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1 Introduction

We consider a viscous fluid between two concentric cylinders. The inner
cylinder is rotating with uniform speed \omega and the outer one is at rest. If  \omega is
sufficiently small, a laminar flow (Couette flow) is stable. When  \omega increases,
beyond a certain value of  \omega , a vortex flow pattern (Taylor vortex) appears.
Mathematically, this phenomenon is formulated as a bifurcation problem.
If the fluid is incompressible, the bifurcation of the Taylor vortex from the
Couette flow was proved for the incompressible Navier‐Stokes equations by
Velte [12], Iudovich [3], Kirchgässner and Sorger [7] and etc. See the book
[1] by Chossat and Iooss for the Taylor problem.

In this article we give a summary of the results in [6] on a bifurcation
problem for the compressible Navier‐Stokes equations.

A non‐dimensional form of the governing equations is written as

 \begin{array}{l}
\partial_{t}\rho+div(\rho v)=0,
\rho(\partial_{t}v+v\cdot\nabla v)-\nu\triangle v-(\nu+\nu^{I})\nabla divv+\frac
{1}{\varepsilon^{2}}\nabla p(\rho)=0
\end{array} (1.1)

on a cylindrical domain  \Omega_{\alpha} . Here  \rho and  v are the unknown fluid density and
velocity, respectively;  \nu>0 is a non‐dimensional parameter proportional to
 1/\omega;\varepsilon>0 is the Mach number;  p(\rho) is the pressure that is a smooth function
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of  \rho and satisfies  p'(1)=1 ; and the domain  \Omega_{\alpha} is given by

  \Omega_{\alpha}=\{(r, \theta, z):\frac{\eta}{1-\eta}<r<\frac{1}{1-\eta}, 
\theta\in\Gamma_{2\pi}, z\in\Gamma_{\frac{2\pi}{\alpha}}\}.
Here  (r, \theta, z) denotes the cylindrical coordinates;  0<\eta<1,  \alpha>0 are given
constants; and  \Gamma_{\beta}=\mathbb{R}/\beta \mathbb{Z} . We note that the periodic boundary condition

 Theboundary conditions o   nr=_{\overline{1}-\overline{\eta}}^{p},\frac{n1}{l-\eta}areinz
 isinc1

uded i
 nthedefin\dot{{\imath}}

tion o  f\Omega_{\alpha},ame1y,  \rho and
 v

are   \frac{2\pi}{\alpha} ‐periodic in
 z.

 v^{\theta}|_{r=_{\overline{1}\overline{\eta}}^{\underline{\Delta}}}=1,  v^{\theta}|_{r=\frac{1}{1-\eta}}=0.  v^{r}=v^{z}=0 on  r= \frac{\eta}{1-\eta},   \frac{1}{1-\eta} , (1.2)

Here  (v^{r}, v^{\theta}, v^{z}) are the  (r, \theta, z) ‐components of  v=v^{r}e_{r}+v^{\theta}e_{\theta}+v^{z}e_{z} , where
 e_{r}=T(\cos\theta, \sin\theta, 0),  e_{\theta}=T  (-\sin\theta, \cos\theta, 0) and  e_{z}=T(0,0,1) .

The problem  (1.1)-(1.2) has a stationary solution (Couette flow)  u_{C,\varepsilon}=

 T(\rho_{C,\varepsilon}, v_{C}) :

 \rho_{C,\varepsilon}=\rho_{C,\varepsilon}(r)=1+O(\varepsilon^{2})) v_{C}=v_{C}^
{\theta}(r)e_{\theta}.
Note that  v_{C} represents the Couette flow for the incompressible Navier‐
Stokes equations:

 \{\begin{array}{l}
divv=0,
\partial_{t}v+v\cdot\nabla v-\nu\triangle v+\nabla p=0
\end{array} (1.3)

on  \Omega_{\alpha} with the boundary condition (1.2).

One can show that if  \nu\gg 1 and  0<\varepsilon\ll 1 , then  u_{C,\varepsilon} is asymptotically
stable. In this article we are interested in what happens in the stability
problem of the Couette flow  u_{C,\varepsilon} when  \nu decreases.

To study tthe stability problem of the Couette flow  u_{C,\varepsilon} , we rewrite (1.1)
into the equations for the perturbation of the Couette flow. We denote
the perturbation by  u=T(\phi, w)=T(\varepsilon^{-2}(\rho-\rho_{C,\varepsilon}), v-v_{C}) . Since the
Taylor vortex is axisymmetric, we consider the axisymmetric perturbation
 u=T(\phi, w) , where

 \phi=\phi(r, z, t), w=w^{r}(r, z, t)e_{r}+w^{\theta}(r, z, t)e_{\theta}+w^{z}
(r, z)e_{z},

i.e.,  \phi,  w^{j}(j=r, \theta, z) do not depend on the variable  \theta.
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It then follows that  div(\phi v_{C})=0 , and, hence, the perturbation  u is
governed by the following system of equations:

 \{\begin{array}{l}
\partial_{t}\phi+\frac{1}{\varepsilon^{2}}div(\rho_{C,\varepsilon}w)=-div(\phi 
w) ,
\partial_{t}w-\frac{\nu}{\rho_{C,\varepsilon}}\triangle W-\frac{\nu+\nu'}
{\rho_{C,\varepsilon}}\nabla divw+\nabla(\frac{p'(\rho c_{\varepsilon})}
{\rho_{C,\varepsilon}}\phi)
+v_{C}\cdot\nabla w+w\cdot\nabla v_{C}=g(\phi, w, \partial_{x}\phi, \partial_{x}
w, \partial_{x}^{2}w;\varepsilon, \nu) .
\end{array} (1.4)

Here  g=-w  \nabla w+\varepsilon^{2}\tilde{g}(\phi, w, \partial_{x}\phi, \partial_{x}w, 
\partial_{x}^{2}w;\varepsilon, \nu) denotes the nonlinear

terms. Recall that the periodic boundary condition in  z is included in the
definition of  \Omega_{\alpha}:\phi and  w are   \frac{2\pi}{\alpha} ‐periodic in  z . The boundary conditions on

 r= \frac{\eta}{1-\eta},   \frac{1}{1-\eta} are

 w^{r}=w^{\theta}=w^{z}=0 on  r= \frac{\eta}{1-\eta})\frac{1}{1-\eta} , (1.5)

Furthermore, we impose the condition

  \int_{\Omega_{\alpha}}\phi dx=0 , (1.6)

which naturally follows from the conservation of mass.

2 Results

In this section we state the stability and bifurcation results for the compress‐
ible problem  (1.1)-(1.2) obtained in [6].

We first introduce notation used in this paper. For   1\leq p\leq\infty we denote
by  L^{p}(\Omega_{\alpha}) the usual Lebesgue space over  \Omega_{\alpha} and its norm is denoted by

 \Vert  \Vert_{p} . The mth order  L^{2} Sobolev space over  \Omega_{\alpha} is denoted by  H^{m}(\Omega_{\alpha}) , and
its norm is denoted by  \Vert  \Vert_{H^{m}} . The inner product of  L^{2}(\Omega_{\alpha}) is denoted by
 (\cdot, \cdot) , i.e.,

 (f, g)= \int_{\Omega_{\alpha}}f(x)\overline{g(x)}dx.
Here  \overline{z} denotes the complex conjugate of  z\in \mathbb{C}.

We set

 H_{0}^{1}(\Omega_{\alpha})  = the  H^{1}(\Omega_{\alpha})‐closure of  C_{0}^{\infty}(\Omega_{\alpha}) ,

 H^{-1}(\Omega_{\alpha})  = the dual space of  H_{0}^{1}(\Omega_{\alpha}) .
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We define  L^{2}(\Omega_{\alpha}) and  H^{k}(\Omega_{\alpha}) by

 L_{*}^{2}( \Omega_{\alpha})=\{f\in L^{2}(\Omega_{\alpha});\int_{\Omega_{\alpha}
}f(x)dx=0\},
 H_{*}^{k}(\Omega_{\alpha})=H^{k}(\Omega_{\alpha})\cap L_{*}^{2}(\Omega_{\alpha}
)(k\geq 1) .

We set

 L_{\sigma}^{2}(\Omega_{\alpha})= {  v\in L^{2}(\Omega_{\alpha})^{3},  divv=0 in  \Omega_{\alpha},  v\cdot n|_{\partial\Omega_{\alpha}}=0}.

Here and in what follows,  n denotes the unit outward normal to  \partial\Omega_{\alpha} . It is
known that

 (L^{2}(\Omega_{\alpha}))^{3}=L_{\sigma}^{2}(\Omega_{\alpha})\oplus G^{2}
(\Omega_{\alpha}) ,

where  G^{2}(\Omega_{\alpha})=\{\nabla p;p\in H_{*}^{1}(\Omega)\} is orthogonal complement of  L_{\sigma}^{2}(\Omega_{\alpha}) .
The orthogonal projection  \mathbb{P} from  L^{2}(\Omega_{\alpha})^{3} onto  L_{\sigma}^{2}(\Omega_{\alpha}) is called the

Helmholtz projection.
Let  X be a function space consisting functions  u=T(\phi, w) on  \Omega_{\alpha} , where

 \phi and  w are scalar and vector fields on  \Omega_{\alpha} , respectively. We denote by  X_{sym}
the set of functions in  X that satisfy the following symmetries:

 \bullet axisymmetry:

 \phi=\phi(r, z), w=w^{r}(r, z)e_{r}+w^{\theta}(r, z)e_{\theta}+w^{z}(r, z)e_{z}
,

 e reflection symmetry with respect to  z=0 :

 \phi(r, -z)=\phi(r, z),  w^{j}(r, -z)=w^{j}(r, z)(j=r, \theta),  w^{z}(r, -z)=-w^{z}(r, z) .

Similarly, for a function space  Y of vector fields on  \Omega_{\alpha} , we denote by  Y_{sym}
the set of vector fields in  Y with the above symmetries.

We denote the resolvent set of an operator  A by  \rho(A) and the spectrum
of  A by  \sigma(A) .

To state our results, we next introduce linearized operators around the
Couette flow. We define the linearized operator

 L_{\nu}:L_{\sigma,sym}^{2}(\Omega_{\alpha})arrow L_{\sigma,sym}^{2}
(\Omega_{\alpha})
around the Couette flow for the incompressible problem by

 L_{\nu}v=-\nu \mathbb{P}\triangle v+\mathbb{P}(v_{C}\cdot\nabla v+v\cdot\nabla 
v_{C})
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for  w\in D(L_{\nu}) with domain  D(L_{\nu})=[H^{2}(\Omega_{\alpha})\cap H_{0}^{1}(\Omega_{\alpha})]^{3}\cap 
L_{\sigma,sym}^{2}(\Omega_{\alpha}) .

The linearized operator

 L_{\varepsilon,\nu}:H_{*,sym}^{1}(\Omega_{\alpha})\cross L_{sym}^{2}
(\Omega_{\alpha})^{3}arrow H_{*,sym}^{1}(\Omega_{\alpha})\cross L_{sym}^{2}
(\Omega_{\alpha})^{3}

for the compressible problem  (1.4)-(1.6) is defined by

 L_{\varepsilon,\nu}u_{j}=  (\begin{array}{ll}
0   \frac{1}{\varepsilon^{2}}div(\rho_{C,\varepsilon}\cdot)
\nabla(\frac{p'(\rho c_{\varepsilon})}{\rho_{C,\varepsilon}}\cdot)   -\frac{\nu}
{\rho_{C,\varepsilon}}\triangle-\frac{\nu+\nu'}{\rho_{C,\varepsilon}}\nabla 
d\dot{{\imath}}v+v_{C}\cdot\nabla+T(\nabla v_{C})\cdot
\end{array})(\begin{array}{l}
\phi
 w
\end{array})
for  u=T(\phi, w)\in D(L_{\varepsilon,\nu}) with domain  D(L_{\varepsilon,\nu})=H_{*,sym}^{1}(\Omega_{\alpha})\cross[H_{\mathcal{S}}^{2}
ym(\Omega_{\alpha})\cap H_{0,sym}^{1}(\Omega_{\alpha})]^{3}

We make the following assumption on the spectrum of the linearized
operator  L_{\nu} for the incompressible problem.

Assumption (A): There are constants  \nu_{c}>0,  \kappa_{0}>0 and  \Lambda_{0}>0 such that
for  |v-v_{c}|\ll 1,

 \rho(-L_{\nu})\supset\{\lambda\in \mathbb{C};{\rm Re}\lambda\geq-\kappa_{0}
|{\rm Im} A|^{2}-\Lambda_{0}\}\backslash \{\lambda(v)\}.

Here  \lambda(\nu)\in \mathbb{R} is a simple eigenvalue satisfying  \lambda(\nu_{c})=0 and   \frac{d\lambda}{d\nu}(\nu_{c})<0.

Remark 1 (i) It was proved by Velte ([12]) and Iudovich ([3]) that  \lambda(v_{c})=0,
  \frac{d\lambda}{d\nu}(\nu_{c})\neq 0 (for a.e.  \alpha>0).

(ii) Numerical computations and experiments support the Assumption
(A) for physically relevant values of  \alpha . See, e.g. [1, 7].

Under Assumption (A), the bifurcation of the Taylor vortex for the in‐
compressible problem (1.3), (1.2) can be proved by applying the standard
bifurcation theory ([2]).

Proposition 1 ([12, 3, 7]) For each  v=\nu(\delta)(|\delta|\ll 1) , the problem (1.3),
(1.2) has a nontrivial stationary solution  v_{\delta} (incompressible Taylor vortex)
such that

 \nu(\delta) = \nu_{c}-a\delta^{2}+O(\delta^{4}) ,

 v_{\delta} = v_{C}+\delta(w^{(0)}+\delta w_{\delta}^{(1)}) .

Here  a is a constant;  w^{(0)} is the eigenfunction for the zero eigenvalue of −  L_{\nu}.
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Remark 2 (i) the bifurcation of the Taylor vortex from the Couette flow was
proved for the incompressible Navier‐Stokes equations by Velte [12], Iudovich
[3], Kirchgässner and Sorger [7] and etc. See the book [1] by Chossat and
Iooss for the Taylor problem.

(ii) Numerical computations and experiments support that the constant
 a satisfies  a>0 for physically relevant values of  \alpha . See, e.g. [1, 7].

For sufficiently small Mach number  \epsilon , we have the following result on the
spectrum of the linearized operator  L_{\varepsilon,v}.

Theorem 2 ([6]) There are constants  \varepsilon_{0}>0,  \Lambda_{1}>0 and  \nu_{1}>0 such
that the following assertion holds true. For each  0<\varepsilon\leq\varepsilon_{0} there exists a
critical value  \nu_{c}(\varepsilon) with  \nu_{c}(\varepsilon)arrow\nu_{c} as  \varepsilonarrow 0 such that if  |\nu-\nu_{c}|\leq\nu_{1} , then

 \rho(-L_{\varepsilon,\nu})\supset\{\lambda\in \mathbb{C};{\rm Re}\lambda\geq-
\Lambda_{{\imath}}\}\backslash \{\lambda_{\varepsilon}(\nu)\}) where  \lambda_{\varepsilon}(\nu)\in \mathbb{R} is a simple
eigenvalue satisfying  \lambda_{\varepsilon}(\nu_{c}(\varepsilon))=0 and   \frac{\partial\lambda}{\partial}\nu\varepsilon(\nu_{c}(\varepsilon))<0.

In view of Theorem 2 one could expect a stationary bifurcation from
the Couette flow at  \nu=\nu_{c}(\varepsilon) . However, the standard bifurcation theory is
not applicable since the nonlinearity is not Fréchet differentiable due to the
derivative loss in the term  -div(\phi w) . Nevertheless, we have the following
bifurcation result.

Theorem 3 ([6]) Let  0<\varepsilon\leq\varepsilon_{0} . Then for each  \nu=y_{\varepsilon}(\delta)(|\delta|\ll 1) , the
problem (1.4)  -(1.6) has a nontrivial stationary solution  u_{\delta,\varepsilon} (compressible
Taylor vortex) such that

 Y_{\varepsilon}(\delta) = \nu_{c}(\varepsilon)-a_{\varepsilon}\delta^{2}+
O(\delta^{3}) ,

 u_{\delta,\varepsilon} = \delta(U_{\varepsilon}^{(0)}+\delta U_{\delta,
\varepsilon}^{(1)}) .

Here  a_{\varepsilon}=a+O(\varepsilon^{2}) with the constant  a in Proposition  1_{f}\cdot U^{(0)} is the eigen‐
function for the zero eigenvalue of −  L_{\varepsilon,\nu_{c}(\varepsilon)}.

Theorem 3 can be proved in a similar manner to the argument in [4].
Our proof of Theorem 1 is outlined as follows. One can show that if

 0<\varepsilon\ll 1 , then  \sigma(-L_{\varepsilon,\nu})\cap\{\lambda;|{\rm Re}\lambda|\leq\Lambda_{0}\} is decomposed into two parts
 S_{1}\cup S_{2} , where  S_{1}=\sigma(-L_{\varepsilon,\nu})\cap\{\lambda;|\lambda|\leq O(1)\} is the incompressible part that
is obtained by a perturbation of the incompressible spectrum  \sigma(-L_{\nu}) ; and
 S_{2}=\sigma(-L_{\varepsilon,\nu})\cap\{\lambda;|{\rm Im}\lambda|=
O(\varepsilon^{-1})\} is the compressible part that consists of
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the spectra for acoustic modes (sound waves with propagation speed  O(\varepsilon^{-1}) ).
Due to the assumption on  \sigma(-L_{\nu}) , one can show that  S_{1}=\{\lambda_{\varepsilon}(\nu)\} . Since
we consider axisymmetric perturbations, we can prove  {\rm Re} S_{2}\leq-\Lambda_{1}<0
by using an argument similar to the one in [5] for the stability problem of
stationary solution of the artificial compressible system.

Remark 3 For general perturbations (i.e., without axisymmetric assump‐
tion), one can show the above decomposition by  S_{1} and  S_{2} with  S_{1}=\{\lambda_{\varepsilon}(\nu)\}
for  0<\varepsilon\ll 1 . But, it is still open whether  {\rm Re} S_{2}\leq-\Lambda_{1} holds for the case
of general perturbations.
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