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1 Introduction

In this note, we report application of the resolvent CCR algebras to statistical
mechanics of Bosons on lattices. One of our motivation is originated from results
on the quantum Ising model in a transversal magnetic field.

Let us recall known results of the quantum Ising model. First we consider
the case of the model on one dimensional integer lattice Let  \mathfrak{A} be the UFH
 C^{*} ‐algebra which is an infinite tensor product of  \dot{t}he algebra of 2 by 2 matrices
where each component of the tensor is specified with a site in the integer lattice.
We denote the sub‐algebra of observables localized in  \Lambda by  \mathfrak{A}_{\Lambda} and we set  \mathfrak{A}\iota_{oc}=

 U_{\Lambda\subset Z,|\Lambda|<\infty}\mathfrak{A}_{\Lambda} . For each natural number  N the finite volume Hamiltomian  H_{N}

of the quantum Ising model on  [-N, N] is defined by the following equation:
 N-1 N

 H_{N}=-  \sum \sigma_{z}^{(j)}\sigma_{z}^{(j+1)}+\lambda \sum \sigma_{x}^{(j)}
 j=-N j=-N

(j)where  \sigma_{x,z} are Pauli spin matrices on the site  j and  \lambda is a real parameter. The
limit

  \alpha_{t}(Q)=\lim_{Narrow\infty}e^{itH_{N}}Qe^{-itH_{N}}
exists in the norm topology and the Heisenberg time evolution  \alpha_{t} gives rise to
a  C^{*}- dynamical system of  \mathfrak{A}.

A state  \omega of  \mathfrak{A} is a  \beta‐KMS state if the time‐dependent correlation function
defined by  F_{Q_{1},Q_{2}}(t)\equiv\omega_{\beta}(\alpha_{t}(Q_{1})Q_{2}) satisfy the following KMS condition:

 F_{Q_{1},Q_{2}}(t)=F_{Q_{2},Q_{1}}(t+i\beta)
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for any Qı and  Q_{2} which are entire analytic for  \alpha_{t} . Note that  Q is entire analytic
if  \alpha_{t}(Q) as a function of  t has an analytic extension to the whole complex plain.
The set of analytic elements is dense in  \mathfrak{A} . As the thermal equilibrium state
at the inverse temperature  \beta satisfy this KMS condition, it is natural to regard
 \beta‐KMS states as the equilibrium states for quantum systems with an infinite
degree of freedom.

In the same spirit, we can introduce infinite volume ground states, namely,
a state  \omega of  \mathfrak{A} is a ground state if the inequality

  \lim_{Narrow\infty}\omega(Q^{*}[H_{N}, Q])\geq 0 (Q\in \mathfrak{A}\iota_{oc})
holds.The zero temperature limit of KMS states is a ground state defined in this
manner.

In 1975, H.Araki proved uniqueness of  \beta‐KMS state for any one‐dimensional
quantum spin system with any short range interaction Hamiltonian. The ground
state of the finite volume quantum Ising model is unique, and for the infinite
volume ground states of the quantum Ising model, the following results are
known.

Theorem 1.1 (H. Araki, Taku Matsui  1982CMP)

(i) there exist precisely two infinite volume pure ground states if  |\lambda|<1

(ii) the oo volume ground state is unique if if  |\lambda|\geq 1

For higher dimensional lattices  Z^{d}  (2\leq d) the KMS state of quantum Ising
model is unique at high temperature and at least two extremal low temperature
KMS states exist. There exist two pure ground states when the transversal field
is weak.

The problem we consider here is a Bosonic counterpart of quantum Ising
models and in our opinion, a natural candidate is anharmonic crystals on  Z^{d}.

The Hamiltonian of the quantum anharmonic crystal is written in the following
form.

 H= \sum_{k\in Z^{d}}\{p_{k}^{2}+V(x_{k})\}+\sum_{k,l:|k-l|=1}\varphi(x_{k}-
x_{l})
where  V(x) is a double well potential.

  \lim_{xarrow\infty}V(x)=\infty

with two local minima and  \varphi represents interaction between adjacent particles.
One of mathematical difficulty for interacting Bose systems is to define the

Heisenberg time evolution of quantum observables. In suitable setting, it is
possible to show that the Heisenberg time evolution of the quantum anharmonic
crystal does not exist as one‐parameter group of automorphisms of the Weyl
CCR algebra. Due to this fact, we employ the resolvent CCR algebra introduced
by H.Grundling and D.Buchholz for their study of supersymmetric QFT.
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Formally , the resolvent CCR algebra is generated by resolvent of linear
combination of  x_{k} and  p_{k} . For example, in a quantum system with one degree
of freedom, set

 R_{\lambda}(s, t)=[\lambda i1+(sx+tp)]^{-1} \lambda, s, u\in R

and the resolvent CCR algebra is the universal  C^{*} ‐algebra generated by  R_{\lambda}(s, t)
and a unit.

More generally, let  (V, \sigma) be a real symplectic space.  R_{BG} is the universal
 C^{*} ‐algebra generated by a unit and  \{R_{\lambda}(v)|v\in V\} satisfying relations For
 \lambda,  \nu\neq 0,  f,  g\in V

 R_{\lambda}(0)=- \frac{i}{\lambda}, R_{\lambda}(f)^{*}=R_{-\lambda}(f) , \nu R_
{\nu\lambda}(\nu f)=R_{\lambda}(f)
 R_{\lambda}(f)-R_{\nu}(f)=i(\nu-\lambda)R_{\lambda}(f)R_{\nu}(f)

 [R_{\lambda}(f), R_{\nu}(g)]=i\sigma(f, g)R_{\lambda}(f)R_{\nu}(g)^{2}
R_{\lambda}(f)

 R_{\lambda}(f)R_{\nu}(g)=R_{\lambda+\nu}(f+g)\{R_{\lambda}(f)+R_{\nu}(g)+\sigma
(f, g)R_{\lambda}(f)^{2}R_{\nu}(g)\}
Due to these relations, it is easy to see that there exists a trivial representation
 \pi of  R_{BG} such that  \pi(R_{\lambda}(f))=0.For representations and states of  R_{BG} we
require that field operators satisfying CCR(canonical commutation relations)
can be reconstructed from  R_{\lambda}(f) .

Definition 1.2 (H. Grundling and D.Buchholz)
A representation  \pi is regular if  \pi(R_{\lambda}(f)) is a resolvent of a closed operator for
any  f\in V,

Regularity of a represetation is equivalent to the condition  ker(R_{\lambda}(f))=\{0\}
for any  f\in V H.Grundling and D.Buchholz have shown that the CCR algebra
can be reproduced for any regular representation of  R_{BG} . They have shown the
standard Fock representation is a regular faithful representation of  R_{BG} as well.

2 Weakly Coupled Anharmonic Crystal

Now we consider the resolvent CCR algebra  R_{BG} associated with weakly coupled
anharmonic crystals. On each lattice site  k in  Z^{d} , we have  L_{2}(R^{d}) . we set
 V=R^{2\infty} which is a infinite direct sum of two dimensional symplectic space.
Here we assume that all but finite components of the summand vanish.

We introduce the finite volume Hamiltonian of the weakly coupled anhar‐
monic crystal as follows:

 H_{\Lambda}= \sum_{k\in\Lambda}\{p_{k}^{2}+w^{2}x_{k}^{2}+V(x_{k})\}+\sum_{k,
l\in\Lambda,|k-l|=1}\varphi(x_{k}-x_{l})
Here we assume both  V(x) and  \varphi(x) are continuous functions, vanishing at
infinity on  R^{d}.
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The word “weakly coupled” is employed here as we presume  \varphi(x) vanishes
at infinity. We can show that

 e^{itH_{\Lambda}}Qe^{-itH_{\Lambda}} Q\in R_{BG}

is a well‐defined automorphism of  R_{BG} , but is not norm continuous in  t . Thanks
to Lieb‐Robinson Bounds on the Fock representation, it is possible to prove
existence of the infinite volume dynamics (the Heisenberg time evolution as
automorphisms  R_{BG} )

Theorem 2.3 The limit

  \lim_{\Lambdaarrow Z^{d}}e^{itH_{\Lambda}}Qe^{-itH_{\Lambda}}=\alpha_{t}(Q)
exists in the operator norm topology of the  re\mathcal{S} olvent algebra, and  \pi_{F}(\alpha_{t}(Q)) is
weakly continuous in  t for the Fock representation  \pi_{F}.

As a function of  t,  \alpha_{t}(Q) is not continuous in the norm topology of  R_{BG},
nevertheless, we can define the  \beta‐KMS state.

We say a state  \omega of  R_{BG} is a  \beta‐KMS state if the following three conditions
are valid:

(i) The time dependent correlation function  F_{Q_{1},Q_{2}}(t)\equiv\omega_{\beta}(\alpha_{t}(Q_{1})Q_{2}) is con‐
tinuous for any  t\in R

(ii) For any  Q_{1} and  Q_{2} in  R_{BG} there exists a complex function  G_{Q_{1},Q_{2}}(z) which
is holomorphic in the strip  \{z|0<Imz <\beta\} , and is bounded,continuous
on the boundary of  \{z|0<Imz <\beta\} such that  G_{Q_{1},Q_{2}}(t)=F_{Q_{1},Q_{2}}(t) .

(iii)  G_{Q_{1},Q_{2}}(t)=G_{Q_{2},Q_{1}}(t)(t+i\beta)

Theorem 2.4 For any  \beta>0 , there exists a  \beta ‐KMSstate  \omega_{\beta} of the resolvent
algebra such that for any finite subset  \Lambda\subset Z^{d} the restriction  of\omega_{\beta} to observables
localized in  \Lambda is normal to the Fock representation.

This above normality is called locally normal to the Fock representation. If a
KMS state  \omega is locally normal to the Fock representation, we say  \omega is a regular
KMS state.

Remark  2_{0}5 The following remarks are in order.

(i) D.Buchholz  con\mathcal{S}idered a similar model in a slightly different setting.  He

restricted  \alpha_{t} to a sub‐algebra for which  \alpha_{t}i_{\mathcal{S}} continuous in  t . The dis‐
advantage of the approach is in the point that the sub‐algebra does not
contain functions of position operators and momentum operators.

(ii) Non‐regular KMS states exist, though, we cannot construct field operators
in the GNS representation of non‐regular KMS states, and we regard non‐
regular KMS states unphysical.
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By use of H.Araki  s argument of relative entropy for quantum spin chains, and
results of relative entropy of  (not necessarily  C^{*}-)^{*} algebras due to A.Uhlmann,
we can establish absence of phase Transition in one dimensional systems.

Theorem 2.6 If the dimension of the lattice is one, the regular KMS state of
the weakly coupled anharmonic crystal is unique.

Our weakly coupled anharmonic crystal is the first example of interacting quan‐
tum lattice models with unbounded spin in which uniqueness of KMS states
established.
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