On a bifurcation problem for viscous compressible fluid between two rotating concentric cylinders

Yoshiyuki Kagei Faculty of Mathematics, Kyushu University, Fukuoka, 819-0395, JAPAN

1 Introduction

We consider a viscous fluid between two concentric cylinders. The inner cylinder is rotating with uniform speed ω and the outer one is at rest. If ω is sufficiently small, a laminar flow (Couette flow) is stable. When ω increases, beyond a certain value of ω , a vortex flow pattern (Taylor vortex) appears. Mathematically, this phenomenon is formulated as a bifurcation problem. If the fluid is incompressible, the bifurcation of the Taylor vortex from the Couette flow was proved for the incompressible Navier-Stokes equations by Velte [12], Iudovich [3], Kirchgässner and Sorger [7] and etc. See the book [1] by Chossat and Iooss for the Taylor problem.

In this article we give a summary of the results in [6] on a bifurcation problem for the compressible Navier-Stokes equations.

A non-dimensional form of the governing equations is written as

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \boldsymbol{v}) = 0, \\ \rho(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}) - \nu \Delta \boldsymbol{v} - (\nu + \nu') \nabla \operatorname{div} \boldsymbol{v} + \frac{1}{\varepsilon^2} \nabla p(\rho) = \boldsymbol{0} \end{cases}$$
(1.1)

on a cylindrical domain Ω_{α} . Here ρ and \boldsymbol{v} are the unknown fluid density and velocity, respectively; $\nu > 0$ is a non-dimensional parameter proportional to $1/\omega$; $\varepsilon > 0$ is the Mach number; $p(\rho)$ is the pressure that is a smooth function

of ρ and satisfies p'(1) = 1; and the domain Ω_{α} is given by

$$\Omega_{\alpha} = \{ (r, \theta, z) : \frac{\eta}{1 - \eta} < r < \frac{1}{1 - \eta}, \quad \theta \in \mathbb{T}_{2\pi}, \quad z \in \mathbb{T}_{\frac{2\pi}{\alpha}} \}.$$

Here (r, θ, z) denotes the cylindrical coordinates; $0 < \eta < 1$, $\alpha > 0$ are given constants; and $\mathbb{T}_{\beta} = \mathbb{R}/\beta\mathbb{Z}$. We note that the periodic boundary condition in z is included in the definition of Ω_{α} , namely, ρ and \boldsymbol{v} are $\frac{2\pi}{\alpha}$ -periodic in z. The boundary conditions on $r = \frac{\eta}{1-\eta}, \frac{1}{1-\eta}$ are

$$v^{\theta}|_{r=\frac{\eta}{1-\eta}} = 1, \ v^{\theta}|_{r=\frac{1}{1-\eta}} = 0. \ v^{r} = v^{z} = 0 \text{ on } r = \frac{\eta}{1-\eta}, \frac{1}{1-\eta},$$
 (1.2)

Here (v^r, v^{θ}, v^z) are the (r, θ, z) -components of $\boldsymbol{v} = v^r \boldsymbol{e}_r + v^{\theta} \boldsymbol{e}_{\theta} + v^z \boldsymbol{e}_z$, where $\boldsymbol{e}_r = {}^{\top}(\cos\theta, \sin\theta, 0), \ \boldsymbol{e}_{\theta} = {}^{\top}(-\sin\theta, \cos\theta, 0)$ and $\boldsymbol{e}_z = {}^{\top}(0, 0, 1).$

The problem (1.1)–(1.2) has a stationary solution (Couette flow) $u_{C,\varepsilon} = {}^{\top}(\rho_{C,\varepsilon}, \boldsymbol{v}_{C})$:

$$\rho_{C,\varepsilon} = \rho_{C,\varepsilon}(r) = 1 + O(\varepsilon^2), \quad \boldsymbol{v}_C = v_C^{\theta}(r)\boldsymbol{e}_{\theta}.$$

Note that v_C represents the Couette flow for the incompressible Navier-Stokes equations:

$$\begin{cases} \operatorname{div} \boldsymbol{v} = 0, \\ \partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \nu \Delta \boldsymbol{v} + \nabla p = \boldsymbol{0} \end{cases}$$
(1.3)

on Ω_{α} with the boundary condition (1.2).

One can show that if $\nu \gg 1$ and $0 < \varepsilon \ll 1$, then $u_{C,\varepsilon}$ is asymptotically stable. In this article we are interested in what happens in the stability problem of the Couette flow $u_{C,\varepsilon}$ when ν decreases.

To study the stability problem of the Couette flow $u_{C,\varepsilon}$, we rewrite (1.1) into the equations for the perturbation of the Couette flow. We denote the perturbation by $u = {}^{\mathsf{T}}(\phi, \boldsymbol{w}) = {}^{\mathsf{T}}(\varepsilon^{-2}(\rho - \rho_{C,\varepsilon}), \boldsymbol{v} - \boldsymbol{v}_{C})$. Since the Taylor vortex is axisymmetric, we consider the *axisymmetric perturbation* $u = {}^{\mathsf{T}}(\phi, \boldsymbol{w})$, where

$$\phi = \phi(r, z, t), \ \boldsymbol{w} = w^r(r, z, t)\boldsymbol{e}_r + w^\theta(r, z, t)\boldsymbol{e}_\theta + w^z(r, z)\boldsymbol{e}_z,$$

i.e., ϕ , w^j $(j = r, \theta, z)$ do not depend on the variable θ .

It then follows that $\operatorname{div}(\phi \boldsymbol{v}_C) = 0$, and, hence, the perturbation u is governed by the following system of equations:

$$\begin{cases} \partial_t \phi + \frac{1}{\varepsilon^2} \operatorname{div} \left(\rho_{C,\varepsilon} \boldsymbol{w} \right) = -\operatorname{div} \left(\phi \boldsymbol{w} \right), \\ \partial_t \boldsymbol{w} - \frac{\nu}{\rho_{C,\varepsilon}} \Delta \boldsymbol{w} - \frac{\nu + \nu'}{\rho_{C,\varepsilon}} \nabla \operatorname{div} \boldsymbol{w} + \nabla \left(\frac{p'(\rho_{C,\varepsilon})}{\rho_{C,\varepsilon}} \phi \right) \\ + \boldsymbol{v}_C \cdot \nabla \boldsymbol{w} + \boldsymbol{w} \cdot \nabla \boldsymbol{v}_C = \boldsymbol{g}(\phi, \boldsymbol{w}, \partial_x \phi, \partial_x \boldsymbol{w}, \partial_x^2 \boldsymbol{w}; \varepsilon, \nu). \end{cases}$$
(1.4)

Here $\boldsymbol{g} = -\boldsymbol{w} \cdot \nabla \boldsymbol{w} + \varepsilon^2 \tilde{\boldsymbol{g}}(\phi, \boldsymbol{w}, \partial_x \phi, \partial_x \boldsymbol{w}, \partial_x^2 \boldsymbol{w}; \varepsilon, \nu)$ denotes the nonlinear terms. Recall that the periodic boundary condition in z is included in the definition of Ω_{α} : ϕ and \boldsymbol{w} are $\frac{2\pi}{\alpha}$ -periodic in z. The boundary conditions on $r = \frac{\eta}{1-\eta}, \frac{1}{1-\eta}$ are

$$w^r = w^\theta = w^z = 0 \text{ on } r = \frac{\eta}{1-\eta}, \frac{1}{1-\eta},$$
 (1.5)

Furthermore, we impose the condition

$$\int_{\Omega_{\alpha}} \phi \, dx = 0, \tag{1.6}$$

which naturally follows from the conservation of mass.

2 Results

In this section we state the stability and bifurcation results for the compressible problem (1.1)-(1.2) obtained in [6].

We first introduce notation used in this paper. For $1 \leq p \leq \infty$ we denote by $L^p(\Omega_{\alpha})$ the usual Lebesgue space over Ω_{α} and its norm is denoted by $\|\cdot\|_p$. The *m*th order L^2 Sobolev space over Ω_{α} is denoted by $H^m(\Omega_{\alpha})$, and its norm is denoted by $\|\cdot\|_{H^m}$. The inner product of $L^2(\Omega_{\alpha})$ is denoted by (\cdot, \cdot) , i.e.,

$$(f,g) = \int_{\Omega_{\alpha}} f(x)\overline{g(x)}dx.$$

Here \overline{z} denotes the complex conjugate of $z \in \mathbb{C}$.

We set

$$H_0^1(\Omega_\alpha) = \text{the } H^1(\Omega_\alpha)\text{-closure of } C_0^\infty(\Omega_\alpha),$$

$$H^{-1}(\Omega_\alpha) = \text{the dual space of } H_0^1(\Omega_\alpha).$$

We define $L^2_*(\Omega_\alpha)$ and $H^k_*(\Omega_\alpha)$ by

$$L^2_*(\Omega_\alpha) = \{ f \in L^2(\Omega_\alpha); \ \int_{\Omega_\alpha} f(x) dx = 0 \},$$
$$H^k_*(\Omega_\alpha) = H^k(\Omega_\alpha) \cap L^2_*(\Omega_\alpha) \ (k \ge 1).$$

We set

$$L^2_{\sigma}(\Omega_{\alpha}) = \{ \boldsymbol{v} \in L^2(\Omega_{\alpha})^3 ; \operatorname{div} \boldsymbol{v} = 0 \text{ in } \Omega_{\alpha}, \, \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial \Omega_{\alpha}} = 0 \}$$

Here and in what follows, \boldsymbol{n} denotes the unit outward normal to $\partial \Omega_{\alpha}$. It is known that

$$(L^2(\Omega_\alpha))^3 = L^2_\sigma(\Omega_\alpha) \oplus G^2(\Omega_\alpha),$$

where $G^2(\Omega_{\alpha}) = \{\nabla p; p \in H^1_*(\Omega)\}$ is orthogonal complement of $L^2_{\sigma}(\Omega_{\alpha})$. The orthogonal projection \mathbb{P} from $L^2(\Omega_{\alpha})^3$ onto $L^2_{\sigma}(\Omega_{\alpha})$ is called the

The orthogonal projection \mathbb{P} from $L^2(\Omega_{\alpha})^3$ onto $L^2_{\sigma}(\Omega_{\alpha})$ is called the Helmholtz projection.

Let X be a function space consisting functions $u = {}^{\top}(\phi, \boldsymbol{w})$ on Ω_{α} , where ϕ and \boldsymbol{w} are scalar and vector fields on Ω_{α} , respectively. We denote by X_{sym} the set of functions in X that satisfy the following symmetries:

• axisymmetry:

$$\phi = \phi(r, z), \ \boldsymbol{w} = w^r(r, z)\boldsymbol{e}_r + w^{\theta}(r, z)\boldsymbol{e}_{\theta} + w^z(r, z)\boldsymbol{e}_z$$

• reflection symmetry with respect to z = 0:

$$\phi(r, -z) = \phi(r, z), \ w^j(r, -z) = w^j(r, z) \ (j = r, \theta), \ w^z(r, -z) = -w^z(r, z)$$

Similarly, for a function space Y of vector fields on Ω_{α} , we denote by Y_{sym} the set of vector fields in Y with the above symmetries.

We denote the resolvent set of an operator A by $\rho(A)$ and the spectrum of A by $\sigma(A)$.

To state our results, we next introduce linearized operators around the Couette flow. We define the linearized operator

$$\mathbb{L}_{\nu}: L^2_{\sigma,sym}(\Omega_{\alpha}) \to L^2_{\sigma,sym}(\Omega_{\alpha})$$

around the Couette flow for the incompressible problem by

$$\mathbb{L}_{
u} oldsymbol{v} = -
u \mathbb{P} \Delta oldsymbol{v} + \mathbb{P}(oldsymbol{v}_C \cdot
abla oldsymbol{v} + oldsymbol{v} \cdot
abla oldsymbol{v}_C)$$

for $\boldsymbol{w} \in D(\mathbb{L}_{\nu})$ with domain $D(\mathbb{L}_{\nu}) = [H^2(\Omega_{\alpha}) \cap H^1_0(\Omega_{\alpha})]^3 \cap L^2_{\sigma,sym}(\Omega_{\alpha}).$

The linearized operator

$$L_{\varepsilon,\nu}: H^1_{*,sym}(\Omega_{\alpha}) \times L^2_{sym}(\Omega_{\alpha})^3 \to H^1_{*,sym}(\Omega_{\alpha}) \times L^2_{sym}(\Omega_{\alpha})^3$$

for the compressible problem (1.4)–(1.6) is defined by

$$L_{\varepsilon,\nu}u = \begin{pmatrix} 0 & \frac{1}{\varepsilon^2} \operatorname{div}\left(\rho_{C,\varepsilon}\cdot\right) \\ \nabla\left(\frac{p'(\rho_{C,\varepsilon})}{\rho_{C,\varepsilon}}\cdot\right) & -\frac{\nu}{\rho_{C,\varepsilon}}\Delta - \frac{\nu+\nu'}{\rho_{C,\varepsilon}}\nabla\operatorname{div} + \boldsymbol{v}_C\cdot\nabla + {}^{\mathsf{T}}(\nabla\boldsymbol{v}_C)\cdot \end{pmatrix} \begin{pmatrix} \phi \\ \boldsymbol{w} \end{pmatrix}$$

for $u = {}^{\top}(\phi, \boldsymbol{w}) \in D(L_{\varepsilon,\nu})$ with domain $D(L_{\varepsilon,\nu}) = H^1_{*,sym}(\Omega_{\alpha}) \times \left[H^2_{sym}(\Omega_{\alpha}) \cap H^1_{0,sym}(\Omega_{\alpha})\right]^3$.

We make the following assumption on the spectrum of the linearized operator \mathbb{L}_{ν} for the incompressible problem.

Assumption (A): There are constants $\nu_c > 0$, $\kappa_0 > 0$ and $\Lambda_0 > 0$ such that for $|\nu - \nu_c| \ll 1$,

$$\rho(-\mathbb{L}_{\nu}) \supset \{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -\kappa_0 |\operatorname{Im} \lambda|^2 - \Lambda_0\} \setminus \{\lambda(\nu)\}.$$

Here $\lambda(\nu) \in \mathbb{R}$ is a simple eigenvalue satisfying $\lambda(\nu_c) = 0$ and $\frac{d\lambda}{d\nu}(\nu_c) < 0$.

Remark 1 (i) It was proved by Velte ([12]) and Iudovich ([3]) that $\lambda(\nu_c) = 0$, $\frac{d\lambda}{d\nu}(\nu_c) \neq 0$ (for a.e. $\alpha > 0$).

(ii) Numerical computations and experiments support the Assumption (A) for physically relevant values of α . See, e.g. [1, 7].

Under Assumption (A), the bifurcation of the Taylor vortex for the incompressible problem (1.3), (1.2) can be proved by applying the standard bifurcation theory ([2]).

Proposition 1 ([12, 3, 7]) For each $\nu = \nu(\delta)$ ($|\delta| \ll 1$), the problem (1.3), (1.2) has a nontrivial stationary solution \boldsymbol{v}_{δ} (incompressible Taylor vortex) such that

$$egin{array}{rcl}
u(\delta) &=&
u_c - a \delta^2 + O(\delta^4), \
onumber v_\delta &=& oldsymbol v_C + \delta(oldsymbol w^{(1)}_\delta) + \deltaoldsymbol w^{(1)}_\delta). \end{array}$$

Here a is a constant; $w^{(0)}$ is the eigenfunction for the zero eigenvalue of $-\mathbb{L}_{\nu}$.

Remark 2 (i) the bifurcation of the Taylor vortex from the Couette flow was proved for the incompressible Navier-Stokes equations by Velte [12], Iudovich [3], Kirchgässner and Sorger [7] and etc. See the book [1] by Chossat and Iooss for the Taylor problem.

(ii) Numerical computations and experiments support that the constant a satisfies a > 0 for physically relevant values of α . See, e.g. [1, 7].

For sufficiently small Mach number ϵ , we have the following result on the spectrum of the linearized operator $L_{\varepsilon,\nu}$.

Theorem 2 ([6]) There are constants $\varepsilon_0 > 0$, $\Lambda_1 > 0$ and $\nu_1 > 0$ such that the following assertion holds true. For each $0 < \varepsilon \leq \varepsilon_0$ there exists a critical value $\nu_c(\varepsilon)$ with $\nu_c(\varepsilon) \to \nu_c$ as $\varepsilon \to 0$ such that if $|\nu - \nu_c| \leq \nu_1$, then $\rho(-L_{\varepsilon,\nu}) \supset \{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -\Lambda_1\} \setminus \{\lambda_{\varepsilon}(\nu)\}, \text{ where } \lambda_{\varepsilon}(\nu) \in \mathbb{R} \text{ is a simple}$ eigenvalue satisfying $\lambda_{\varepsilon}(\nu_c(\varepsilon)) = 0$ and $\frac{\partial \lambda_{\varepsilon}}{\partial \nu}(\nu_c(\varepsilon)) < 0$.

In view of Theorem 2 one could expect a stationary bifurcation from the Couette flow at $\nu = \nu_c(\varepsilon)$. However, the standard bifurcation theory is not applicable since the nonlinearity is not Fréchet differentiable due to the derivative loss in the term $-\operatorname{div}(\phi \boldsymbol{w})$. Nevertheless, we have the following bifurcation result.

Theorem 3 ([6]) Let $0 < \varepsilon \leq \varepsilon_0$. Then for each $\nu = \nu_{\varepsilon}(\delta)$ ($|\delta| \ll 1$), the problem (1.4)–(1.6) has a nontrivial stationary solution $u_{\delta,\varepsilon}$ (compressible Taylor vortex) such that

$$\nu_{\varepsilon}(\delta) = \nu_{c}(\varepsilon) - a_{\varepsilon}\delta^{2} + O(\delta^{3}),$$

$$u_{\delta,\varepsilon} = \delta(U_{\varepsilon}^{(0)} + \delta U_{\delta,\varepsilon}^{(1)}).$$

Here $a_{\varepsilon} = a + O(\varepsilon^2)$ with the constant *a* in Proposition 1; $U_{\varepsilon}^{(0)}$ is the eigenfunction for the zero eigenvalue of $-L_{\varepsilon,\nu_c(\varepsilon)}$.

Theorem 3 can be proved in a similar manner to the argument in [4].

Our proof of Theorem 1 is outlined as follows. One can show that if $0 < \varepsilon \ll 1$, then $\sigma(-L_{\varepsilon,\nu}) \cap \{\lambda; |\operatorname{Re} \lambda| \leq \Lambda_0\}$ is decomposed into two parts $S_1 \cup S_2$, where $S_1 = \sigma(-L_{\varepsilon,\nu}) \cap \{\lambda; |\lambda| \leq O(1)\}$ is the *incompressible part* that is obtained by a perturbation of the incompressible spectrum $\sigma(-\mathbb{L}_{\nu})$; and $S_2 = \sigma(-L_{\varepsilon,\nu}) \cap \{\lambda; |\operatorname{Im} \lambda| = O(\varepsilon^{-1})\}$ is the *compressible part* that consists of

the spectra for acoustic modes (sound waves with propagation speed $O(\varepsilon^{-1})$). Due to the assumption on $\sigma(-\mathbb{L}_{\nu})$, one can show that $S_1 = \{\lambda_{\varepsilon}(\nu)\}$. Since we consider axisymmetric perturbations, we can prove $\operatorname{Re} S_2 \leq -\Lambda_1 < 0$ by using an argument similar to the one in [5] for the stability problem of stationary solution of the artificial compressible system.

Remark 3 For general perturbations (i.e., without axisymmetric assumption), one can show the above decomposition by S_1 and S_2 with $S_1 = \{\lambda_{\varepsilon}(\nu)\}$ for $0 < \varepsilon \ll 1$. But, it is still open whether $\operatorname{Re} S_2 \leq -\Lambda_1$ holds for the case of general perturbations.

References

- P. Chossat and G. Iooss, *The Couette-Taylor problem*, Applied Mathematical Sciences, 102, Springer-Verlag, New York, 1994.
- [2] M. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), pp. 321–340.
- [3] V. I. Iudovich, Secondary flows and fluid instability between rotating cylinders, Prikl. Mat. Meh., **30** (1966), pp. 688–698 (Russian); translated as J. Appl. Math. Mech., **30** (1966), pp. 822–833.
- [4] Y. Kagei and T. Nishida, Traveling waves bifurcating from plane Poiseuille flow of the compressible Navier-Stokes equation, preprint, 2015, MI Preprint Series 2015-9, Kyushu University.
- [5] Y. Kagei, T. Nishida and Y. Teramoto, On the spectrum for the artificial compressible system, J. Differential Equations, 264 (2018), pp. 897–928.
- [6] Y. Kagei, T. Nishida and Y. Teramoto, Bifurcation of the compressible Taylor vortex, in preparation.
- [7] K. Kirchgässner and P. Sorger, Branching analysis for the Taylor problem, Quart. J. Mech. Appl. Math., 22 (1969), pp. 183–209.
- [8] W. Velte, Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichugen beim Taylorproblem, (German), Arch. Rational Mech. Anal., 22, (1966), pp. 1–14.