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1. INTRODUCTION

The purpose of this notes is to introduce a recent development of existence and non‐existence of
harmonic functions u under the integrability conditions u  \in L^{p}(M) for p  = 1,2 on a connected smooth
Riemannian manifold M without boundary. [15, 13, 7]. We say that M enjoys  \mathcal{F}‐Liouville property if

 \triangle u=0, u  \in \mathcal{F}\Rightarrow u\equiv constant

here  \triangle is the distributional Laplacian. Among various extensions, the most robust Liouville property is
the  L^{2}‐Liouville property; namely,

Theorem 1 ([18, 16]). Any complete Riemannian manifolds enjoys the  L^{2} ‐Liouville property.

This extends easily to  p\in(1, \infty) , even for certain Dirichlet forms provided proper distance functions
[17, 12, 9].

In contrast, there are counter examples of complete Riemannian manifolds for the Lı‐Liouville prop‐
erty [2, 11, 10]. In this notes, we study first the  L^{2} ‐Liouviıle property of incompıete manifolds and then
next the Lı‐Liouville property of manifolds with ends. More precisely, in Section 1 we wiıl ıearn the
 L^{2}‐Liouville property via it’s relationship with the essential self‐adjointness of the Laplacian, which plays
an important role in the theory of quantum mechanics; and next, in Section 2 we introduce new classes of
manifolds which guarantee the existence and non‐existence of non‐trivial  L^{1} harmonic functions, which
is related to the mean exit time of Brownian motion of  M to infinity.

2.  L^{2}‐LIOUVILLE PROPERTY AND THE ESSENTIAL SELFADJOINTNESS OF THE LAPALCIAN

The Laplacian is called essentially selfadjoint if it’s restriction to the set  C_{0}^{\infty}(M) of smooth functions
with compact support has the unique selfadjoint extension in  L^{2} . This is equivalent to:

(1)  (\triangle+\lambda)u=0, u\in L^{2}, \lambda<0\Rightarrow u\equiv 0,

here   \int u\triangle u\leq 0 for any  u\in C_{0}^{\infty}(M) .
The Laplacian of any complete manifold is essentially selfadjoint [1, 16]). Let us point out that

Gaffney [3] proved the essential selfadjointness of the Laplacian  \triangle starting from a larger domain than
 C_{0}^{\infty}(M) . Both the  L^{2} ‐Liouville property and the essential se,lfadjointness of complete manifolds is a
direct consequence of the Caccioppoli type inequality (associated to the  L^{2} ‐Liouviıle property): For any
 0<r_{1}<r_{2}

  \int_{B_{r}}1|du|^{2}\leq\frac{C}{(r_{2}-r_{1})^{2}}\int_{B(r_{2})\backslash B
(\prime r_{1})}|u-\lambda|^{2}, \forall\lambda\in \mathbb{R},
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where  B_{r}=\{x\in|\rho(x)<r\} and  \rho(x) is the distance from any fixed point  x_{0}\in M . The Caccioppoli
inequality is a consequence of the existence of the sequence of cut‐off functions:

  \chi_{r_{2},r_{1}}(x)=(\frac{\rho(x)-r_{1}}{r_{2}-r_{1}}\wedge 1)_{+}
Note that  \chi_{r_{2},r_{1}} solves

(2)  \{\begin{array}{ll}
|\nabla u(x)|=\frac{1}{r_{2}-r_{1}},   x\in B_{r_{2}}\backslash 
\overline{B_{r_{1}}}
u(x)=1,   x\in B_{r_{1}}
u(x)=0,   x\in M\backslash B_{r_{2}}.
\end{array}
This robust approach has been used to prove the same conclusion for certain Dirichlet forms [17, 12, 9].

The  L^{2} ‐Liouville property and the essential selfadjointness of  \triangle are related as in

Theorem 2. ([13]). For a general Riemannian manifold, the essential selfadjointness of  \triangle yields the
 L^{2} ‐Liouville property, and these two properties are equivalent if  M has infinite volume and if  M enjoys
Poincaré’s inequality: there exists  \lambda>0 such that

(3)   \int u^{2}\leq\lambda\int|du|^{2}, \forall u\in W_{0}^{1}(M) .

Let us take a closer look at this relationship in the case of model manifolds [5]:

Definition 1. We call  M_{\sigma}=(0, \infty)\cross S^{n-1} a model manifold if it’s Riemannian metric has the form:

 dr^{2}+\sigma(r)^{2}d\theta^{2}

where  \sigma(r)\in C^{\infty}([0, \infty)) such that  \sigma(r)>0 for  r>0,  \sigma(0)=0 , and  \sigma'(0)=0.

Note that  M is incompletel. By Weyl’s criteria,  \triangle of a model manifold  M_{\sigma} is essentially selfadjoint
if and only if  n\geq 4 . We say (a general Riemannian manifold)  M is stochastically complete if the heat
kernel (minimal positive fundamental solution of the heat equation)  k satisfies

  \int k(t, x, y)\mu(dx)=1, \forall t>0, \forall y\in M.
If a model manifold  M_{\sigma} is stochastically incomplete, then Friedrich’s extension of  \triangle has discrete spec‐
trum; hence,  M_{\sigma} enjoys Poincaré’s inequality (3). It is known that  M_{\sigma} is stochastically complete if and
only if

  \int^{\infty}\frac{V(r)}{S(r)}dr=\infty,
where  S(r)=C\sigma^{n-1} and  V(r)= \int_{0}^{r}S(t)dt . As a stochastically incomplete manifold needs to have infinite
volume, we conclude that the  L^{2}‐Liouville property of a stochastically incomplete model manifold  M_{\sigma}
fails if and only if  n=2,3.

Recall that the condition  n=2,3 corresponds to the non‐polarity of the Cauchy boundary  \partial_{C}M=
 \overline{M}\backslash M , where  \overline{M} is the completion of  M with respect to the Riemannian distance, associated with the
 Cap_{2.2} defined as

 Cap_{2.2}(\partial_{C}M)=\{\begin{array}{ll}
\inf_{u\in \mathcal{F}}\Vert u\Vert_{W^{2,2}}^{2},   \mathcal{F}\neq\emptyset
\infty,   \mathcal{F}=\emptyset,
\end{array}
where  \mathcal{F}= {  u\in C^{\infty}(M)  u\geq 1 on a neighborhood of  \partial_{C}M},  \Vert u\Vert_{W^{2,2}}^{2}=\Vert u\Vert^{2}+\Vert du\Vert^{2}+\Vert Au\Vert^{2} and

 \Vert  \Vert is the  L^{2} ‐norm. In contrast, by Bergman’s result,  M has the  L^{2}‐Liouville property if  \sigma(r)=r (the
Euclidean case) for any  n\geq 2 . In summery, those observations, made in [13], suggest that in order to
break the  L^{2} ‐Liouville property,  M needs to have both a not too small singularity (in the sense that
 \partial_{C}M is not polar) and an ample end which we will define explicitly next.

The relationship between the  Cap_{2.2}(\partial_{C}M) and the essential self‐adjointness of the Laplacian should
be compared with the foılowing weaker but more complete relationship between  Cap_{12}(\partial_{C}M) and the

lUsually,  M_{\sigma} includes the pole, nameıy,   M_{\sigma}=[0, \infty )  \cross S^{n-1}.
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Markov uniqueness of the Laplacian 2. The capacity  Cap_{12} of the Cauchy boundary  \partial_{C}M=\overline{M}\backslash M is
defined as

 Cap_{1.2}(\partial_{C}M)=\{\begin{array}{ll}
\inf_{u\in \mathcal{F}}\Vert u\Vert_{W^{1,2}}^{2},   \mathcal{F}\neq\emptyset
\infty,   \mathcal{F}=\emptyset.
\end{array}
Then

Theorem 3 ([6]). For a general weighted Riemannian manifold  M,

  Cap_{12}(\partial_{C}M)=0\Rightarrow\triangle is Markov unique  \Rightarrow M is stochastically complete.

If  Cap_{1.2}(\partial_{C}M) is finite, then

  Cap_{12}(\partial_{C}M)=0\Leftrightarrow\triangle is Markov unique.

3. EXISTENCE AND NON‐EXISTENCE OF NON‐TRIVIAL INTEGRABLE HARMONIC FUNCTIONS

3.1. Positive and negative results for the  L^{1} ‐Liouville property. Let us collect criteria which
implies the  L^{1} ‐Liouville property.

Theorem 4 ([10]). Let  M be complete and  x_{0}\in M . Let  r denote the distance from  x_{0}.

(4)  Ric(x)\geq-C(1+r^{2}(x))\Rightarrow L^{1} ‐Liouville property

Note that the curvature condition (4) yields the stochastic completeness of  M.

Theorem 5 ([14]). Any model manifold has the  L^{1} ‐Liouville property.

The manifold in this theorem is aılowed to be stochastically incomplete. Next example by Chung
shows that the stochastic completeness does not yield the  L^{1} ‐Liouville property:

Example 1 ([2]). Let  M=\mathbb{R}\cross \mathbb{S}^{1} with parametrization  (r, \theta),  -\infty<r<\infty and   0\leq\theta\leq 2\pi with the
Riemannian metric  ds^{2}=\sigma(r)^{2}(dr^{2}+d\theta^{2}) , where

  \sigma(r)=\frac{l}{(r\log r)^{2}}, |r|>2
Then,   m(M)<\infty and  M is complete since   \int_{2}^{\infty}\sqrt{\sigma}=\infty . The function  H(r, \theta)=r is harmonic

 ( \triangle r=\sigma^{-2}(r)(\frac{\partial}{\partial r})^{2}r=0) and is integrable since   \int_{2}^{\infty}\sigma(r)rdr<\infty.
However, Grigoryan showed:

Theorem 6 ([4]). If  M is stochastically complete, then every positive super‐harmonic function  u\in L^{1}
is constant.

3.2. New results. Inspired by the observation in the previous section, we study the existence and the
non‐existence of non‐trivial integrable harmonic functions for manifolds with ends:

Definition 2 (Ends and Manifold with ends). An open set  E\subset M is called an end if it is connected,
unbounded, and  \partial E is compact. We assume  \partial E is smooth. We call  E_{\sigma}=\{x\in M_{\sigma}|r(x)<1\} a model
end. A manifold with ends is a smooth connected manifold which is a disjoint union of finite number
of end and a compact set  K . If all ends of a manifold with ends  M are model end then we call  Ma

manifold with model ends.

Definition 3. Let  K\subset M be a compact non‐polar set. A function  h on  M is called an Evans potentiaı
of  K if

 \{\begin{array}{ll}
\triangle h(x)=0,   x\in M\backslash K
h(x)=0,   x\in K
h(x)arrow\infty,   xarrow\infty.
\end{array}
The minimal and positive solution  e to the following boundary value problem is calıed the equilibrium
potential of  K

 \{\begin{array}{ll}
\triangle e(x)=0,   x\in M\backslash K
e(x)=1,   x\in K.
\end{array}
2 Recall that a selfadjoint operator in  L^{2} is caııed Markovian if the associated  L^{2}‐semigroup satisfies the Markov

property:
 0\leq u\leq 1, u\in L^{2}\Rightarrow 0\leq T_{t}u\leq 1, \forall t>0,

A symmetric operator is called Markov unique if it has a unique Markovian extension.
3
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Definition 4 ([7]). We say that  M is narrow or ample, respectively, if there is a compact non‐polar
set  K\subset M such that it’s Evans potential  h is in  L^{1}(M) or it’s equilibrium potential  e is in  L^{1}(M) ,
respectively. For an end  E , we take  h or  e , respectively, to be the Evans potential or equilibrium potential
on  \overline{E} with  K=\partial E . We say that  M is moderate if it is not ample nor narrow.

The (minimal and positive) Green function  G of  M is defined as

 G(x, y)= \int_{0}^{\infty}k(t, x, y)dt, x, y\in M.
Note that it is allowed that   G\equiv\infty (for instance,  M=\mathbb{R}^{n} with  n=1,2), and if not, then

 \triangle G(\cdot, x)=-\delta_{x}.
We also note

 \bullet the integrability of  e=e_{K} and  G=G(x, \cdot) are independent of the choice of  K\subset M and  x\in M ;
 \bullet  e is integrable if and only if so is  G.

The former is a consequence of the maximum principle and local Harnack inequaıity, and the latter
foılows from the fact that  e and  G are obtained as the limit of the equilibrium potentials  e_{n} and the
Green functions  G_{n} of an exhaustion  \{\Omega_{n}\} of  M with the Dirichlet boundary condition.

Proposition 1 ([7, 4]). The following assertions are equivalent.
(1)  Mi\mathcal{S} ample.
(2)  G(x, \cdot)\in L^{1}(M),  \exists/\forall x\in M.
(3)  \tau_{M}(x)<\infty,  \exists/\forall x\in M.
(4) There exists an integrable non‐trivial super‐harmonic function on  M.

A manifold  M is called parabolic if   G\equiv\infty . Hansen and Netuka [8] showed that  M has an Evans
potential if and only if it is parabolic. By Fubini’s lemma,  M is ample if and only if the mean exit time
 \tau_{M} of Brownian motion on  M starting from  x\in M to escape to  \infty is finite, that is,

  \tau_{M}(x)=\int_{M}\int_{0}^{\infty}k(t, x, y)m(dy)<\infty.
Recalı that the stochastic completeness means that the life time of Brownian motion on  M is finite
almost surely. Combining those facts together, we have the foılowing implications:

(5) narrow  \Rightarrow parabolic  \Rightarrow stochastically complete  \Rightarrow not ample

Hereafter, let  M be a manifold with at least two ends otherwise stated excpıicitly. Note that such  M

can be decomposed into a disjoint union of two ends as  M=E_{1}\cup\overline{E}_{2}.

Proposition 2 ([7]). Let  M=E_{1}\cup\overline{E}_{2}.

(1)  E_{1} and  E_{2} are ample  \Rightarrow M is ample.
(2)   m(E_{1})<\infty and  E_{2} is ample  \Rightarrow M is ample.
(3) Eı is not ample and  m(E_{1})=\infty\Rightarrow M is not ample.

A model manifold is stochastically complete if and only if it is not ample [5]; however, it is not true
in general if  M is not a model manifold. Indeed, by Proposition 2,

Example 2 ([7]). Let  M=E_{1}\cup\overline{E}_{2} , where  E_{2} is not stochastically complete. Then

 E_{1} is not ampıe and  m(E_{1})=\infty\Rightarrow M is not ample and not stochastically complete.

Recently, Pessoa, Pigola, and Setti [15] obtained the same conclusion under a different assumption:

Example 3 (Example 35 [15]). Let  M=E{\imath}\cup\overline{E}_{2} , where  E_{2} is complete and not stochastically complete.
Then

 E_{1} is complete and non‐paraboilic and enjoys a parabolic Harnack inequality.

 \Rightarrow M is not ample and not stochastically complete.

The idea of Example 3 is to get a lower bound of the Green function  G via the parabolic Harnack
inequaıity so that  G(x, \cdot) is not integrable for  x\in M.

We state the main results in [7]:

Theorem 7. Let  M=E_{1}\geq\overline{E}_{2}.
4
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(1) If  E_{1}i\mathcal{S} narrow and  E_{2} is ample, then  M admits a positive integrable harmonic function  H such
that   \sup H=\infty.

(2) If  E_{1} and  E_{2} are both narrow, and if  M enjoys Poincaré’s inequality for functions with  0‐mean,
then  M admits an integrable harmonic function  H such that   \inf H=-\infty and   \sup H=\infty.

Theorem 8. Let  M be a manifold with model end  (s)_{f} and let  N be the number of the end  (s) . Then,  M

enjoys the  L^{1} ‐Liouville property if one of the following conditions is satisfied.

(1)  N=1.

(2)  N\geq 2 , and each end is ample or moderate.
(3)  N\geq 2 , only one end is narrow, and the other ends are moderate.
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