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1. INTRODUCTION

The purpose of this notes is to introduce a recent development of existence and non-existence of
harmonic functions u under the integrability conditions v € LP(M) for p = 1,2 on a connected smooth
Riemannian manifold M without boundary. [15, 13, 7]. We say that M enjoys F-Liouville property if

Au=0, u € F = u = constant

here A is the distributional Laplacian. Among various extensions, the most robust Liouville property is
the L2-Liouville property; namely,

Theorem 1 ([18, 16]). Any complete Riemannian manifolds enjoys the L2-Liouville property.

This extends easily to p € (1,00), even for certain Dirichlet forms provided proper distance functions
(17, 12, 9].

In contrast, there are counter examples of complete Riemannian manifolds for the L'-Liouville prop-
erty [2, 11, 10]. In this notes, we study first the L2-Liouville property of incomplete manifolds and then
next the L'-Liouville property of manifolds with ends. More precisely, in Section 1 we will learn the
L2-Liouville property via it’s relationship with the essential self-adjointness of the Laplacian, which plays
an important role in the theory of quantum mechanics; and next, in Section 2 we introduce new classes of
manifolds which guarantee the existence and non-existence of non-trivial L' harmonic functions, which
is related to the mean exit time of Brownian motion of M to infinity.

2. L2-LIOUVILLE PROPERTY AND THE ESSENTIAL SELFADJOINTNESS OF THE LAPALCIAN

The Laplacian is called essentially selfadjoint if it’s restriction to the set C§° (M) of smooth functions
with compact support has the unique selfadjoint extension in L2. This is equivalent to:

0 (A4+Nu=0,uel? A\<0 = u=0,

here [uAu <0 for any u € C§°(M).

The Laplacian of any complete manifold is essentially selfadjoint [1, 16]). Let us point out that
Gafney [3] proved the essential selfadjointness of the Laplacian A starting from a larger domain than
C§°(M). Both the L2-Liouville property and the essential selfadjointness of complete manifolds is a
direct consequence of the Caccioppoli type inequality (associated to the L2-Liouville property): For any
0<r <72
/ |dul? < _C lu—=A%,  VAER,

- (rz —m1)? B(r2)\B(r1)
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where B, = {z €| p(z) < r} and p(z) is the distance from any fixed point o € M. The Caccioppoli
inequality is a consequence of the existence of the sequence of cut-off functions:

plx)—m
r =|——AI1
Xuns@) = (2252 1)

Note that xr, r, solves

[Vu(z)| = Tz—irl, « € By, \ Br,

2) u(z) =1, z € By,
u(z) =0, z €M\ B,,.

This robust approach has been used to prove the same conclusion for certain Dirichlet forms [17, 12, 9].
The L2-Liouville property and the essential selfadjointness of A are related as in

Theorem 2 ([13]). For a general Riemannian manifold, the essential selfadjointness of A yields the
L2-Liouville property, and these two properties are equivalent if M has infinite volume and if M enjoys
Poincaré’s inequality: there exists A > 0 such that

®) /uz < A/ du?,  Vue WA(M).
Let us take a closer look at this relationship in the case of model manifolds [5]:
Definition 1. We call M, = (0,00) x S*~! a model manifold if it’s Riemannian metric has the form:
dr? 4 o(r)2dg?
where o(r) € C*([0,0)) such that o(r) > 0 for r > 0, ¢(0) = 0, and ¢’(0) = 0.

Note that M is incomplete!. By Weyl’s criteria, A of a model manifold M, is essentially selfadjoint
if and only if n > 4. We say (a general Riemannian manifold) M is stochastically complete if the heat
kernel (minimal positive fundamental solution of the heat equation) k satisfies

/k(t,x,y) u(dz) =1, vVt >0, Yy € M.

If a model manifold M, is stochastically incomplete, then Friedrich’s extension of A has discrete spec-
trum; hence, M, enjoys Poincaré’s inequality (3). It is known that M, is stochastically complete if and

only if
V().
/ S0 dr = oo,

where S(r) = Co™ tand V(r) = for S(t)dt. As a stochastically incomplete manifold needs to have infinite
volume, we conclude that the L2-Liouville property of a stochastically incomplete model manifold M,
fails if and only if n = 2, 3.

Recall that the condition n = 2,3 corresponds to the non-polarity of the Cauchy boundary oM =
M\ M, where M is the completion of M with respect to the Riemannian distance, associated with the
Cap, o defined as

infuéf”””%v%% ]:7&0
00, F =0,

where F = {u € C®°(M) | u > 1 on a neighborhood of dc M}, |[ul|Zz. = |Jull? + ||dul|? + ||Aul|? and
|l - || is the L?%-norm. In contrast, by Bergman’s result, M has the L2-Liouville property if o(r) = r (the
Euclidean case) for any n > 2. In summery, those observations, made in [13], suggest that in order to
break the L2-Liouville property, M needs to have both a not too small singularity (in the sense that
dc M is not polar) and an ample end which we will define explicitly next.

Cap, 2(0c M) = {

The relationship between the Cap, 5(0cM) and the essential self-adjointness of the Laplacian should
be compared with the following weaker but more complete relationship between Cap; 5(0cM) and the

1Usually, M, includes the pole, namely, M, = [0, c0) x S*~1.
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Markov uniqueness of the Laplacian 2. The capacity Cap; 5 of the Cauchy boundary dcM = M\ M is
defined as
inf 205 F
Capl‘z(acM) _ MiyerF ”u”Wu # 0
0, F=0.
Then
Theorem 3 ([6]). For a general weighted Riemannian manifold M,
Cap, 5(0c M) =0 = A is Markov unique => M is stochastically complete.
If Cap, o(8c M) is finite, then
Capy 5(0cM) =0 <= A is Markov unique.
3. EXISTENCE AND NON-EXISTENCE OF NON-TRIVIAL INTEGRABLE HARMONIC FUNCTIONS

3.1. Positive and negative results for the L!'-Liouville property. Let us collect criteria which
implies the L'-Liouville property.

Theorem 4 ([10]). Let M be complete and zo € M. Let r denote the distance from zq.
(4) Ric(z) > —C(1 + r%(x)) = L'-Liouville property

Note that the curvature condition (4) yields the stochastic completeness of M.
Theorem 5 ([14]). Any model manifold has the L'-Liouville property.

The manifold in this theorem is allowed to be stochastically incomplete. Next example by Chung
shows that the stochastic completeness does not yield the L'-Liouville property:

Example 1 ([2]). Let M =R x S! with parametrization (r,6), —co < r < co and 0 < 6 < 27 with the
Riemannian metric ds? = o(r)?(dr? + df?), where

o(r) = —

(rlogr)?’
Then, m(M) < oo and M is complete since [;°+/o = co. The function H(r,) = r is harmonic
(Ar = 072(r)(£)?r = 0) and is integrable since [, o(r)rdr < co.

|r| > 2

However, Grigoryan showed:

Theorem 6 ([4]). If M is stochastically complete, then every positive super-harmonic function u € L!
1s constant.

3.2. New results. Inspired by the observation in the previous section, we study the existence and the
non-existence of non-trivial integrable harmonic functions for manifolds with ends:

Definition 2 (Ends and Manifold with ends). An open set £ C M is called an end if it is connected,
unbounded, and OF is compact. We assume OF is smooth. We call E, = {z € M, | r(z) < 1} a model
end. A manifold with ends is a smooth connected manifold which is a disjoint union of finite number
of end and a compact set K. If all ends of a manifold with ends M are model end then we call M a
manifold with model ends.

Definition 3. Let K C M be a compact non-polar set. A function A on M is called an Evans potential
of K if

Ah(z) =0, z€e M\ K

h(z)=0, ze€K

h(z) = o0, x — 0.
The minimal and positive solution e to the following boundary value problem is called the equilibrium
potential of K

Ae(x) =0, ze M\ K

e(r)=1, =zekK.

2 Recall that a selfadjoint operator in L? is called Markovian if the associated L2-semigroup satisfies the Markov
property:
0<u<l,uel? = 0<Twu<1, Vi>o0,
A symmetric operator is called Markov unique if it has a unique Markovian extension.
3
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Definition 4 ([7]). We say that M is narrow or ample, respectively, if there is a compact non-polar
set K C M such that it’s Evans potential h is in L'(M) or it’s equilibrium potential e is in L*(M),
respectively. For an end F, we take h or e, respectively, to be the Evans potential or equilibrium potential
on E with K = E. We say that M is moderate if it is not ample nor narrow.

The (minimal and positive) Green function G of M is defined as
(o<}
G(z,y) = / k(t,z,y)dt, z,y€ M.
0

Note that it is allowed that G = oo (for instance, M = R™ with n = 1,2), and if not, then
AG(,z) = —0,.
We also note
o the integrability of e = ex and G = G(z, -) are independent of the choice of K C M and z € M;
e ¢ is integrable if and only if so is G.

The former is a consequence of the maximum principle and local Harnack inequality, and the latter
follows from the fact that e and G are obtained as the limit of the equilibrium potentials e, and the
Green functions G, of an exhaustion {Q,} of M with the Dirichlet boundary condition.

Proposition 1 ([7, 4]). The following assertions are equivalent.
(1) M is ample.
(2) G(z,-) € LY(M), I/Nz € M.
(3) ™m(x) < oo, I/Vz € M.
(4) There exists an integrable non-trivial super-harmonic function on M.

A manifold M is called parabolic if G = co. Hansen and Netuka [8] showed that M has an Evans
potential if and only if it is parabolic. By Fubini’s lemma, M is ample if and only if the mean exit time
Ty of Brownian motion on M starting from z € M to escape to oo is finite, that is,

o0
@)= [ [ bt ) midy) < oo
MJo
Recall that the stochastic completeness means that the life time of Brownian motion on M is finite
almost surely. Combining those facts together, we have the following implications:
(5) narrow = parabolic = stochastically complete = not ample

Hereafter, let M be a manifold with at least two ends otherwise _s_tated excplicitly. Note that such M
can be decomposed into a disjoint union of two ends as M = F; U E,.

Proposition 2 ([7]). Let M = E; UE,.
(1) E1 and Ey are ample => M is ample.
(2) m(E1) < oo and Es is ample => M is ample.
(3) E; is not ample and m(E1) = co = M is not ample.

A model manifold is stochastically complete if and only if it is not ample [5]; however, it is not true
in general if M is not a model manifold. Indeed, by Proposition 2,

Example 2 ([7]). Let M = E; U E3, where Ej; is not stochastically complete. Then
E; is not ample and m(E;) = co => M is not ample and not stochastically complete.
Recently, Pessoa, Pigola, and Setti [15] obtained the same conclusion under a different assumption:

Example 3 (Example 35 [15]). Let M = E; UEj,, where Es is complete and not stochastically complete.
Then
E; is complete and non-paraboilic and enjoys a parabolic Harnack inequality.

= M is not ample and not stochastically complete.

The idea of Example 3 is to get a lower bound of the Green function G via the parabolic Harnack
inequality so that G(z, ) is not integrable for z € M.

We state the main results in [7]:

Theorem 7. Let M = E; UE,.



(1) If By is narrow and E5 is ample, then M admits a positive integrable harmonic function H such
that sup H = oo.

(2) If Ey and E5 are both narrow, and if M enjoys Poincaré’s inequality for functions with 0-mean,
then M admits an integrable harmonic function H such that inf H = —oco and sup H = oo.

Theorem 8. Let M be a manifold with model end(s), and let N be the number of the end(s). Then, M
enjoys the L*-Liowville property if one of the following conditions is satisfied.

(1) N=1.

(2) N > 2, and each end is ample or moderate.

(3) N > 2, only one end is narrow, and the other ends are moderate.
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