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Abstract

Longitudinal modes associated with local gauge invariance cause
such difficulties as breakdown of Lorentz covariance in Coulomb mode

and/or that of the probabilistic interpretation owing to “indefinite
metric”’ The latter one can be viewed in the context of dynamics as
a saddle point causing bifurcation into stable and unstable modes.

In the light of “ Cartan involution” characterizing symmetric
space structure, natural connections can be found between the prob‐
lem caused by longitudinal modes in gauge theory and the roles played
by heat baths in thermodynamics, from the viewpoint of mutual rela‐
tions between finite‐ and infinite‐dimensional realizations of non‐
compact Lie groups in the ligth of indefinite metric.

These problems can be treated consistently from the viewpoint
of bifurcations into stable and unstable modes at a saddle points in
Micro‐Macro duality.

1 Hidden similarities between Coulomb modes and

heat baths?

Common features among “gauge”, “thermal” and “symmetric spaces” are
related with “indefinite metric

1) In gauge systems, transverse & longitudinal modes are contrasted by
their “metric”, positive for the former vs. negative the latter  \Rightarrow such diffi‐
culties as breakdown of Lorentz covariance due to Coulomb mode and/or
breakdown of probabilistic interpretation by negative probabilities due to
indefinite metric.

2) In thermal systems, we know the important roles played by heat
baths which have been totally neglected in the Gibbs formula  \omega_{\beta}(A)=

 *
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 Tr(e^{-\beta H}A)/Tr(e^{-\beta H}) for statistical mechanics. In spite of its familiarity
among physicists, however, this formula cannot be extended to infinitely
extended systems without mathematical reformulation based on Tomita‐
Takesaki modular theory, by which heat baths are revived!!

1.1 Symmetric spaces associated with non‐compact Lie groups

3) In the third case of symmetric spaces, such additional qualifications
are important as those arising from non‐compact Lie groups.

In this situation, the feature of indefinite metric can be found for the
Casimir invariant (of the 2nd order) of non‐compact  G with Lie algebra
 \mathfrak{g}=Lie(G) and its maximally compact Lie subgroup denoted by  H with
 \mathfrak{h}=Lie(H) . Then,  \mathfrak{h} has negative definite sign and the corresponding non‐
compact part  \mathfrak{m}=\mathfrak{g}/\mathfrak{h} positive one:

compact directions  H : with minus sign
non‐compact directions  M=G/H : with plus sign

which are closely related with the Cartan involution with  + assigned to  \mathfrak{h}

and — to  \mathfrak{m} in the symmetric space structure of the homogeneous space
 M=G/H :

 [\mathfrak{h}, \mathfrak{h}]\subset \mathfrak{h},[\mathfrak{h}, \mathfrak{m}]
\subset \mathfrak{m}, [\mathfrak{m},\mathfrak{m}]\subset \mathfrak{h}.

While the signs  \pm in this case is opposite to the first and the second
examples (in Local Gauge & StatMech), this is simply due to the different
sign conventions adopted in QFT and in Lie algebras.

1.2 “Indefinite metric” in thermal Hamiltonian

For conceptual clarity, convenient to suppress mathematical details, but it
is really interesting or even ironical to note that its mathematical refor‐
mulation can exhibit the physical aspects of heat baths hidden in the
above physical formula as follows:

Thermal Hamiltonian  H_{\beta} of the total system consisting of the system
and of the heat bath shows up in such a symmetric form under its sign
changes as

 JH_{\beta}J=-H_{\beta}, H_{\beta}=H-JHJ =\pi_{l}(H)-\pi_{r}(H) ,

where  J is the antilinear modular conjugation operator to interchange
the algebra  \mathcal{M} of observables of the system and its commutant  \mathcal{M}' corre‐
sponding to the heat bath:

 J\mathcal{M}J=\mathcal{M}' &  J\mathcal{M}'J=\mathcal{M}.

Note the minus sign  (-) in  H_{\beta} , similarly to the longitudinal photons with
“negative metric”
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1.3 Modular operator  \triangle_{\beta}=e^{-\beta H_{\beta}} & modular conjugation  J

 J and  H_{\beta} are defined by the following formula:

 Je^{-\beta H_{\beta}/2}A\Omega_{\beta}=A^{*}\Omega_{\beta} for  A\in M,

for GNS vector  \Omega_{\beta} corresponding to the KMS  =Gibbs state  \omega_{\beta}:\omega_{\beta}(A)=
 \{\Omega_{\beta}, A\Omega_{\beta}\}(A\in \mathcal{M}) .

If  e^{-\beta H} is of trace class (valid for a system with discrete energy
levels), we have,  \omega_{\beta}(A)=\{\Omega_{\beta},  A\Omega_{\beta}\rangle=Tr(e^{-\beta H}A)/Tr(e^{-\beta H}) , with  \Omega_{\beta}=
 e^{-\beta H/2}/\sqrt{Tr(e^{-\beta H})} . Then  \mathcal{M} and  \mathcal{M}' act, respectively, from the left  \pi\iota and
right  \pi_{r} on the Hilbert space  L^{2}(\mathfrak{H})\simeq \mathfrak{H}\otimes\overline{\mathfrak{H}} of square roots  \xi of trace‐class
operators  \xi^{*}\xi\in L^{1}(\mathfrak{H}) :

 \pi_{l}(A)\pi_{r}(B)\xi=A\xi B,

 e^{-\beta H_{\beta}}\xi=e^{-\beta[\pi_{l}(H)-\pi_{r}(H)]}\xi=e^{-\beta H}\xi e^
{\beta H},

where  \mathcal{M} and  \mathcal{M}' evidently commute without involving negative metric!

2 Similarities between gauge and thermal systems

Similarities among “gauge”, “thermal” and “symmetric spaces
In thermal case, physical meaning of the objects related to the system

via the modular conjugation  J is understood in relation with the thermal
reservoir(s) or heat bath(s). Although the degrees of freedom related to
 J are the mirror image(s)  \mathcal{M}' of the system  \mathcal{M} described in general by
some non‐commutative operator algebra  \mathcal{M} , the non‐commutativity of  \mathcal{M}'

is irrelevant to the physically meaningful correlation functions consisting
solely of the elements belonging to  \mathcal{M}.

This is consistent with the physical essence of thermodynamics where
the thermal reservoir or heat bath plays anonymous roles to maintain (local)
thermal equilibria, which can be accomplished by classical objects, too.

When the formulation is extended to thermal situations with multiple
thermal reservoirs, this kind of situations are unchanged as far as local
thermal equilibria are maintained in the neighbourhood of each reservoir.

Multiple‐time KMS condition due to Prof. H. Araki can be related
with such local thermal equilibrium in contact with multi‐reservoir system:

 \phi(x_{0}\triangle_{\omega_{1},\phi^{X_{1}}}^{z_{1}}
\cdots\triangle_{\omega_{J},\phi}^{z_{j}}x_{j}'\cdot x_{j}"\triangle_{\omega_{j+
1},\phi^{X_{j+1}}}^{z_{j+1}}\cdots\triangle_{\omega_{n},\phi}^{z_{n}}x_{n})
 =\phi(x_{j}"\triangle_{\omega_{J+1},\phi^{X_{j+1}}}^{z_{j+{\imath}}}
\cdots\triangle_{\omega_{n},\phi}^{z_{n}}x_{n}\triangle_{\phi}^{1-\Sigma_{x=1}
^{n}z_{\iota}}x_{0}\triangle_{\omega_{1},\phi^{X_{1}}}^{z_{1}}
\cdots\triangle_{\omega_{J},\phi}^{z_{j}}x_{j}') .

In relevance of this kind of localized situations, the case of a gauge system
is not much different because of the local gauge invariance, if the longitu‐
dial modes showing no particle‐like behaviours are described by classical
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Coulomb modes. Therefore, the most relevant description of such situations
as above can be implemented in a theoretical framework of the so‐called
quantum‐classical compositie systems.

2.1 Symmetry breaking & emergence of sector‐classifying
space

Sector‐classifying space emerges typically from spontaneous breakdown of
symmetry of a dynamical system  \mathcal{X}_{J\eta}G with action of a group  G (without
changing dynamics of the system  = “spontaneous”).

Criterion for Symmetry Breaking: judged by non‐triviality of cen‐
tral dynamical system  3_{\pi}(\mathcal{X})\cap G arising from the original one  \mathcal{X}_{\sqrt{}}rG

I.e., symmetry  G is broken in sectors  \in Sp(3) shifted non‐trivially
by central action of  G.

The  G‐transitivity assumption with unbroken subgroup  H in broken
 G leads to such a specific form of sector‐classifying space as  G/H.

 \Rightarrow Classical geometric structure on  G/H arises physically from emer‐
gence process via condensation of a family of degenerate vacua, each
of which is mutually distinguished by condensed values  \in Sp(3)=G/H.

In this way,  \infty‐number of low‐energy quanta are condensed into
geometry of classical Macro objects  \in G/H.

In combination with sector structure  \hat{H} of unbroken symmetry  H , total
sector structure due to this symmetry breaking is described by a sector
bundle  G\cross\hat{H} with fiber  \hat{H} over base space  G/H of “degenerate vacua”

[IO03,  IO04] H.
When this geometric structure is established, all the physical quantities

are parametrized by condensed values  \in G/H\Rightarrow logical extension”
of constants into sector‐dependent functional objects (: origin of local
gauge structures

3 Symmetric space structure of sector‐classifying
space

The homogeneous space  M=G/H arising from symmetry breaking is seen
to be a symmetric space characterized by Cartan involution.

In terms of Lie structures on  G,  H,  M denoted by  \mathfrak{g},  \mathfrak{h},  \mathfrak{m} , the correspond‐
ing Lie algebraic quantities satisfying  [\mathfrak{h}, \mathfrak{h}]=\mathfrak{h},  [\mathfrak{h}, \mathfrak{m}]=\mathfrak{m} . Then validity of
 [\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h} provides  M with Cartan involution  \mathcal{I} to characterize a symmetric
space whose eigenvalues are  \mathcal{I}r_{\mathfrak{h}}=+1 and  \mathcal{I}r_{\mathfrak{m}}=-1 , respectively:

Note that  [m, \mathfrak{m}] is the holonomy term corresponding to an infinitesi‐
mal loop along broken direction  G/H=M=Sp(3) as inter‐sectowial
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space. Namely,  [\mathfrak{m}, \mathfrak{m}] describes the effect of broken  G transformations gen‐
erated by an infinitesimal loop on  M starting from a point in  M and going
back to the same point. According to the Criterion of Symmetry Breaking
in terms of non‐trivial shift under central action of  G , the absence of
 \mathfrak{m}‐components in  [\mathfrak{m}, \mathfrak{m}]:[m, m]\subset \mathfrak{h} , follows from the identity of initial and
final points of the loop. Thus,  M=G/H=Sp(3) is a symmetric space.

3.1 Examples

Example 1: Relativity controlled by Lorentz group:
Typical example of the above sort can be found in the case of Lorentz

group  \mathcal{L}_{+}^{\uparrow}=:G , rotation group  SO(3)=:H,  G/H=M\cong \mathbb{R}^{3} : symmetric
space of Lorentz frames mutually connected by Lorentz boosts.

The relations  [\mathfrak{h}, \mathfrak{h}]=\mathfrak{h},  [\mathfrak{h}, \mathfrak{m}]=\mathfrak{m},  [\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h} with  \mathfrak{h}  :=\{M_{ij};i,j=
 1,2,3,  i<j\},  \mathfrak{m}  :=\{M_{0i};i=1,2,3\} follow from the basic Lie algebra
structure:

 [iM_{\mu\nu}, iM_{\rho_{\sigma}}]=-(\eta_{\nu\rho}iM_{\mu\sigma}-\eta_{v\sigma}
iM_{\mu\rho}-\eta_{\mu\rho}iM_{\nu\sigma}+\eta_{\mu\sigma}iM_{vp}) .

While both  \mathfrak{h} and  \mathfrak{m} are taken as unbroken in physics, such results
as Borcher‐Arveson thm (: affiliation of Poincaré generators to algebra of
global observables in vacuum situation) & IO86 (: spontaneous breakdown
of Lorentz boosts at  T\neq 0K ) indicate the speciality of unbroken  \mathfrak{m}

in the vacuum situation. In this sense, the symmetric space of Lorentz
frames  M\cong \mathbb{R}^{3} with [boost, boost]  = rotation, gives a typical example of
symmetric space structure emerging from symmetry breaking.

Example 2: 2nd law of thermodynamics
Along this line, chiral symmetry with current algebra structure  [V, V]=

 V,  [V, A]=A,  [A, A]=V and

conformal symmetry also provide typical examples.

Physically most interesting example can be found in thermodynamics:
Corresponding to  \mathfrak{h}\hookrightarrow \mathfrak{g}arrow \mathfrak{m}=\mathfrak{g}
/\mathfrak{h} , we find here exact sequence  \triangle'Q\hookrightarrow

 \triangle E=\triangle'Q+\triangle^{l}Warrow\triangle'W due to 1st law of thermodynamics.
With respect to Cartan involution with  + assigned to heat production

 \triangle'Q and—to macroscopic work  \triangle'W , the holonomy  [\mathfrak{m}, m]\subset \mathfrak{h} correspond‐
ing to a loop in the space  M of thermodynamic variables becomes just

Kelvin’s version of 2nd law of thermodynamics:
namely, holonomy  [\mathfrak{m},\mathfrak{m}] in the cyclic process with  \triangle E=\triangle'Q+\triangle'W=0,
describes heat production  \triangle'Q\geq 0:-\triangle'W=-[\mathfrak{m}, \mathfrak{m}]=\triangle' Q>0 (from
system to outside)

3.2 “Resolution” of indefinite metric into Macro condensates

We see that the “would‐be” indefinite metric is resolved by means of an
induced representation to extend representations of a subgroup  H to that
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of the whole group  G.

 \Rightarrow Induced rep. of  G with cpt. subgroup  H embedded into a fiber
bundle over a base space  M=G/H acted on by  G via “Wigner rotations” :
here, non‐compactness of  G with indefinite metric is resolved into a  clas\mathcal{S}i-

cal geometric structure  M to describe the condensate associated with the
symmetry breaking from  G to  H!!

 \Rightarrow Micro‐Macro composite strmcture (with Micro acted on by  H

and Macro  M) and its gauge structure with Clebsch parametrization to
yield Yukawa potentials with gauge transformations and (co‐)cycles associ‐
ated with broken chiral symmetry (Sakuma‐Ohtsu‐Ojima, in preparation).

Due to probabilistic inconsistency, “constituent particles” with negative
probability cannot be extracted from their Macro condensate  M=G/H.

3.3 Adjunction between quotients & subobjects

Note the definition of  G/H as a symmetric space (characterized by Lie
structure  [\mathfrak{h}, \mathfrak{h}]\subset \mathfrak{h},[\mathfrak{h}, \mathfrak{m}]
\subset \mathfrak{m},  [\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h} ) is just equivalent to that of an

 \mathfrak{h} ‐valued connection on  M=G/H , according to the following diagram en‐
 *-  rightarrow

suring bi‐directional arrows to define a connection:  G/H  G  H
 \hookrightarrow  arrow

While the arrows  G/Harrow G+arrow H from the right to the left simply
define a homogeneous space  G/H as a quotient of  G w.r.t. its subgroup  H,

the arrows  G/H\hookrightarrow Garrow H in the opposite direction defines an  \mathfrak{h} ‐valued
connection on the manifold  G/H.

From this viewpoint, the above “resolution of indefinite metric of non‐
compact symmetric space via classicalization” can be seen to result in
Verdier localization, through which a quotient object  M=G/H becomes
adjoint to the subgroup  H.

3.4 Multiplicative system and triangulated categories

Thus we see the relation between resolution of indefinite metric due to a

non‐compact symmetric space  M=G/H of classifying space of sectors and
triangulated category via Verdier localization by multiplicative system (e.g.,
K. Kato: “Triangulated Categories and Homological Algebras”).

In Tomita‐Takesaki theory of statistical mechanics: Cyclic and sep‐
arating property of GNS vector  \Omega_{\beta}\Rightarrow Commutant  \mathcal{M}'=J\mathcal{M}J of von
Neumann algebra  \mathcal{M} is a multiplicative system on  (\mathcal{M}\vee \mathcal{M}') ‐module  \mathfrak{H}.

 \Rightarrow Treating Verdier‐localized fractions  A/B' of  A\in \mathcal{M} by  B'\in \mathcal{M}'

will be equivalent to treating  \mathcal{M} with  \mathcal{M}' neglected.

In view of the common features related with indefinite metrics among
Coulomb modes, Tomita‐Takesaki modular structure, and non‐compact Lie
groups with associated symmetric spaces mentioned at the beginning, we
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are now interested in the problem to extend the above discussion on the
classification problem related with the triangulated categories.

4 Classification problem in sector space by means
of indefinite metric and/or triangulated cate‐
gories

In order to extract meaningful classifying indices for physical and engineer‐
ing problems, such full‐fledged machineries in (co)homological theory are
available as triangulated and derived categories (as pioneered in our col‐
laboration concerning “natural intelligence” due to M.Naruse, H.Hori, et
al.).

Because of the present interesting connection between indefinite metric
and saddle point with stable and unstable flows, however, I would like to
mention a possibility to utilize more geometrical contexts in relation with
Morse theory based on Morse functions and homology complexes treated in
a Japanese book by A. Hattori, Various Geometries, II), as follows:

4.1 Stable and unstable modes in Morse theory

For a given indefinite metric  \eta=  (-1, \cdots , -1, +1, \cdots , +1) with  -1 and  +1

repeated  r times and  q times, respectively, the number  r is called the index
of  \eta . Then, the function

 f(x)  :=\{x, \eta x\}=-x_{1}^{2}-  -x_{r}^{2}+x_{r+1}^{2}+\cdots+x_{r+q}^{2}
gives a typical example of Morse functions defined by the non‐degeneracy

condition on its Hessian matrix  \partial_{i}\partial_{j}f (at each critical point  p\in M s.t.
 f(p)=0) . Depending on such situations as ( q>0 with  r=0),  (r>0 with
 q=0), ( q>0 and  r>0 ), the corresponding (critical) points are a peak,  a

bottom and a saddle point, respectively. The former and the middle cases
belong, respectively, to stable and unstable submanifolds and the third one
contains both stable and unstable ones.

In view of the  (C^{2}-) density of Morse functions among  C^{\infty}‐functions,
sector‐classifying space  M can be decomposed stable and unstable subman‐
ifolds which are diffeomorphic to  \mathbb{R}^{n} (with some  n).

By small perturbations, two stable and/or unstable submanifolds can be
so deformed as to satisfy the Morse‐Smale condition of the transversality.

Then, these submanifolds can be used for constructing a chain complex
(due to Witten and Floer) on which a homology theory can be developed in
a duality to de Rham cohomology in terms of exterior differential forms on
 M (see A. Hattori, Various Geometries, II [in Japanese]).
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An alternative way may be to decompose  M into handlebodies, which
seems to allow us to avoid consideration on the Morse‐Smale transversality
condition and to lead not only to homological invariants but to homotopical
one (see Y. Matsumoto, Foundations of Morse Theory [in Japanese]).

5 Why we need Morse theory?

If we stick to universal methods for extracting geometrical invariants for
classification problems, better choice may be found in abstract methods
based on triangulated and/or derived categories. However, parallelism be‐
tween the unstable modes at a saddle point and the classical condensates can
give us a vivid picture about the mutual relation between Micro and Macro
from the viewpoint of singularities responsible for non‐trivial homology. In
fact, the important roles of unstable modes can be seen in Morse inequality:
 (-1)^{\lambda} \sum(-1)^{k}m_{k}\geq(-1)^{\lambda}\sum(-1)^{k}b_{k} with arbitrary non‐negative integer

 \lambda and with  b_{k} and  m_{k} being the Betti number and the number of critical
points of a Morse function whose index is  k , respectively.

Finally, in the context of“natural intelligence Prof. K. Nakajima (at
Tokyo Univ.) has attempted recently such an interesting example of efficient
computing methods as “octopus‐leg computer” Because of its resemblance
to handlebodies in shape, something more seems to be suggested. (Under
construction )
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