, then dI'¢(T") > 0. Moreover,

0e Up(de(T)), Qf € ker(de(T))



As we have already mentioned, the operator A yields the non-negative self-adjoint
operators A*A and AA*. Therefore A*A (resp. AA*) may be a one-particle Hamilto-
nian for a boson (resp. fermion). Then the Hamiltonian of a non-interacting system
consisting of such bosons and fermions is given by

H(A) =dI'h(A"A) QI + I ® dI't(AA”).
It follows that H(A) is a non-negative self-adjoint operator acting in # (5, %) and
0€o,(H(A)), Qe ker H(A).

Theorem 6.1 H(A) = A,. In particular, H(A) is a supersymmetric Hamiltonian.

7 Spectra of H(A) and Q4

In what follows, we assume that ¢ and £ are separable. For a linear operator T'
from a Hilbert space to a Hilbert space, we set

nul 7T := dimker 7" € {0} UN U {4o0}.

Theorem 7.1
o(H(4)) = {0}y (U {ZM Aj€o(A*A)\{0},j =1, n})
op(H(A)) = {0}U (U {ZAJ- A €op(A"A)\{0},5=1,--- ,n})

Theorem 7.2 The spectrum o(Qa) and the point spectrum o,(Q4) of Qa are sym-
metric with respect to the origin and

O'(QA) = {O}U D :t\Xn:)\j )\JGJ(A*A)\{O},]:L,n} s

1Cs

Jj=1

0p(Qa) = {0}U ( :i:\ Z)\j Aj € op(A*A)\ {0},5=1,--- m})
with
nul (Qa — A) =nul (Qa+ ), X€op(Qa)
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8 A Simple Perturbation

In this section, we consider a simple perturbation of ()4 via a perturbation of dy.
Let
g€ D(A)\{0}, ve D(A")\ {0}

and
d(e) :=ds+ aa(g) @b(v)*.

with a constant a € C being a perturbation parameter. It is easy to see that d(«)
is densely defined with D(d(a)) D 2% and

d(@)*=0 on 2%.
Moreover, d(a)* is densely defined with 2% C D(d(a)*) and
d(a)* =d) +a*a(9)* ®b(v) on Z.

Hence d(c) is closable. We denote the closure of d(«) [ 2% by d(a).
Lemma 8.1 For all ¥ € D(d(c)), d(a)¥ is in D(d(a)) and
d(a)*¥T = 0.
Using the operator d_(a), one can define a perturbed Dirac operator:
Q(a) == d(a) + d(a)*.
We note that
Q(e) = Qa+ Vgu(a) on 7
with

Vow(@) = aa(g) ®b(v)" + a’a(g)" © b(v).

8.1 Self-adjointness of Q(«)
Let Ty, : £ — £ be defined by
Tyt = (9, f)v, feH
It is obvious that Ty, is a bounded linear operator (a one-rank operator). Hence
Ala) == A+ aTy,

is a densely defined closed linear operator with D(A(a)) = D(A).



Remark 8.2 Perturbations of a linear operator by one-rank or two-rank operators
have been studied in various contexts. See, e.g. [12, 13] and references therein.

Lemma 8.3 (a key lemma) For all o € C, the following operator equality holds:

d(a) = da(a)-
Theorem 8.4
(i) For all a € C, Q(«) is self-adjoint and
Q(a) = Qa-

(if) For all o € C, Q(c) is essentially self-adjoint on DY .

(ii) For all a € C,
Q(a) = Qa+ Vyu(a).

(iv) The operator T' leaves D(Q(cx)) invariant and

I'Q(a) +Q(a)I'=0 on D(Q(a)).

(v) For all U € 9%, the vector-valued function:a — Q(a)¥ is strongly contin-
uous on C. Moreover, for all z € C\ R, (Q(a) — 2)~! is strongly continuous
nacC.

8.2 Spectra of Q(«)

Theorem 8.5 For all o € C, 0(Q()) and 0,(Q(x)) are symmetric with respect to
the origin and

7(Q(a)) = {0} U{a >

op(Q(e)) = {0} J (U {i

with

Aj € o(Ala) A(@)\ {0}, =1, n} :

Aj
1

A € 0p(A(0)* A(a)) \ {0},5 = 1, n}>

nul (Q(a) — A) =nul (Q(a) + ), A € 0p(Q(a)).

This theorem shows that the spectrum and the point spectrum of Q(«) are
completely determined from those of A(a)*A(a) \ {0}.
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8.3 Identification of the domain of Q(«)

Recall that |A| := (A*A)Y? acting in S#. It follows that A is injective if and only if
|A| is injective.

Theorem 8.6 Suppose that A is injective and g € D(|A|™Y). Then, for all |a| <
1/(Ilv[H A gll), @(e) ds self-adjoint with D(Q(a)) = D(Qa) and

Q) = Qa+ Vgo(a).
Moreover, Q(a) is essentially self-adjoint on any core for Q4.

Proof. The essential part of the proof is to show that V,,(a) is @a-bounded
with a relative upper bound || |v||||A|7'g||. Then one needs only to apply the
Kato-Rellich theorem. For more details, see the proof of [10, Theorem 17]. ]

9 Kernel of Q(a)

We now investigate the kernel of @Q(a). We need a classification for conditions on
{4, g,v}:
(C.1) A is injective, v € D(A™!) and (g, A~'v) # 0. In this case we introduce a

constant 1
Qo = _<g’A—_1’U> (91)
(C.2) A*is injective, g € D(A*") and (v, A*"'g) # 0. In this case we introduce a
constant )
o ey
(C.3) (a) A is injective and v &€ D(A™!) or (b) A is injective and v € D(A™!) with
(9, A tv) = 0.
(C.4) (a) A* is injective and g & D(A*™!) or (b) A* is injective g € D(A*™!) with
<U,A*_1g> =0.

We first consider the kernel of A(a) and A(a)*.
Lemma 9.1
(i) Suppose that (C.1) holds. Then

ker A(a) = {0}, a# ay,
ker A(y) = {cA 'w|c e C}.
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(i) Suppose that (C.2) holds. Then

ker A(a)* = {0}, oa# fo,
ker A(6o)* = {cA*'glc e C}.

(iii) Suppose that (C.3) holds. Then, for all o € C,
ker A(a) = {0}.
(iv) Suppose that (C.4) holds. Then, for all a € C,
ker A(a)* = {0}.
Theorem 9.2
(i) Assume (C.1). Then
ker Q(ap) = @;’,‘fpzo[(®”{zA_1v|z € C}) ® AP(ker A(ap)*)].

and hence nul Q(ap) = 0.

Moreover, for all a # aq,
ker Q(a) = @;20C ® NP(ker A(a)").
(ii) Assume (C.2). Then

ker Q(f) = B3 {[©0 ker(A(fo))] @ [C @ span({4* ' g})]} ,
ker Q(a) = &2, [@0 ker A(a) ©C], a # fh.

(iii) Assume (C.8) . Then, for all a € C,
ker Q(a) = ©p, [C ® AP(ker(A(a)")] .

(iv) Assume (C.4). Then, for all o € C,
ker Q(o) = @52 [®f ker A(a) ® C].

Corollary 9.3
(i) Assume (C.1) and (C.2). Then

ker Q(ao) = span ({a(4-10)" 2 @ b(A* ) Qfn > 0,5 = 0,1}),
ker Q(a) = {c @ Qlc € C}, a # ap.
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(ii) Assume (C.1) and (C.4). Then

ker Q(ag) = span ({a(A~10)*" M @ Q¢|n > 0}),
ker Q(a) = {c, @ Xlc € C}, o # ay.

(iii) Assume (C.2) and (C.3). Then
ker Q(6o) = span({Q ® b(A*1g)”x|j = 0,1}).
ker Q(a) = {cQ, @ Xlc € C},  a # fo.
(iv) Assume (C.3) and (C.4). Then, for all o € C,
ker Q(a) = {cQp @ Qslc € C}.

10 Non-zero Eigenvalues of Q(«a)
Hypothesis (A)
(i) o =K;

(ii) A is an injective and nonnegative self-adjoint operator;
(ifi) g =v € D(A™Y).
Under Hypothesis (A), the constant a defined by (9.1) takes the form
1
S —)
o (v, A=) <

Theorem 10.1 Let Hypothesis (A) be satisfied and oo < o (< 0). Then, there
exists a unique constant zo(a)) < 0 such that a (v, (zo(a) — A)~'v) = 1 and, for all
ne{0}UN,
+v/nzo(a) € op(Q()).
with eigenvectors
[Q(a) & v/nzo(@)] {a(¢a)*™ "D @ b(a)$ }
€ ker(Q(a) F vwo(a)) (n > p > 0),
where
ba = (30(a) — A) Mo,
Moreover, zo(c), as a function of a < g, is strictly monotone increasing on
(—00, ap) with lim,_, oo Zo(a) = —00 and lim,—,q, To(a) = 0.

Note that Theorem 10.1 holds even if @4 has no non-zero eigenvalues. This is
an interesting phenomenon. Since the condition o < ap < 0 implies that |a| > |ay),
the phenomenon may be regarded as a strong coupling effect.



117

Acknowledgement

This work is supported by KAKENHI 15K04888 from JSPS.

References

[1] A. Arai, Supersymmetry and singular perturbations, J. Funct. Anal. 60 (1985),
378-393.

[2] A. Arai, A general class of infinite-dimensional Dirac operators and path inte-
gral representation of their index, J. Funct. Anal. 105 (1992), pp.342-408.

[3] A. Arai, Dirac operators in Boson-Fermion Fock spaces and supersymmetric
quantum field theory, J. Geome. Phys., 11 (1993), 465-490.

[4] A. Arai, Supersymmetric extension of quantum scalar field theories, Quan-
tum and Noncommutative Analysis (H. Araki et al, eds.), Kluwer Academic
Publishers, Dordrecht, 73-90, 1993.

[5] A. Arai, On self-adjointness of Dirac operators in boson-fermion Fock spaces,
Hokkaido Math. J. 23 (1994), 319-353.

(6] FrHwkE, MNTRHEOR T & MRRITMT, $5£46 (1994), 1-10.

A. Arai, Supersymmetric quantum field theory and infinite-dimensional analysis
[translation of Sugaku 46 (1994), no. 1, 1-10], Sugaku Ezpositions 9 (1996), no.
1, 87-98.

[7] A. Arai, Operator-theoretical analysis of a representation of a supersymmetry
algebra in Hilbert space, J. Math. Phys. 36 (1995), 613-621.

[8] A. Arai, Strong anti-commutativity of Dirac operators on Boson-Fermion Fock
spaces and representations of a supersymmetry algebra, Math. Nachr. 207
(1999), 61-77.

[9] A. Arai, Infinite dimensional analysis and analytic number theory, Acta Ap-
plicandae Mathematicae 63 (1999), 41-78.

[10] A. Arai, A special class of infinite dimensional Dirac operators on the abstract
boson-fermion Fock space, J. Math. Vol. 2014, Article ID 713690, 13 pages.

[11] FiHeeAsE, U7 4y 722 BT BT MEgGEIk]e, BA G, 2017,

A. Arai, Fock Spaces and Quantum Fields I, II (revised and expanded version),
Nippon-hyoron-sha, 2017, in Japanese.



118

[12] A. Kula, M. Wojtylak and J. Wysoczanski, Rank two perturbations of matrices
and operators and operator model for t-transformation of probability measures,
J. Funct. Anal. 272 (2017), no. 3, 1147-1181.

[13] B. Simon, Spectral analysis of rank one perturbations and applications. Mathe-
matical quantum theory II. Schrédinger operators, 109-149, CRM Proc. Lecture
Notes, 8, Amer. Math. Soc., Providence, RI, 1995.



