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The Arcsine Law, Quantum‐Classical
Correspondence, Orthogonal Polynomials,

And All That
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On the occasion of the 60th birthday of Professor Nobuaki Obata

1 What’s the Arcsine Law?

The arcsine law is the probability distribution defined by

d \mu_{As}(x)=\frac{dx}{\pi\sqrt{2-x^{2}}}, (-\sqrt{2}<x<\sqrt{2})
It appears in the study of random walks/Brouwnian motions, Algebraic

probability (Quantum probability, Noncommutative probability) such as mono‐
tone CLT and Quantum‐Classical correspondence. It also play a crucial roles
in Quantum Walks. On the other hand, it also appears in the context of or‐
thogonal polynomials and number theory. In the present note we focus on
the relationship between the Arcsine law, Quantum‐Classical correspondence,
Orthogonal Polynomials and all that(especially Quantum Walks).

The arcsine law can be characterization by moments :

 E(X^{2m})= \frac{1}{2^{m}}  \begin{array}{l}
2m
m
\end{array} ,  E(X^{2m+1})=0

It is the solution for determinate moment problem because it has compact
support. In such cases, moment convergence implies weak convergence.

2 Algebraic Probability

Algebraic probablity (Quantum probability, Noncommutative probablity) is
a gereralization of probability theory in terms of algebraic probability space.
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Algebraic probability space is a pair of an “algebra of quantities” and a
“state” on that. Here “Algebra of quantities” means  *‐algebra i.e. algebra
over complex numbers with “involution”  x\in \mathcal{A}\mapsto x^{*}\in \mathcal{A} such that for any
 X,  Y\in \mathcal{A} and  \alpha\in \mathbb{C}

 (X^{*})^{*}=X, (\alpha X)^{*}=\overline{\alpha}X^{*},
 (X+Y)^{*}=X^{*}+Y^{*},

 (XY)^{*}=Y^{*}X^{*}

In short, the operation  *is a generalization of Hermite conjugate.
Let  \mathcal{A} be  a (unital)  *‐algebra. A linear functional  \varphi :  \mathcal{A}arrow \mathbb{C} satisfying

 \varphi(1)=1,  \varphi(X^{*}X)\geq 0 , for  X\in \mathcal{A}

is called a state on  \mathcal{A}.

An algebraic probability space is a pair  (\mathcal{A}, \varphi) of  *‐algebra and state on
thatElements in  \mathcal{A} are called the algebraic random variables in  (\mathcal{A}, \varphi) . When
 X=X^{*} , it is said to be real.

We introduce a notation for the relationship among a state  \varphi :  \mathcal{A}arrow \mathbb{C},
algebraic random variable  X\in \mathcal{A} and probability measure  \mu on  \mathbb{R}:We denote

  X\sim_{\varphi}\mu when   \varphi(X^{m})=\int_{\mathbb{R}}x^{m}d\mu(x) for  m\in \mathbb{N}.It is read that “under  \varphi,  X

obeys  \mu Such probability law exists for any real algebraic random variable.
Uniqueness is up to moment problem.

3 Quantum‐Classical Correspondence for Har‐
monic Oscillator

A quantum harmonic oscillator is a triple  (\Gamma(\mathbb{C}), a, a^{*}) such that

 \bullet  \Gamma(\mathbb{C})  :=\oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n} : A pre‐Hilbert space defined by the inner product
 <\Phi_{n},  \Phi_{m}>=\delta_{n,m}

 e anihillation operator  a

 a\Phi_{0}=0, a\Phi_{n}=\sqrt{n}\Phi_{n-1}(n\geq 1)

 \bullet creation operator  a^{*}

 a^{*}\Phi_{n}=\sqrt{n+1}\Phi_{n+1}.

133



134

Let us consider the algebraic probability spaces  (\mathcal{A}, \varphi_{n}(\cdot)) for quantum
harmonic oscillator: Here,  \mathcal{A} denotes the  *‐algebra generated by  a,  a^{*}and

 \varphi_{n}(\cdot):\varphi(\cdot)  :=<\Phi_{n},  (\cdot)\Phi_{n}> denotes tha state on it.

For  X  :=a+a^{*} , it is well known that

 X \sim_{\varphi_{0}}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx.
Here a question arises: When  n goes to infinity, what will happen?The answer
is the theorem below.

Theorem 3.1. Let  \mu_{N} be a probability distribution on  \mathbb{R} such that

  \frac{X}{\sqrt{2N+1}}\sim_{\varphi_{N}}\mu_{N}.
Then  \mu_{N} weakly converges to  \mu_{As}.

This is nothing but Q‐C correspondence for harmonic oscillator.
Saigo(2012) gave a simple proof from the viewpoint of algebraic proba‐

bility, and it can be generalized!

4 Generalization to Interacting Fock Spaces

Let us introduce the notion of “interacting Fock space which is a general‐
ization of the quantum harmonic oscillator:

Definition 4.1 (Jacobi sequence). A pair of sequences  (\{\omega_{n+1/2}\}, \{\alpha_{n}\}) is
called a Jacobi sequence,

 0 if  \{\omega_{n+1/2}\} are positive real numbers  0<\omega_{1/2},  \omega_{3/2},  \omega_{5/2},
 \cdot\cdot\cdot labeled

by half natural numbers, and

 \bullet if  \{\alpha_{n}\} are real numbers  \alpha_{0},  \alpha_{1},  \alpha_{2},
 \cdot\cdot\cdot labeled by natural numbers.

In other works as (Hora‐Obata2007), the sequence  \{\omega_{n+1/2}\} is called a
Jacobi sequence of infinite type and given different labels.

Definition 4.2 (Interacting Fock space). Let  (\{\omega_{n+1/2}\}, \{\alpha_{n}\}) be a Jacobi
sequence. An interacting Fock space  \Gamma_{\omega,\alpha} is a complex pre‐Hilbert space  \Gamma(\mathbb{C})
equipped with the following additional structure  (\{\Phi_{n}\}_{n=0}^{\infty}, A, B, C) :

 \bullet Fixed sequence of vectors  \{\Phi_{n}\}_{n=0}^{\infty}\subset\Gamma(\mathbb{C}) satisfying
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‐  \langle\Phi_{n},  \Phi_{m}\}=0 if  m\neq n , and  \langle\Phi_{n},  \Phi_{n}\rangle=1,
‐  \Gamma(\mathbb{C}) is a complex linear span of  \{\Phi_{n}\},

 \bullet  A,  B,  C:\Gamma(\mathbb{C})arrow\Gamma(\mathbb{C}) are linear operators uniquely determined by

 -A\Phi_{0}=0, A\Phi_{n}=\sqrt{\omega_{n-1/2}}\Phi_{n-1}.
 -B\Phi_{n}=\alpha_{n}\Phi_{n}.

 -C\Phi_{n}=\sqrt{\omega_{n+1/2}}\Phi_{n+1}.

The sequence of vectors  \{\Phi_{n}\}_{n=0}^{\infty}\subset\Gamma(\mathbb{C}) forms a orthonormal set of  \Gamma(\mathbb{C}) .
The operator  A is called the annihilation operator,  B is called the preserva‐
tion operator, and  C is called the creation operator.

Definition 4.3. The summation  X=A+B+C is expressed by the following
symmetric tridiagonal matrix:

 X=(\alpha_{0}\sqrt{\omega_{1/2}}0:\sqrt{\omega_{3/2}}\sqrt{\omega_{1/2}}\alpha_
{1}\sqrt{\omega_{3/2}}\alpha_{2}0 . . . )
This is called the Jacobi matrix.

The sequence of real numbers  \{X^{m}\Phi_{0},  \Phi_{0}\rangle is called the moments se‐
quence of the Jacobi matrix  X . Accardi and  Bo\dot{z}ejko showed in (Accardi‐
 Bo\dot{z}ejko1998) that for every probability measure  \mu on  \mathbb{R} whose moments are

finite, the moment sequence  M_{m}= \int_{\mathbb{R}}x^{m}d\mu(x) can be realized as that of an

interacting Fock space  \{X^{m}\Phi_{0}, \Phi_{0}\}.
Let  \mathcal{A} be the complex algebra generated by the matrices  A,  B,  C and

by the identity matrix id. The multiplication and the linear structure are
defined by the usual matrix calculations. The  *‐operation is given by the
composition of transpose and complex conjugation. Since the generating set
 \{A=C^{*}, B=B^{*}, C=A^{*}\}\subset \mathcal{A} is closed under  the*‐operation, the whole
algebra  \mathcal{A} is also colsed under  the*‐operation.

Recall that the operators  A,  B,  C act on the linear space  \oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n} . Let
 \varphi_{k} be the state defined as  \varphi_{k}(\cdot)  :=  \{ \Phi_{k}, \Phi_{k}\} . Then the pairs  \{(\mathcal{A}, \varphi_{k})\}_{k\in \mathbb{N}}
are algebraic probability spaces labeled by  k.

Let  \Gamma_{\omega,\alpha}  :=(\Gamma(\mathbb{C}), A, B, C) be an interacting Fock space. For  X  :=

 A+B+C , let us define  \mu_{n} by

  \frac{X-\alpha_{n}}{\sqrt{\omega_{n+1/2}+\omega_{n-1/2}}}\sim_{\varphi_{n}}
\mu_{n}.
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A probablity law  \mu is called the classical limit distribution of  \Gamma_{\omega,\alpha} if  \mu_{n}

converge to  \mu in moments.

Theorem 4.4. (Saigo‐Sako2016)
Let  \Gamma_{\omega,\alpha}  :=(\Gamma(\mathbb{C}), A, B, C) be an interacting Fock space satisfying the con‐

dition (RACI) below. Then the  Arc\mathcal{S}ine law   \frac{dx}{\pi\sqrt{2-x^{2}}} is the classical limit
distribution.

Here (RACI) means the condition that  A,  B,  C are“ relatively asymptot‐
ically commutative” More precisely,

  \lim_{narrow\infty}\frac{AC-CA}{\omega_{n+1/2}+\omega_{n-1/2}}\Phi_{n}=0,
  \lim_{narrow\infty}\frac{AB-BA}{\omega_{n+1/2}+\omega_{n-1/2}}\Phi_{n}=0.

This condition is equivalent to:

  \lim_{narrow\infty}\frac{\omega_{n+1/2}}{\omega_{n-1/2}}=1, 
\lim_{narrow\infty}\frac{\alpha_{n}-\alpha_{n-1}}{\sqrt{\omega_{n+1/2}+\omega_{n
-1/2}}}=0.
As an application, we can deduce an asymptotic behaviour of orthogonal

polynomials.

5 Application

Let  \mu be a probability law on  \mathbb{R} with finite moments and  \{p_{n}(x)\}_{n=0,1},\cdots be
the n‐th (monic) orthogonal polynomial for  \mu . There exist the sequence  \alpha_{n},

 \omega_{n-1/2} satisfying the so‐called “three‐term recurrence relations

 p_{0}(x) = 1 ,

 xp_{0}(x)  = pı  (x)+\alpha_{0}p_{0}(x) ,

 xp_{n}(x) =p_{n+1}(x)+\alpha_{n}p_{n}(x)+\omega_{n-1/2}p_{n-1}(x), n\geq 1.

If the support of  \mu is infinite,  \omega_{n-1/2} is always positive. In short, from  \mu

we obtain”Jacobi sequence”  (\{\omega_{n+1/2}\}, \{\alpha_{n}\}).LetP_{n} be the n‐th normalized
polynomial, i.e.  p_{n}/\Vert p_{n}\Vert_{2} . There exists isometry  U :  \Gamma_{\omega,\alpha}arrow L^{2}(\mathbb{R}, \mu) :
 \Phi_{n}\mapsto P_{n} such that  U^{*}xU=A+B+C . Here,  x is multiplication operator
on  L^{2}(\mathbb{R}, \mu) .

In short,  a (measure theoretic) random variables can be decomposed into
three noncommutative algebraic random variables. (”quantum decomposi‐
tion”’.)

From  U^{*}xU=A+B+C we obtain  A+B+C\sim_{\varphi_{n}}|P_{n}(x)|^{2}\mu(dx) .
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Theorem 5.1. (Saigo‐Sako2016) When the three‐term recurrence relations
satisfy (RACl),  |P_{n}(x)|^{2}\mu(dx)\backslash weakly converge to the Arcsine law thorough
the normalization (average  0, variance 1).

Almost all”Famous” polynomials (Hermite,  q‐Hermite, Jacobi, Laguerre
and all that) satisfies (RACI).

Then, what kinf of generalization is possible? (Partial) Answer : If we
consider the condition (RAC2) below, we obtain the new kind of classi‐
cal limit distribution, which is closely related to continuous time quantum
walk/discrete Schrödinger equation. We call them “ discrete Arcsine laws”

Here (RAC2) means that asymptotically  A,  C are commutative and  [A, B]
(and then  [C,  B] also) become scalar.More precisely,

  e\lim_{narrow\infty}\frac{AC-CA}{\omega_{n+1/2}+\omega_{n-1/2}}\Phi_{n}=0
 e There exists a real number  r such that

  \lim_{narrow\infty}\frac{(AB-BA)-rA}{\omega_{n+1/2}+\omega_{n-1/2}}\Phi_{n}=0.
(RAC2) can be represented in terms of Jacobi sequence  \{\omega, \alpha\} as below:

(RAC2) is equivalent to the condition below:

  \lim_{narrow\infty}\frac{\omega_{n+1/2}}{\omega_{n-1/2}}=1 and   \{\frac{\alpha_{n}-\alpha_{nrightarrow 1}}{\sqrt{\omega_{n+1/2}+\omega_{n-1/2}
}}\}_{n} converge.We denote the limit of

  \{\frac{\alpha_{n}-\alpha_{n-1}}{\sqrt{\omega_{n+1/2}+\omega_{n-1/2}}}\}_{n} by  c . (RACI) is the  c=0 case in (RAC2).

Theorem 5.2. (Saigo‐Sako2016) For the cases  c\neq 0 in (RAC2),  |P_{n}(x)|^{2}\mu(dx)
converge to the discrete Arcsine law  \mu_{c} through the normalization (average
 0, variance 1). The support of  \mu_{c} is  c\mathbb{Z} and for  n=0,1,2,  \cdot\cdot\cdot are

  \mu_{c}(\{cn\})=\mu_{c}(\{-cn\})=\{J_{n}(\frac{\sqrt{2}}{c})\}^{2}
 J_{n} : the n‐th Bessel function of 1st kind.

In fact, the discrete Arcsine law  \mu_{c} is equal to the distribution of contin‐
uous time quantum walk on  \mathbb{Z} at the time  t= \frac{1}{c}(Konno2005).When c  arrow 0,
i.e.   tarrow\infty , what is the limit of  \mu_{c} ?

Theorem 5.3. (Saigo‐Sako2016) When  carrow 0,  \mu_{c} weakly converge to the
Arcsine law.
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The results above represents a fundamental relationship between the dis‐
crete Arcsine laws and the Arcsine law. At the same time, it relates different
kinds of orthogonal polynomials. Moreover, it also gives an another proof
of the central limit theorem for continuous time quantum  walk/ discrete
Schrödinger equation! To sum up, algebraic probability shed the new light
on The Arcsine Law, Quantum‐Classical Correspondence, Orthogonal Poly‐
nomials, And All That!
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