
177

Quantum Simulation of Interaction between Atom and Light
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1 Introduction

At the dawn of the 21st century, the solid‐state analogue of the interaction between atom and
light in a superconducting circuit was theoretically proposed by Yu. Makhilin, G. Schon, and
A. Shnirman [Rev. Mod. Phys. 73, 357 (2001)] and by F. Marquardt and C. Bruder [Phys.
Rev. B63, 054514 (2001) ] . It has been experimentally demonstrated by I. Chiorescu, et al.
[Nature 431, 159 (2004)] and by A. Wallraff, et al. [Nature 431, 162 (2004)]. In that solid‐state
analogue, an artificial atom and a microwave are used respectively for the atom and the light.
The artificial atom is made by using a superconducting LC circuit. The harmonic oscillator
atom is obtained in the case without any Josephson junction as in Fig.l(a), and the 2‐ıevel
atom is based on the anharmonicity coming from Josephson junctions as in Fig. 1(b). Quantizing
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Figure 1: Superconducting LC circuit. (a) The superconducting LC circuit with no Josephson junction and its energy
spectra. (b) The superconducting LC circuit with a Josephson junction and its energy spectra.

the standing wave in the microwave resonator, we obtain its 1‐mode photon. The interaction
between the artificial atom and the 1‐mode photon is made near a microwave resonator on a
superconducting circuit as in Fig.2. Their most recent cutting‐edge technology is beginning to

FigUre 2: How to make the interaction between the artificiaı atom and the 1‐mode photon of the microwave resonator.

show us the ultra‐strong coupling regime or the deep‐strong coupling regime of the atom‐light
interaction beyond its standard regime of quantum electrodynamics (QED), which is even equal
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to that of quantum chromodynamics (QCD). For instance, more than 10% atom‐light interaction
has been demonstrated in the experiment by F. Yoshihara, et al. [Nature Phys. 13, 44 (2017)].
In this paper, I introduce the following subjects on quantum simulation using the artificial atom
on the superconducting circuit:

1) the duality between a dark state and a quasi‐dark state in a cavity optomechanics as in
Fig.8;

2) the dressed photon and the Schrödinger‐cat‐like entangled ground state of the generalized
quantum Rabi model;

3) the possibility of the conversion from virtual photon to real photon in a ground state of
that model.

Our purpose is in the following. Cavity QED, which describes the interaction between the
atom and the 1‐mode photon in the cavity, can be demonstrated on a superconducting cir‐
cuit. That cavity QED demonstrated on superconducting circuits is called circuit QED. The
leading edge of technology in circuit QED has been enabling us to demonstrate the interaction
between atom and light with superconducting circuits. In addition, the current technology of
the mechanical resonators lately supplies us with mechanical phonon. The mechanical phonon
can be simulated by a superconducting circuit. Therefore, our goal is the quantum simulation
of the atom‐light interaction, and moreover, of the atom‐light system coupled with phonon on
superconducting circuits. For our quantum simuıation, we make the foılowing replacements: We
replace a true atom with a superconducting LC circuit with or without Josephson junction(s).
Here, a 2‐level atom is demonstrated by the superconducting LC circuit with some Josephson
junctions. Photon is given by the quantization of the microwave in a cavity. We can replace the
1‐mode photon with a superconducting LC circuit because a photon as well as a phonon is a
boson. As for phonon, we are interested in the mechanical phonon made by giving an artificial
vibration to the cavity and considering its quantization. We can also replace the 1‐mode phonon
with a superconducting LC circuit.

2 Dark State and Quasi‐Dark State & A Duality between Them

The electromagnetically induced transparency (EIT) is a physical phenomenon in quantum op‐
tics. Usually, to obtain EIT we prepare the so‐caıled  A‐shaped 3‐level system as in Fig.3. We
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Figure 3: The  \Lambda‐shaped 3‐level system.

continue irradiating the 3‐level system with the laser ‘a’ like Fig.4(a). Time enough passes, and
there is neither any photon in the state  |A\rangle nor in the state  |C } as in Fig.4(b). Thus, even if
we irradiate the  A‐shaped 3‐level system with the laser ‘a’, the laser goes through the system
because neither absorption nor emission takes place. This is EIT. In this EIT, although the state
 |T\} is an excited state, it cannot emit the light because it does not have any photon. We call
the state  |T} a dark state.
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Figure 4: (a) Irradiation of the ıaser a to the 3‐ıeveı system. (b) EIT and the dark state.

We should mention the possibility of dark state for the qubit coupled to light. We remember
a qubit is a 2‐level system. However, Emary points out the possibility of the existence of a
dark state even for the 2‐level system [J. Phys.  B : At. Mol. Opt. Phys. 46, 224008 (2013)].
Moreover, Zhu and other collaborators succeeded in demonstrating it in their experiment [Nature
Comm. 5, 3424 (2014)]. More precisely, they experimentally demonstrated a dark state for the
superconducting qubit coupled with the NV centers in diamond. Theoretically to explain their
dark state, they model a spin ensemble of NV centers as a number of harmonic oscillators, and
they employ a simple modeı mathematically regarded as describing a 2‐level atom coupled with
a 1‐mode photon and another 1‐mode boson, We think of the another boson as a phonon in this
paper. In their model, there is no interaction between the 2‐level atom and the 1‐mode phonon
(Fig.5).

Existence ofDark State

l‐m onon

Figure 5: Interactions of the model by Zhu  e\ell lJl.

Meanwhile, Wang and Zhou consider an atom‐cavity system surrounded by a heat bath,
where their atom‐cavity system is the 2‐level atom coupled with the 1‐mode photon. They
found a notion of quasi‐dark state, which results from the two couplings, that is, the coupling
between the atom and the heat bath, and the coupling between the 1‐mode photon and the
heat bath. Their heat bath is regarded as a 1‐mode phonon in this paper. They show that the
quasi‐dark state appears when the atom‐ıight coupling is absent (Fig.6).

In the two models, the notions of dark sate and quasi‐dark state are antipodes to each other:
The model used by Zhu et al. has no interaction between the 2‐level atom and the 1‐mode
phonon (Fig.5), and thus, any quasi‐dark state does not appear. Wang and Zhou’s model has
no interaction between the 2‐ıevel atom and the 1‐mode photon (Fig.6), and thus, any dark
state does not appear. A question arises then. Can each of a dark state and a quasi‐dark state
have individual chance to appear if both interactions, between the 2‐level atom and the 1‐mode
photon, and between the 2‐level atom and the 1‐mode phonon, exist (Fig.7)? To consider this
problem, we imagine a set‐up in cavity optomechanics. We give an artificial vibration to our
cavity as in Fig.8. This vibration changes the length of the resonator, and thus, the wave ıength
of the standing wave in the resonator also changes. This change of the wave length makes the
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Existence ofQuasi‐Dark State

l‐m onon

Figure 6: Interactions of the moclel by Wang and Zhou.

l‐m onon

Figure 7: All interactions are assumed in this paper.

interaction between the 1‐mode photon and the 1‐mode phonon considering their quantization.

creation of

Figure 8: Cavity‐optomechanicaı system.

We make the mathematical set‐ups now. The atom‐cavity Hamiltonian describing the atom
coupled with the 1‐mode photon is given by

 H_{cav} :=\omega_{a}a^{\dagger}a+\omega_{b}b^{\dagger}b+(\lambda^{*\dagger}ab+
\lambda b^{\dagger}a) ,

where  a and   a\dagger are respectively the annihilation and crea ion operators of an atom,  b and   b\dagger are
respectively the annihilation and creation operators of the 1‐mode photon in a cavity.  \lambda denotes
the strength of the atom‐cavity interaction. In Ref.[1], the two cases are considered:  a and   a\dagger are
the annihilation and creation operators of 1) a quantum harmonic oscillator and 2) a spin. In this
paper, we consider the latter case onıy. That is, the case where the atom is the so‐called 2‐level
atom. In this case, the Hamiltonian  H_{cav} is that of the Jaynes‐Cummings model:  H_{cav}=H_{JC},
where

 H_{JC}:=\omega_{a}\sigma_{+}\sigma_{-}+\omega_{b}b^{\dagger}b+(\lambda^{*}
\sigma+b+\lambda b^{\dagger}\sigma_{-}) ,

and the annihilation and creation operators,  a and   a\dagger , are respectively the spin annihilation
and creation operators,  a=\sigma_{-}\equiv(\sigma_{x}-i\sigma_{y})/2 and  a\dagger=\sigma+\equiv(\sigma_{x}+i\sigma_{y})/2 . We use standard
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notations for the Pauli matrices throughout this paper:

 \sigma_{x}:=(\begin{array}{ll}
0   1
1   0
\end{array}), \sigma_{y}:=(\begin{array}{ll}
0   -\dot{i}
i   0
\end{array}), \sigma_{z}:=(\begin{array}{ll}
1   0
0   -1
\end{array}).
We apply a phonon field to the atom‐cavity system so that the total Hamiltonian  H becomes

 H :=H_{cav}+\omega_{c}c^{\dagger}c+(\xi^{*}a^{\dagger}c+\xi c^{\dagger}a)+
(\kappa^{*}b^{\dagger}c+\kappa c^{\dagger}b) ,

where  c and   c\dagger are respectively the annihilation and creation operators of the 1‐mode phonon.
 \xi is the coupıing constant of the atom and the 1‐mode phonon, and  \kappa the coupling constant of
the 1‐mode photon and the 1‐mode phonon.

We respectively denote the ground and excited spin‐states by  |g\}_{a} and  |e\}_{a} . We denote the
Fock state by  |n\rangle_{\#},  \#=b,  c;n=0,1,2,  \cdots , where  n is the number of photons for  \#=b , and the
number of phonons for  \#=c . The ground state of  H is obviously  |g\rangle_{a}|0)_{b}|0\rangle_{c} . We assume the
following condition:

 \omega=\omega_{b}=\omega_{c}.

First, we explain the dark state that Zhu et al. found and the quasi‐dark state that Wang
and Zhou found. We consider the case without interaction between the atom and the 1‐mode

phonon, i.e.,  \xi=0 . As shown in Ref.[1], an excited eigenstate with the eigenenergy  \omega is obtained
as

 | \mathcal{D}\}=\frac{\kappa}{\sqrt{\kappa^{2}+\lambda^{2}}}|e\rangle_{a}|0\}
_{b}|0\}_{c}-\frac{\lambda}{\sqrt{\kappa^{2}+\lambda^{2}}}|g\}_{a}|0\}_{b}|1)
_{c}.
This is the dark state that Zhu et al. found. On the other hand, we consider the case without
interaction between the atom and the 1‐mode photon, i.e.,  \lambda=0 . As shown in Ref.[1], an excited
eigenstate with the eigenenergy  \omega is obtained as

 | \overline{\mathcal{D}}\rangle=\frac{\kappa}{\sqrt{\kappa^{2}+\xi^{2}}}
|e\rangle_{a}|0\}_{b}|0\}_{c}-\frac{\xi}{\sqrt{\kappa^{2}+\xi^{2}}}|g\rangle_{a}
|1)_{b}|0\rangle_{c}.
This is the quasi‐dark state that Wang and Zhou found.

Now, we consider the case where both interactions exist, i.e.,  \lambda\xi\neq 0 . We define the two
functions:

 E(x, y):= \omega-\kappa\frac{y}{x} and  f(x, y):=(\begin{array}{l}
\kappa x
---
x\kappa
\end{array})y.
As shown in Ref.[1], we have the following duality:

(a) If  f(\lambda, \xi)=\omega-\omega_{a} , then there is a dark state  |\mathcal{D}\rangle with the eigenvalue  E(\lambda, \xi) .

(b) If  f(\xi, \lambda)=\omega-\omega_{a} , then there is a quasi‐dark state  |\overline{\mathcal{D}}\rangle with the eigenvalue  E(\xi, \lambda) .

Here,

 | \mathcal{D}\rangle=\frac{\kappa}{\sqrt{\kappa^{2}+\lambda^{2}}}|e\}_{a}|0\}
_{b}|0\rangle_{c}-\frac{\lambda}{\sqrt{\kappa^{2}+\lambda^{2}}}|g\rangle_{a}
|0\rangle_{b}|1\}_{c}
and

 | \overline{\mathcal{D}}\rangle=\frac{\kappa}{\sqrt{\kappa^{2}+\xi^{2}}}
|e\rangle_{a}|0\}_{b}|0\rangle_{c}-\frac{\xi}{\sqrt{\kappa^{2}+\xi^{2}}}|g\}_{a}
|1\rangle_{b}|0\}_{c}.
In addition to this duality, we have a duality for particle numbers: For  \{b\dagger b\}_{(\lambda,\xi)} , the dark‐

state expectation of light, and  \{c\dagger c\rangle_{(\lambda,\xi)} , the quasi‐dark‐state expectation of phonon, defined
by

{  b^{\dagger}b\rangle_{(\lambda,\xi)}  :=\langle \mathcal{D}|b^{\dagger}b|\mathcal{D}\rangle and  \{c^{\dagger}c\rangle_{(\xi,\lambda)}  :=\langle\overline{\mathcal{D}}|c^{\dagger}c|\overline{\mathcal{D}}\rangle,
we obtain

 \{b\dagger b\rangle_{(\lambda,\xi)}=\langle c^{\dagger}c\}_{(\xi,\lambda)}
(See Ref.[1]). Moreover, we can show the necessity of  \kappa\neq 0 , i.e., an interaction between the
1‐mode photon and the 1‐mode phonon, to obtain the chance that each of a dark state and a
quasi‐dark state exists in the case  \lambda\xi\neq 0 (See Ref.[1]).
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3 Dressed Photon and the Schrödinger‐Cat‐Like Entangled Ground
State of the Generalized Quantum Rabi Model

We express the spin state in the following:

 |\uparrow\rangle  :=(\begin{array}{l}
1
0
\end{array})  \in \mathbb{C}^{2} and  |\downarrow\rangle  :=(\begin{array}{l}
0
1
\end{array})  \in \mathbb{C}^{2}.

In this section, we denote by  a and   a\dagger the annihiıation and creation operators of 1‐mode photon,
respectively. The generalized quantum Rabi Hamiltonian is given by

 H( \omega_{a},\omega_{c}, g):=\frac{\hslash}{2}(\omega_{a}\sigma_{z}-
\varepsilon\sigma_{x})+\hslash\omega_{c}(a^{\dagger}a+\frac{1}{2})+\hslash 
g\sigma_{x}(a+a\dagger)
then. Here,  \omega_{a} is the transition frequency of a 2‐level atom demonstrated by a superconducting
circuit,  \varepsilon the bias energy parameter of the superconducting circuit,  \omega_{c} the frequency of the 1‐
mode photon in a cavity on the superconducting circuit, and  g the coupling strength between
the atom and 1‐mode photon.

The Hamiltonian  \mathcal{H}_{tota1} that Yoshihara et al. considered to explain their experimental results
[Nature Phys. 1344 (2017)] is

 \mathcal{H}_{tota{\imath}}:=U_{xz}H(w_{a}, \omega_{c}, g)U_{xz}^{*},

where

 U_{xz}:= \frac{1}{\sqrt{2}}  (\begin{array}{ll}
1   1
-1   1
\end{array}) .

We can show that, in the case  \varepsilon=0 , the ground state  \psi_{g} of their total Hamiltonian  \mathcal{H}_{tota1}

is welı approximated by the entanglement between the two coherent states for sufficiently large
coupling constants, and makes a Schrödinger‐cat‐like entangled state:

  \psi_{g} \approx \frac{e^{-g^{2}/2\omega_{c}^{2}}}{\sqrt{2}}\sum_{n=0}
^{\infty}\{\frac{(-g/\omega_{c})^{n}}{\sqrt{n!}}|\uparrow, n\rangle+
\frac{(g/\omega_{c})^{n}}{\sqrt{n!}}|\downarrow, n\}\}, g\gg 1.
This results from the mathematical result that the Hamiltonian  \mathcal{H}_{tota{\imath}} converges to that for the
Schrödinger‐cat‐like entangled state as  garrow\infty in the norm resolvent sense (See Ref.[2]).

4 Possibility of Conversion from Virtual Photon to Real Photon
in Ground State of the Generalized Quantum Rabi Model

Moore theoretically proposed the so‐called dynamical Casimir effect [J. Math. Phys. 11, 2679
(1970)]. C. M. Wilson, et al. succeeded in demonstrating the dynamical Casimir effect in their
experiment using a superconducting circuit [Nature 479, 376 (2011)]. Namely, they succeeded
in deriving a real photon from the vacuum fluctuation caused by virtual photons. In this section,
we argue a possibility of the conversion from virtual photon to real photon in the ground state
of the generalized quantum Rabi model. We consider the Hamiltonian with  A^{2}‐term. We define
the Hamiltonian with the  A^{2}‐term by

 H_{A^{2}}:=H(\omega_{a}, \omega_{c}, g)+\hslash C_{g}g(a+a^{\dagger})^{2}
where  C_{g} is a function of the coupling strength  g given as  C_{g}=Cg or  C_{g}=Cg^{2} with a constant
 C.

Since we have to mind and cope with the effect coming from the  A^{2}‐term (i.e., the quadratic
coupling), we follow the pair theory explained in Henley and Thirring’s textbook [“Elementary
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Quantum Field Theory” (New York: McGraw‐Hilı) 1962]. We remember the following physical
fats: The ‘virtual photon’ is a technical term in the theory of elementary particle. It is the gauge
particle causing the Coulomb force. Any virtual photon cannot directly be observed.

We denote by  |E_{v} },  \nu=0,1,2,  \cdots , the eigenstates of the total Hamiltonian  H_{A^{2}} , and by
 E_{\nu} the corresponding eigenenergies with   E_{0}\leq E_{1}\leq E_{2}\leq The ground‐state expectation of
bare photon defined by

 N_{0}^{bare}:=\{E_{0}|a^{\dagger}a|E_{0}\}
is for the bare photons, and includes the number of virtuaı photons as weıl as that of reaı ones.
Let  \triangle\Phi be the fluctuation for the bare‐photon field  \Phi=(a+a\dagger)/\sqrt{2\omega_{c}} at the ground state  |E_{0}\rangle,
i.e.,

 \triangle\Phi=\sqrt{\langle E_{0}|(\Phi-\{E_{0}|\Phi|E_{0}\})^{2}|E_{0}\}}.
As shown in Ref.[2], we have the followings:

(a)  (\triangle\Phi)^{2}\leq(2N_{0}^{bare}+1)/\omega_{C}.
(b)   \lim_{garrow\infty}N_{0}^{bare}=\infty.

Inequality (a) says that the number of bare photons increases if the fluctuation grows larger and
larger. Thus, the number of virtual photons increases as well.

We follow the pair theory to avoid this increase in the number of virtual photons. The
new annihilation and creation operators,  b and   b\dagger , for real photons are introduced so that the
reıations,

 a=M_{1}b+M_{2}b^{\dagger} and  a\dagger=M_{2}b+M_{1}b^{\dagger},

are satisfied, where

 M_{1}= \frac{1}{2}\{\sqrt{\frac{\omega_{c}}{\omega_{g}}}+\sqrt{\frac{\omega_{g}
}{\omega_{c}}}\} and  M_{2}= \frac{1}{2}\{\sqrt{\frac{\omega_{c}}{\omega_{g}}}-\sqrt{\frac{\omega_{g}
}{\omega_{c}}}\}.
Then, we can obtain the so‐called Hopfield‐Bogoliubov transformation (See Ref.[2]): For arbi‐
trary  \omega_{c},  g,  C_{g} , the Hopfield‐Bogoıiubov transformation  U is unitary so that

 U^{*}H_{A^{2}}U=H(\omega_{a}, \omega_{g},\overline{g}) ,

where

 \omega_{g}=\sqrt{\omega_{c}^{2}+4C_{g}g\omega_{c}} and  \tilde{g}=g\sqrt{\frac{\omega_{c}}{\omega_{g}}}.
We here note that the Hopfield‐Bogoliubov transformation is unitary for our model without any
restriction.

Thanks to the unitarity of the Hopfield‐Bogoliubov transformation, we can define the nor‐
malized eigenstates of the renormalized Hamiltonian  H(\omega_{a}, \omega_{g},\overline{g}) with the  A^{2}‐term effect by

 |E_{\nu}^{ren}\}:=U^{*}|E_{\nu}\},

and then, the eigenenergy  E_{\nu}^{ren} of each eigenstate  |E_{\nu}^{ren} } is, of course,  E_{\nu} . We can show that  E_{0}

is always less than  E_{1} , i.e.,  E_{0}<E_{1} . We consider the renormalized ground‐state expectation of
real photon,

 N_{0}^{ren}:=\{E_{0}^{ren}|a\dagger a|E_{0}^{ren}\},
and how the ground state of the renormaıized quantum Rabi Hamiltonian has a real photon.

As shown in Ref.[2], we have the following estimates:

 L^{ren}( g)^{2}\leq N_{0}^{ren}\leq\frac{\overline{g}^{2}}{\omega_{g}^{2}}=
\omega_{c}^{-1/2}(\frac{\omega_{c}}{g^{4/3}}+\frac{4C_{g}}{g^{1/3}})^{-3/2}
\vec{garrow\infty}0,
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provided that the function  L^{ren}(g) satisfies  L^{ren}(g)\geq 0 , where

 L^{ren}( g):=\frac{\overline{g}}{\omega_{g}}-\sqrt{\frac{\sqrt{\omega_{a}^{2}+
\varepsilon^{2}}(1-e^{-2\overline{g}^{2}/\omega_{g}^{2}})}{2\omega_{g}}}.
We show the upper bound and the lower bound in Fig.9. Then, Fig.9 says that the ground

 g
 s^{\Rightarrow}

 \hat{=\vee S} 2 2
 \underline{\S*} 1 I

 \tilde{S}

 \hat{-\vee\varepsilon} 0 0
§

strength  g of interaction strength  g of interaction

  \frac{\S}{B} 3  C_{l}4.5xg.\omega_{a}4. I.  \omega_{c}=0.75

 BR\Leftrightarrow\infty 3  C_{S}4.5xg^{-} . tu,t. 1,  (0,t.7S

 \hat{\wedge=\vee v} 2.  5  -

 |^{-}  \hat{\frac{v\Rightarrow}{\rho}\vee}
2.5

 2 --1!| 2 \underline{\xi:} 1.  5  \underline{o*:} 1.5

 \sim_{E}\wedge\approx\vee\overline{\sim} 0.51 --11-!1|-- \hat{\frac{}{\vee 8}}
\overline{*} 0.51
 \dot{\S} 0_{0} 2 4 6 8 10 \S 0_{0} 2 4 6 8 10

Figure 9:  N_{0}^{ron} sits  bet_{\mathbb{R}A_{-}1}IkPlBRb\iotalffi The upper  line\Rightarrow denotes the  \mathfrak{W}w1\mathfrak{W}I\eta A_{C}fl\vartheta\alpha ihe lower line is the lower bound.

state is almost a vacuum and we can expect no reaı photon for large constant  C (see the case
 C=0.5) . However, we can expect one or two real photon(s) for sufficiently small  C (see the
case  C=0.05).

Thus, we are interested in where the real photon comes from. We denote the spin‐chiraı
transformed state,  \sigma_{x}|E\rangle , by  |\overline{E}\rangle  :=\sigma_{x}|E}. Then, actually, the sate  |\overline{E}\rangle becomes a spin‐chiraı
 state, in a sense, on the surface on the spin‐chiral mirror. For more details, see Ref.[2]. As given
in Ref.[2], we obtain the following expression: For any coupling constant  g

(c)  N_{0}^{ren}=| \{\overline{E}_{0}^{ren}|E_{0}^{ren}\}|^{2}\frac{\overline{g}^{2}
}{\omega_{g}^{2}}+\hslash^{2}\overline{g}^{2}\sum_{\nu=1}^{\infty}
\frac{|\{\overline{E}_{\nu}^{ren}|E_{0}^{ren}\}|^{2}}{(E_{\nu}-E_{0}+
\hslash\omega_{g})^{2}}.
(d) There is an  \nu_{*} so that

 0< \hslash^{2}\overline{g}^{2}\frac{|\langle\overline{E}_{\nu_{*}}^{ren}|E_{0}^
{ren}\}|^{2}}{(E_{\nu_{*}}-E_{0}+\hslash\omega_{g})^{2}}\leq N_{0}^{ren}.
Expression (c) says that the real photon comes from the spin‐chiral states to the ground state.

Similarly, we have the following:

(e) For sufficientıy small  C , the ground‐state expectation of bare photons is expressed as

 N_{0}^{bare}=| \{\overline{E}_{0}|E_{0}\}|^{2}\frac{g^{2}}{\omega_{c}^{2}}+
\hslash^{2}g^{2}\sum_{\nu=1}^{\infty}\frac{|\langle\overline{E}_{\nu}|E_{0}
\rangle|^{2}}{(E_{l/}-E_{0}+\hslash\omega_{c})^{2}}.
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5 Summary

In this paper, we have showed the following results:

1. the duality between a dark state and a quasi‐dark state for an artificial atom coupled to
both the 1‐mode photon and 1‐mode phonon in cavity optomechanics;

2. the dressed photon and the Schrödinger‐cat‐like entangled ground state of the generalized
quantum Rabi model;

3. the possibility of the conversion from virtual photon to real photon in a ground state of
that model.

Concerning 1, we are considering a design of the superconducting circuit experimentally to
demonstrate the duality. The dark state is expected to be used as a quantum memory, and
therefore, the duality could be useful for exchanging the two quantum memories.

Regarding 3, we are proposing the method of how to derive the real photon in the ground
state in circuit QED. The ground state is the bound state with the lowest energy, and thus, it
is stable. So, the real photon in a ground state means the stable storage of a photon. Therefore,
if we can succeed in obtaining a technology to derive the real photon, we have the technology
for stably saving and drawing a photon from the ground‐state bank.
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