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ABSTRACT. In [.r5] we studied optimal control problems with regional fractional
p‐Laplace equation, of order  s\in(0,1) and   p\in[2, \infty), as constraints over a
bounded open set with Lipschitz continuous boundary. The control, which
fulfills the pointwise box constraints, is given by the coefficient of the regional
fractional  p‐Laplace operator. The purpose of this note is to provide a roadmap
on how to apply the results of [5] to the fractional  p‐Laplace case. The existence
and uniqueness of solutions to the state equation and existence of solutions
to the optimal control problem follow using similar arguments as in [5]. We
prove that the fractional  p‐Laplacian approaches the standard  p-‐Laplacian as
 s approaches 1. In this sense, the fractional  p-‐Laplacian can be considered
degenerate like the standard  p‐Laplacian. The remaining steps’ are similar
to the regional fractional   I\succLaplacian case, i.e., introduce an auxiliary state
equation and the corresponding control problem and then conclude with the
convergence of regularized solutions.

1. INTRODUCTION

This note is a continuation of our work done in  [r)] where we considered a similar
problem but with the regional fractional p‐‐Laplacian. The purpose of this note is to
provide a roadmap on how to apply the results of  [r)] to the fractional  P^{\ovalbox{\tt\small REJECT}}‐Laplacian
case.

Let  \Omega\subset \mathbb{R}^{N} be a bounded open set with boundary  \partial\Omega,  s\in(0,1) and   p\in

 [2, \infty) . In this note we introduce and investigate the existence and approximation
of solutions to the following optimal control problem (OCP):

(1.1) Minimize   \{I(\kappa, u) :=\frac{1}{2}\int_{\Omega}|u-\xi|^{2}dx+\int_{\Omega}
|\nabla\kappa|\},
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subject to the state constraints given by the fractional p‐‐Laplace equation

(1.2)  \{\begin{array}{ll}
(-\Delta)_{p}^{s}(\kappa, u)+u=f   in \Omega
 u=0   on \mathbb{R}^{N}\backslash \Omega.
\end{array}
The control  \kappa in  (1_{-}) ) fulfills

 \kappa\in \mathfrak{A}_{ad}  :=\{\tilde{\eta}=E\eta\in BV(\mathbb{R}^{N}) for some;  \eta\in BV(\Omega),\tilde{\eta}|_{\Omega}=\eta,

(1.3)  \xi_{1}(x)\leq\eta(x)\leq\xi_{2}(x) a.e. in  \Omega\}.
The extension mapping  E :  BV(\Omega)arrow BV(\mathbb{R}^{N}),  \eta\mapsto E\eta=:\tilde{\eta} is well‐defined for
Lipschitz continuous domains (cf. [2, Definition 3.20 and Proposition 3.21]). Such
an extension fulfills  \tilde{\eta}=0 on  \mathbb{R}^{N}\backslash \mathcal{O} where  \mathcal{O} is an open set such that  \overline{\Omega}\subset \mathcal{O}.

Here the fractional operator is given for  x\in \mathbb{R}^{N} by

(1.4)  (-\triangle)_{p}^{s}(\kappa, u)(x)  :=C_{N,p},{}_{s}P. V.\int_{\mathbb{R}^{N}}\kappa(x-y)|u(x)-u(y)|^{p-2}u(x)-u(y)
|x-y|^{N+sp}dy.
Moreover,  \kappa :  \mathbb{R}^{N}arrow[0, \infty ) is a measurable and even function, that is,

(1.5)  \kappa(x)=\kappa(-x), \forall x\in \mathbb{R}^{N}.
In addition,  f is a given force and  \xi is the given data. The functions  \xi_{1} and  \xi_{2} in
(i.3) are the control bounds and fulfill  \backslash 0<\alpha\leq\xi_{1}(x)\leq\xi_{2}(x) , a.e.   x\in\Omega , for
some constant  \alpha>0 . The precise regularity requirements for these quantities and
the domain  \Omega will be discussed in Section.3. Notice that the control  \kappa appears in
the coefficient of the quasilinear operator  (-\Delta)_{p}^{s}(K, \cdot) .

The nonlocality of  (-\triangle)_{p}^{s}(K, \cdot) make both the state equation (ı.  \underline{)} ) and OCP
extremely challenging. Indeed the papers [24, 43], where the authors considered  \kappa\cdot=

 1 , realized that the standard techniques available for the local  p\overline{-}Laplace equation
are not directly applicable to the regional fractional p‐‐Laplace equation (cf. [
Eq. (1.2)]) where the regional fractional p‐‐Laplacian is defined for   x\in\Omega by

(1.6)   \mathcal{L}_{\Omega,p}^{s}(K, u)(x)=C_{N,p},{}_{s}P.V.\int_{\Omega}\kappa(x-y)
|u(x)-u(y)|_{|x-y|^{N+sp}}^{p-2}u(x)-u(y)dy.
For OCP the additional complication occurs due to the fact that the operator
 (-\triangle)_{p}^{s}(K, \cdot) may degenerate, see Subsection 2.4 for more details. See also [5] for a
similar discussion on the regional fractional ‐Laplacian.

Recall that the local   p\mapsto‐Laplace operator  \Delta_{p} is the quasilinear elliptic operator in
divergence form given formally by

(1.7)  \Delta_{p}u=div(|Vu|^{p-2}\nabla u) .

Similarly to  (1^{-}) , it is well‐known that a quasi‐linear operator in divergence form
with non constant coefficient can be formally defined as follows:

(1.8)  \Delta_{p,a}u :=div(a(x)|Vu|^{p-2}\nabla u) .

If the coefficient  a(x) is smooth, then the latter operator enjoys most of the prop‐
erties of the  p‐Laplace operator. A treatment of aforementioned degeneracy for the
local operator (1.8) is given in  [1_{\backslash }^{r}), 2\overline{(}] . In  [\backslash \vee)] inspired by the work in  [1_{c}^{r}\rangle] we devel‐
oped the corresponding results for the regional fractional  p‐Laplacian. We noticed
that the techniques used in [15] or [27] do not extend to the nonlocal case due to
the delicate functional analytic framework that nonlocal problems entail. On the
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other hand we can confidentıy say that some (or maybe all) of the results obtained
in  [1\check{\backslash \prime:}, 2\overline{(}] can be obtained from our results by passing to the limit as s  \uparrow ı.

Next we list some of the challenges associated with our nonlocal problems.
Clearly the definition of the fractional p‐‐Laplacian (and the regional one) involves
singular integral operators which are in general difficult to manipulate. The clas‐
sical weak derivative usually used in the standard case (1.8) cannot be used in the
fractional case since the involved functions in general do not have enough regularity.
For example the standard integration‐by‐parts formulas which hold for the classical
case  (l,S) does not immediately carry over to the fractional case (cf. Section  ?_{\sim}.\prime t ) .  \ln

the former case, one has to use additional properties of singular integral operators.
Even the very classical weak‐convergence argument which is obvious in  W^{1,p}(\Omega) ,
requires an extreme care in case of the singular integral operators. Thirdly, a classi‐
cal Lebesgue measure on  \Omega theory has been used in  115] to obtain some key results.
In our previous work in [5] the corresponding results can be obtained only by using
a weighted measure theory on  \Omega\cross\Omega , that is, a Lebesgue measure with a suitable
weight on the set  \Omega\cross\Omega . In the present note one needs to further extend these
results to  \mathbb{R}^{N}\cross \mathbb{R}^{N} . These are only some of the examples of novelties of our current
work (also  [51 ) and how our approach differs from the ones given in [1.5].

In addition as we have noticed above, none of the results discussed in  [1^{r_{1}}] can
be immediately applied to our problem. This is not surprising, since (as we have
mentioned above) the classical p‐‐Laplace operator (1.7) can be obtained as the limit
of the the fractional p‐‐Laplace operator in the sense of Section  \gamma , (see also [5] for
the regional fractional  p‐Laplacian case).

The purpose of this note is to provide a roadmap on how to apply our results
from [5] to the fractional p‐‐Laplacian case. Notice that the fractional  p‐Laplacian
is defined over  \mathbb{R}^{N} (cf. (2.4)) and the regional fractional  p‐Laplacian is defined over
 \Omega (cf (1.6)). These two operators differ by a lower order potential term which in
practice is difficult to manipulate. This can be easily seen from the definition of
the regional fractional p‐‐Laplacian when compared with the fractional  p‐Laplacian
in (1.4).

We also mention that the problem to search for coefficients in case of linear
elliptic problems is classical, we refer (but not limited) to  [3_{\sim}:33,3\ell 1,37] and
their references. However, our previous work [5] is the first work which provides a
mechanism to search for the coefficients in case of a quasilinear, possibly degenerate,
regional fractional nonlocal problems. The present work further shows how to apply
the results of [5] to the fractional case. From a numerical point of view an added
attraction. of our theory is the fact that it is Hilbert space  L^{2} ‐based instead of
 L^{p}‐based theory.

In order to tackle the aforementioned degeneracy in  (-\triangle)_{p}^{s}(\kappa, \cdot) (see [5] for the
regional case  \mathcal{L}_{\Omega,p}^{s}(\kappa, \cdot) ) we introduce a regularized optimal control problem
(ROCP) and following the arguments from [.5] we conclude the convergence of
solutions of the regularized problem. In the present note we will provide the essential
ingredients to apply the results of [5] to the fractional case. Notice that due to the
possible degeneracy in the state equation it is unclear how to derive the first order
stationarity system for OCP. However, ROCP comes to rescue, indeed the latter
is built to precisely avoid such degeneracy issues.

Differential equations of fractional order have gained a lot of attraction in recent
years due to the fact that several phenomena in the sciences are more accurately
modelled by such equations rather than the traditional equations of integer order.
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Linear and nonlinear equations have been extensively studied. The applications in
industry are numerous and cover almost every area. From the long list of phenom‐
ena which are more appropriately modelled by fractional differential equations, we
mention: viscoelasticity, anomalous transport and diffusion, hereditary phenomena
with long memory, nonlocal electrostatics, the latter being relevant to drug design,
and Lévy motions which appear in important models in both applied mathematics
and applied probability, image processing and phase field models, as well as in mod‐
els in biology and ecology. We refer to [3, 4, 31, 35, 38] and their references for more
details on this topic. For the motivations that lead to the study of nonlinear nonlo‐
cal operators that include both fractional p‐‐Laplace operators, we refer the reader
to the contribution by Caffarelli [11]. A more complete list of possible applications
of such operators related to fractional order Sobolev spaces is contained in [18]. It is
well known that the standard p‐‐Laplacian  A_{p,a} appears in many applications such
as fluid dynamics [19], quantum physics [6], optimal mass transport [22], image and
data processing [21], electrorheological fluids [36] and many others. Besides the
above mentioned motivation, since by Section 2.4 below, the fractional   p\mapsto‐Laplacian
approaches the standard  p‐Laplacian as  s approaches 1, it is also a natural prob‐
lem to consider optimal control or finding the unknown coefficients appearing in
the definition of the fractional   p\mapsto‐Laplace operator in the same spirit as what it has
already been done for the  p‐Laplacian in [15] and their references. That is the main
concern of the present paper (fractional case) and our previous work  [\ulcorner J] (regional
case).

Precisely following [5] we can show the well‐posedness (existence, uniqueness,
and continuous dependence on data) of our state equation (1.2) and the regularized
state equation  (\grave{}’$.  \mathfrak{d}’  ) .

The rest of the paper is organized as follows: In Section 2. 1 we introduce the
fractional order Sobolev spaces that are mostly useful for the regional fractional
 p‐Laplacian. We also discuss the extensions of these spaces to the fractional  p-

Laplacian case in Section 2.2. This is followed by a discussion on BV‐functions
in Section 2.3. We provide a precise definition of the fractional p‐‐Laplacian in
Section 2.4. Here we also prove that the fractional p‐‐Laplacian approaches the local
 p‐Laplacian as  s approaches 1. In Section 3 we discuss how to extend the results
for (OCP) with regional fractional p‐‐Laplacian discussed in [5] to our fractional
 p‐Laplacian case.

2. NOTATION AND PRELIMINARIES

Here we introduce the function spaces needed to investigate our problem, give
a rigorous definition of the operators involved and also provide some intermediate
results relevant to the paper. The discussion in (sub)‐section 2.1 taken from  [r),
Section 2] is mostly relevant for the regional fractional  p‐Laplacian. On the other
hand the discussion in (sub)‐section 2.2 is for the fractional p‐‐Laplacian where we
discuss the relevant modifications to the spaces used for the regional fractional
 p‐Laplacian. The results stated in this section are valid for any  0<s<1.

2.1. The fractional order Sobolev spaces for the regional fractional  p-

Laplacian. In this (sub)section, we recall some well‐known results on fractional
order Sobolev spaces that are relevant to the paper and we also introduce some
notations.
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Let  \Omega\subset \mathbb{R}^{N} be an arbitrary bounded open set. If  0<\tau\leq 1 , then we denote by
 C^{0,\tau}(\overline{\Omega}) the space of all Hölder continuous (Lipschitz continuous if  \tau=1 ) functions
of order  \tau on  \overline{\Omega}. For  k\in N\cup\{0\} , we denote by  C_{c}^{k}(\Omega) the space of all real functions
continuously differentiable in  \Omega up to the order  k and with compact support. If
  k=\infty , then  C_{c}^{\infty}(\Omega) is denoted by  \mathcal{D}(\Omega) . We let  C_{0}^{k}(\Omega) be the closure in the sup‐
norm of  C_{c}^{k}(\Omega) . If  k=0 , then we will denote  C_{c}(\Omega)  :=C_{c}^{0}(\Omega) and  C_{0}(\Omega)  :=C_{0}^{0}(\Omega) .

For   p\in [ı,  \infty) and  s\in(0,1) , we denote by

 W^{s,p}( \Omega):=\{u\in L^{p}(\Omega):\int_{\Omega}\int_{\Omega}\frac{|u(x)-
u(y)|^{p}}{|x-y|^{N+ps}}dxdy<\infty\},
the fractional order Sobolev space endowed with the norm

  \Vert u\Vert_{W^{s,p}(\Omega)}:=(\int_{\Omega}|u|^{p}dx+\int_{\Omega}
\int_{\Omega}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}dxdy)^{\frac{1}{p}}
We let

 W_{0}^{s,p}(\Omega):=\overline{\mathcal{D}(\Omega)}^{w^{s,p}(\Omega)}
The following result is taken from [25, Theorem 1.4.2.4, p.25] (see also [8, 41]).

Theorem 2.1. Let  \Omega\subset \mathbb{R}^{N} be a bounded open set with a Lipschitz continuous
boundary and   1<p<\infty . Then the following assertions hold.

(a) If  0<s \leq\frac{1}{p} , then  W^{s,p}(\Omega)=W_{0}^{s,p}(\Omega) .
(b) If   \frac{1}{p}<s<1 , then  W_{0}^{s,p}(\Omega) is a proper closed subspace of  W^{s,p}(\Omega) .

A complete characterization of  W_{0}^{s,p}(\Omega) for arbitrary bounded open sets has been
given in [41] by using some potential theory. We notice that it follows from Theorem
2.  l that for a bounded open set with a Lipschitz continuous boundary, if   \frac{1}{p}<s<1,
then

(2.1)   \Vert u\Vert_{W_{0}^{s,p}(\Omega)}=(\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)
|^{p}}{|x-y|^{N+sp}}dxdy)^{\frac{1}{p}}
defines an equivalent norm on  W_{0}^{s,p}(\Omega) . In that case, we shall always use this norm
for the space  W_{0}^{s,p}(\Omega) . Let  p^{\star} be given by

(2.2)  p^{\star}= \frac{Np}{N-sp} if  N>sp and  p^{\star} \in\int p,  \infty ) if  N=sp.

Then by [18, Theorems 6.7 and 6.10], there is a constant  C=C(N,p, s)>0 such
that for every  u\in W_{0}^{s,p}(\Omega) ,

(2.3)  \Vert u\Vert_{La(\Omega)}\leq C\Vert u\Vert_{W_{o}^{s,p}(\Omega)}, \forall q\in
[1,p^{\star}].
Moreover, the continuous embedding  W_{0}^{s,p}(\Omega)\mapsto L^{q}(\Omega) is compact for every   q\in

 [1,p^{\star}) (see e.g. [18, Corollary 7.2]). If  N< sp, then one has the continuous
embedding  W_{0}^{s,p}(\Omega)\mapsto C^{0,s-\frac{N}{p}}(\overline{\Omega}) (see e.g. [18, Theorem 8.2]).

Recall that the first order Sobolev space  W^{1,p}(\Omega) is defined by

 W^{1,p}(\Omega)  := \{u\in L^{p}(\Omega):\int_{\Omega}|\nabla u|^{p}dx<\infty\} and  W_{0}^{1,p}(\Omega)  :=\overline{\mathcal{D}(\Omega)}^{W^{1,p}(\Omega)},
where

  \Vert u\Vert_{W^{1,p}(\Omega)} :=(\int_{\Omega}|u|^{p}dx+\int_{\Omega}|\nabla 
u|^{p}dx)^{\frac{1}{p}}
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Then  \Vert\nabla u\Vert_{L^{p}(\Omega)} defines an equivalent norm on  W_{0}^{1,p}(\Omega) . It is well‐known that for
this case  s=1 , we have the continuous embedding (since  \Omega is bounded)

 W_{0}^{1,q}(\Omega)\mapsto W_{0}^{1,p}(\Omega), \forall q\geq p.
More precisely, using the Hölder inequality we get that for every  q\geq p and   u\in

 W_{0}^{1,q}(\Omega) ,

 \Vert u\Vert_{W_{0}^{1,p}(\Omega)}=\Vert\nabla u\Vert_{L^{p}(\Omega)}
\leq|\Omega|p, \Vert Vu\Vert_{L^{q}(\Omega)}=|\Omega|pq\Vert u\Vert_{W_{0}^{1,q}
(\Omega)}∽^{}-g\lrcorner^{-}i.
The situation is different for the fractional order Sobolev spaces  W_{0}^{s,p}(\Omega)(0<s<
1). In fact we have the following.

Proposition 2.2. Let  \Omega\subset \mathbb{R}^{N} be an arbitrary bounded open set and   p\in[1, \infty).
Then the following assertions hold.

(a) If  0<t\leq s<1 , then  W_{0}^{s,p}(\Omega)arrow*W_{0}^{t,p}(\Omega) .
(b) For every  0<s<1 , we have that  W_{0}^{1,p}(\Omega)\mapsto W_{0}^{s,p}(\Omega) .
(c) Let  q>p . If  0<t<s<1 , then  W_{0}^{s,q}(\Omega)\mapsto W_{0}^{t,p}(\Omega) .

Proof. The proof of the assertions (a) and (b) is contained in [18, Proposition 2.1]
and [41., Proposition 2.3], respectively. We refer to  15 , Proposition 2.2] for the proof
of the assertion (c).  \square 

2.2. The fractional order Sobolev spaces for the fractional ‐Laplacian.
We recall from [5] the function space needed to study the regional fractional p‐
Laplacian problem is  W_{0}^{s,p}(\Omega) which we discussed in the previous subsection. In
order to study the fractional p‐‐Laplace equation (1.2) we need to consider the fol‐
lowing function space

 W_{0}^{s,p}(\overline{\Omega}):= {  u\in W^{s,p}(\mathbb{R}^{N}):u=0 on  \mathbb{R}^{N}\backslash \Omega }.
Let  \Omega\subset \mathbb{R}^{N} be a bounded open set with a Lipschitz continuous boundary, it has
been shown in [23, Theorem 6] that  \mathcal{D}(\Omega) is dense in  W_{0}^{s,p}(\overline{\Omega}) . Moreover, for every
 0<s<1,

  \Vert u\Vert_{W_{0}^{\varepsilon,p}(\overline{\Omega})}:=(\int_{\mathbb{R}^{N}
}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy)^{\underline{1}}
defines an equivalent norm on  W_{0}^{s,p}(\overline{\Omega}) . We next state a result for  W_{0}^{s,p}(\overline{\Omega}) spaces
(recall Theorem 2.] for  W_{0}^{s,p}(\Omega) spaces).

Theorem 2.3. Let  \Omega\subset \mathbb{R}^{N} be a bounded open set with a Lipschitz continuous
boundary and   1<p<\infty . Then the following assertion hold

(a) If  0<s \leq\frac{1}{p} , then  W_{0}^{s,p}(\Omega) and  W_{0}^{s,p}(\overline{\Omega}) have no obvious relationship or
inclusion.

(b) If   \frac{1}{p}<s<1 then  W_{0}^{s,p}(\overline{\Omega})=W_{0}^{s,p}(\Omega) with equivalent norms.

Proof. For part (a) it is enough to see that the constant function 1 belongs to
 W^{s_{)}p}(\Omega)=W_{0}^{s,p}(\Omega) when  0<s \leq\frac{1}{p} , but it does not belong to  W_{0}^{s,p}(\overline{\Omega})(1 is not

zero on  \mathbb{R}^{N}\backslash \Omega ).
Under the assumption that  \Omega is Lipschitz continuous it has been shown in  125,

Formula (1.3.2.12), p.19] that there exist two constants  0<C_{1}\leq C_{2} such that

(2.4)   \frac{C_{1}}{(dist(x,\partial\Omega))^{ps}}\leq\int_{\mathbb{R}^{N}\backslash 
\Omega}\frac{dy}{|x-y|^{N+sp}}\leq\frac{C_{2}}{(dist(x,\partial\Omega))^{ps}}.
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Using (2.4) and the Hardy inequality for fractional order Sobolev spaces (see e.g.
[ 3() , Theorem 1.2] and also  [2()] ), we get that there is a constant  C>0 such that
for every  u\in \mathcal{D}(\Omega) ,

  \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}
dxdy=\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy
 +2 \int_{\Omega}|u(x)|^{p}\int_{\mathbb{R}^{N}\backslash \Omega}\frac{dy}{|x-
y|^{N+sp}}dx

  \leq\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy+C\int_{
\Omega}\frac{|u(x)|^{p}}{(dist(x,\partial\Omega))^{ps}}dx
  \leq C\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy,

where in the last step we have used the Hardy inequality. Using the above estimate,
we also have that for every  u\in \mathcal{D}(\Omega) ,

  \int_{\Omega}|u(x)|^{p}dx=\int_{\Omega}(dist(x, \partial\Omega))^{ps}
\frac{|u(x)|^{p}}{(dist(x,\partial\Omega))^{ps}}dx\leq C\int_{\Omega}\frac{|u(x)
|^{p}}{(dist(x,\partial\Omega))^{ps}}dx
  \leq C\int_{\Omega}\int_{\Omega}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy.

This completes the proof.  \square 

We also need a result analogous to Proposition 2.2.

 \dot{P}roposition 2.4. Let  \Omega\subset \mathbb{R}^{N} be an arbitrary bounded open set and   p\in[1, \infty).
Then the following assertions hold.

(a) lf 0  < t  \leq s  < ı, then  W_{0}^{s,p}(\overline{\Omega})\mapsto W_{0}^{t,p}(\overline{\Omega}) .
(b) For every  0<s<1 , we have that  W_{0}^{1,p}(\overline{\Omega})carrow W_{0}^{s,p}(\overline{\Omega}) .
(c) Let  q>p . If  0<t<s<1 , then  W_{0}^{s,q}(\overline{\Omega})carrow W_{0}^{t,p}(\overline{\Omega}) .

Proof. The proof is analogous to the proof of Proposition  \sim)'\underline{)}.  \square 

If  0<\mathcal{S}<1,  p\in(1, \infty) and  p'  :=\overline{p}-\overline{1}R , then the space  W^{-s,p'}(\overline{\Omega}) is defined as

usual to be the dual of the reflexive Banach space  W_{0}^{s,p}(\overline{\Omega}) , that is,  W^{-s,p'}(\overline{\Omega})  :=

 (W_{0}^{s,p}(\overline{\Omega}))^{\star} . For  u\in W_{0}^{s,p}(\overline{\Omega}) we shall denote by  U_{(p,s)} the function defined on
 \mathbb{R}^{N}\cross \mathbb{R}^{N} by

(2.5)  U_{(p,s)}(x, y):= \frac{u(x)-u(y)}{|x-y|^{\frac{N}{p}+s}}.
We will always denote by  \chi_{E} the characteristic function of a set  E\subseteq \mathbb{R}^{N}\cross \mathbb{R}^{N}.

Remark 2.5. We notice that by definition of  W^{s,p}(\mathbb{R}^{N}) we have that

(2.6)  W^{s,p}(\mathbb{R}^{N})=\{u\in L^{p}(\mathbb{R}^{N}):U_{(p,s)}\in L^{p}(\mathbb
{R}^{N}\cross \mathbb{R}^{N})\}.
Let  u\in W_{0}^{s,p}(\overline{\Omega}),  \{u_{n}\}_{n\in N} a sequence in  W_{0}^{s,p}(\overline{\Omega}) and define  U_{n,(p,s)} on  \mathbb{R}^{N}\cross \mathbb{R}^{N}

by  U_{n,(p,s)}(x, y)  := \frac{u_{n}(x)-u_{n}(y)}{|x-y|^{\frac{N}{p}+s}} . Using the above characterization of  W^{s,p}(\mathbb{R}^{N})

and the definition of  W_{0}^{s,p}(\overline{\Omega}) we get that the following assertions hold.
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(a) If  u_{n} converges weakly to  u in  W_{0}^{s,p}(\overline{\Omega}) as   narrow\infty (that is,  u_{n}harpoonup u in
 W_{0}^{s,p}(\overline{\Omega}) as  narrow\infty) , then for every  \varphi\in \mathcal{D}(\mathbb{R}^{N}) ,

  \lim_{narrow\infty}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u_{n}(x)-
u_{n}(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+2s}}dxdy
 = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u(x)-u(y))(\varphi(x)-
\varphi(y))}{|x-y|^{N+2s}}dxdy.

(b) If  u_{n}harpoonup u in  W_{0}^{s,p}(\overline{\Omega}) as   narrow\infty , then  U_{n,(p,s)}harpoonup U_{(p,s)} in  L^{p}(\mathbb{R}^{N}\cross \mathbb{R}^{N}) as
 narrow\infty.

(c) If  u_{n}harpoonup u in  W_{0}^{s,p}(\overline{\Omega}) and  U_{n,(p,s)}arrow U_{(p,s)} in  L^{p}(\mathbb{R}^{N}\cross \mathbb{R}^{N}) as  narrow\infty,

then  u_{n}arrow u in  W_{0}^{s,p}(\overline{\Omega}) as  narrow\infty.

We give an idea of the proof of the above assertions.

Proof. Since  W_{0}^{s,p}(\overline{\Omega}) is a closed subspace of  W^{s,p}(\mathbb{R}^{N}) , then the assertion (b)
follows directly from the characterization of  W^{s,p}(\mathbb{R}^{N}) given in  (^{\supset}..6 ). It follows
from part (b) that if  u_{n}harpoonup u in  W_{0}^{s,p}(\overline{\Omega}) as   narrow\infty , then

  \lim_{arrow\infty}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}U_{n,(p,s)}(x, y)
\Phi(x, y)dxdy=\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}U_{(p,s)}(x, y)\Phi(x, 
y)dxdy
for every  \Phi\in L^{p'}(\mathbb{R}^{N}\cross \mathbb{R}^{N}) where  1/p+1/p'=1 . Let  \varphi\in \mathcal{D}(\mathbb{R}^{N}) . Since

the function  \Phi(x, y)  := \frac{\varphi(x)-\varphi(y)}{|x-y|^{\frac{N}{p}\gamma}+s}\in L^{p'}
(\mathbb{R}^{N}\cross \mathbb{R}^{N}) , it follows that for every

 \varphi\in \mathcal{D}(\mathbb{R}^{N}) ,

  \lim_{narrow\infty}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}U_{n,(p,s)}(x, y)
\Phi(x, y)dxdy
 = \lim_{narrow\infty}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u_{n}(x)-
u_{n}(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+2s}}dxdy
 = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}U_{(p,s)}(x, y)\Phi(x, y)dxdy
 = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u(x)-u(y))(\varphi(x)-
\varphi(y))}{|x-y|^{N+2s}}dxdy

and we have shown part (a). Now assume that  u_{n}harpoonup u in  W_{0}^{s,p}(\overline{\Omega}) and   U_{n,(p,s)}arrow
 U_{(p,s)} in  L^{p}(\Omega) as   narrow\infty . Since the embedding  W_{0}^{s,p}(\overline{\Omega})carrow L^{p}(\Omega) is compact,
we have that  u_{n}arrow u (strongly) in  L^{p}(\Omega) as   narrow\infty . Since  u_{n}=u=0 on
 \mathbb{R}^{N}\backslash \Omega , it follows that  u_{n}arrow u in  L^{p}(\mathbb{R}^{N}) as   narrow\infty . Since  u_{n}arrow u in  L^{p}(\mathbb{R}^{N})
and  U_{n,(p,s)}arrow U_{(p,s)} in  L^{p}(\mathbb{R}^{N}\cross \mathbb{R}^{N}) as   narrow\infty , then part (c) follows from the
characterization  (^{\supset}\sim.6 ). The proof is finished.  \square 

For more information on fractional order Sobolev spaces we refer the reader to
[1, 8, ıS,  \underline{)}_{\iota^{\succ}J}',  26,29,  \prime 11 ] and the references therein.

2.3. Functions of bounded variation. Let  \Omega\subset \mathbb{R}^{N} be an arbitrary open set.
Let

 BV(\Omega):=\{g\in L^{1}(\Omega):\Vert g\Vert_{BV(\Omega\rangle}<\infty\},
be the space of functions of bounded variation, where

 \Vert g\Vert_{BV(\Omega)}  := \Vert g\Vert_{L^{1}(\Omega)}+\sup\{\int_{\Omega}gdiv(\Phi)dx : \Phi\in C_{0}
^{1}(\Omega, \mathbb{R}^{N}), |\Phi(x)|\leq 1, x\in\Omega\}.
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For  g\in BV(\Omega) , we denote by  \nabla g the distributional gradient of  g . We notice that
 \nabla g belongs to the space of Radon measures  \mathcal{M}(\Omega,\mathbb{R}^{N}) .

The following notion of convergence of a sequence in  BV(\Omega) is contained in [2,
Definition 3.1].

Remark 2.6. Let  g\in BV(\Omega) and  \{g_{n}\}.\in N a sequence in  BV(\Omega) .

(a) We say that  \{g_{n}\}_{n\in N} converges weakly
 \star  (harpoonup*) to  g\in BV(\Omega) as   narrow\infty , if

and only if the following two conditions hold.
(i)  g_{n}arrow g (strongly) in  L^{1}(\Omega) as   narrow\infty , and

(ii)  \nabla g_{n}harpoonup*\nabla g(weakly^{\star}) in  \mathcal{M}(\Omega,\mathbb{R}^{N}) as   narrow\infty , that is,

  \lim_{narrow\infty}\int_{\Omega}\phi d\nabla g_{n}=\int_{\Omega}\phi d\nabla 
g, \forall\phi\in C_{0}(\Omega) .

(b) In addition, if  g_{n} converges strongly to some  \tilde{g} in  L^{1}(\Omega) as   narrow\infty and
satisfies sup.   \in N\int_{\Omega}|\nabla g_{n}|<\infty , then

 \tilde{g}\in BV(\Omega),   \int_{\Omega}|\nabla\tilde{g}|\leq\lim_{narrow}\inf_{\infty}\int_{\Omega}
|\nabla g.| and  g_{n}harpoonup*\tilde{g} in  BV(\Omega) as  narrow\infty.

We conclude this (sub)section by giving some embedding results for the space
 BV(\Omega) taken from [2, Theorem 3.49] and  [_{\sim} Corollary 3.49].

Proposition 2.7. Let

1
 \star

 :=\infty if  N=1 and 1
 \star  := \frac{N}{N-1} if  N>1.

Then the embedding  BV(\mathbb{R}^{N})arrow L^{1^{\star}}(\mathbb{R}^{N}) is continuous. If in addition  \Omega\subset \mathbb{R}^{N} is a
bounded open set with Lipschitz continuous boundary then the embedding   BV(\Omega)carrow
 L^{q}(\Omega) is compact for every  1\leq q<1^{\star}.

For more details on functions of bounded variation we refer to the monograph
[2, Chapter 3].

2.4. The fractional  \psi‐Laplacian. To introduce the fractional  p‐Laplace operator,
let  0<s<1,  p\in(1, \infty) and set

 L_{s}^{p-1}(\mathbb{R}^{N})  := {  u :  \mathbb{R}^{N}arrow \mathbb{R} measurable,   \int_{\mathbb{R}^{N}}\frac{|u(x)|^{p-1}}{(1+|x|)^{N+ps}}dx<\infty }.
For  u\in L_{s}^{p-1}(\mathbb{R}^{N}),  x\in \mathbb{R}^{N} and  \varepsilon>0 , we let

 (- \Delta)_{p,\varepsilon}^{s}u(x)=C_{N,p,s}\int_{\{yER^{N},|y-x1>\varepsilon\}
}|u(x)-u(y)|^{p-2}u(x)-u(y) |x-y|^{N+ps}dy,
where the normalized constant

(2.7)  C_{N,p,s}:= \frac{sp2^{2s-1}\Gamma(\frac{sp+N}{2})}{\pi\frac{N-1}{2}\Gamma(1-s)
\Gamma(\frac{p+1}{2})},
and  \Gamma is the usual Gamma function (see, e.g. [7, 12, 13,  1t,  18, ’le] for the linear
case  p=2 , and  [42, 43,  4J1] for the general case  p\in(1, \infty) ). The constant  C_{N,p,s}
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for  p\neq 2 has been introduced and justified in [  4e , Remark 3.10]. The fractional
‐Laplacian  (-\triangle)_{p}^{s} is defined for  u\in L_{s}^{p-1}(\mathbb{R}^{N}) and  x\in \mathbb{R}^{N} by the formula

 (- \triangle)_{p}^{s}u(x)=C_{N,p},{}_{s}P.V.\int_{\mathbb{R}^{N}}|u(x)-u(y)|^{p
-2}dyu(x)-u(y)|x-y|^{N+ps}
(2.8)  = \lim_{\varepsilon\downarrow 0}(-\triangle)_{p.\varepsilon}^{s}u(x) ,

provided that the limit exists. We notice that if  0<s< \frac{p-1}{p} and  u is smooth (i.e.,
at least bounded and Lipschitz continuous defined over  \mathbb{R}^{N} ), then the integral in
 (_{-}^{)}.8) is in fact not really singular near  x . We refer to the [  \dot{\prime} , Section 2.3] for a proof
in case of the regional fractional Laplacian.

In addition  \mathbb{P}_{s}^{-1}(\mathbb{R}^{N}) is the right space on which  (-\triangle)_{p,\varepsilon}^{8}u exists for every  \varepsilon>0

and is continuous where  u is continuous (see e.g. [42] for more detail on this topic).
Next we give some known integration by part formulas. Let   1<p<\infty and

 0<s<1 . For every  u,  v\in \mathcal{D}(\mathbb{R}^{N}) ,

  \int_{\mathbb{R}^{N}}(-\Delta)_{p}^{s}(\kappa, u)(x)v(x)dx
 = \frac{C_{N,p,s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa(x-y)|u(x)
-u(y)|_{|x-y|^{N+sp}}^{(u(x)-u(y))(v(x)-v(y))}p-2dxdy.

and for  u,  v\in W^{s,p}(\mathbb{R}^{N}) , we have that

(2.9)  \{(-\triangle)_{p}^{s}(\kappa, u), v\}_{W^{-s.p'}(\mathbb{R}^{N})),
w\varepsilon,p(\mathbb{R}^{N})}

 = \frac{C_{N,p,s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa(x-y)|u(x)
-u(y)|_{|x-y|^{N+sp}}^{p-2(u(x)-u(y))(v(x)-v(y))}dxdy,
where  W^{-s,p'}(\mathbb{R}^{N}) denotes the dual of the reflexive Banach space  W^{s,p}(\mathbb{R}^{N}) . For
more details on the validity of the above identities we refer to  [I( 17,42] and their
references.

Proceeding as in the regional p‐‐Laplacian case [  r) , Section 2.3], one also has that
for every  u\in \mathcal{D}(\Omega) ,

  \lim_{s\uparrow 1}\int_{\Omega}u(-\triangle)_{p}^{s}udx=\lim_{s\uparrow 1}
\int_{\mathbb{R}^{N}}u(-\triangle)_{p}^{s}udx
(2.10)  = \lim_{s\uparrow 1}\frac{C_{N,p,s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}
^{N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy

 = \int_{\mathbb{R}^{N}}|\nabla u|^{p}dx=-\int_{\Omega}u\triangle_{p}udx.
Here the second equality follows from (2.9) with  \kappa=1 and the third equality follows
from [9] and [I0, Proposition 2.2].

Let  \kappa be as in (1.5). For  1<p<\infty,  0<s<1 and  u\in L_{s}^{p-1}(\mathbb{R}^{N}) we define
the operator  (-\Delta)_{p}^{s}(\kappa, \cdot) as in (1.6). We again call this operator, the fractional
‐Laplace operator.

For more details on this topic we refer to [1S, 42] and their references. We
mention that elliptic problems associated with the operator  \mathcal{L}_{\Omega,p}^{s}(\kappa, \cdot) subject to
the Dirichlet boundary condition have been investigated in  [1(), 1^{-}, 24,28] where
the authors have obtained some fundamental existence and regularity results. The
case of Neumann and Robin type boundary conditions (with  \kappa=1 ) is contained in
[4,4]. Wè refer to [24, 13] for further results on associated parabolic problems.
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3. OPTIMAL CONTROL OF THE FRACTIONAL  p-‐LAPLACIAN FOR  0<\mathcal{S}<1

Throughout the remainder of the paper we will make the following assumption:

Assumption 3.1. We shall always assume the following.

(a)  \Omega\subset \mathbb{R}^{N}(N\geq 1) is a bounded open set with Lipschitz continuous boundary.
(b)  0<s<1 and  2\leq p<\infty.
(c) The functions  \xi_{1},\xi_{2}\in L^{\infty}(\Omega) and there exists a constant  \alpha>0 such that

(3.1)  0<\alpha\leq\xi_{1}(x)\leq\xi_{2}(x) a.e. in  \Omega.

(d) The measurable function  K satisfies (1.5) and belongs to  \mathfrak{A}_{ad}.
(e)  f\in L^{2}(\Omega) and  \xi\in L^{2}(\Omega) .

Under Assumption 3.1 all our results for the regional fractional p‐‐Laplacian in
[5, Sections 3‐6] are valid for the fractional p‐‐Laplace operator  (-\Delta)_{p}^{s}(\kappa, \cdot) given in
(1.4). In this case one replaces the state system [  \backslash )\ulcorner , Eq. (1.2)] by  (1.\underline{)}) and  W_{0}^{s,p}(\Omega)
by the space  W_{0}^{s,p}(\overline{\Omega}) . We state the relevant results in the following (sub‐)sections.

With the above setting, we are ready to state the notions of solutions to our state
equation (1.2):

Definition 3.2. A  u\in W_{0}^{s,p}(\overline{\Omega}) is said to be a weak solution of  (1.\underline{\cdot:}) if the identity

  \frac{C_{N_{1?},s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa(x-y)
|u(x)-u(y)|_{|x-y|^{N+sp}}^{p-2(u(x)-u(y))(\varphi(x)-\varphi(y))}dxdy
(3.2)  + \int_{\Omega}u\varphi dx=\int_{\Omega}f\varphi dx
holds for every  \varphi\in W_{0}^{s,p}(\overline{\Omega}) .

The following existence result of optimal pair to the OCP is our first main result.

Theorem 3.3. Assume Assumption .’?.1. Then the OCP (1.1), (ı.2) and (1.3)
admits at least one solution  (\kappa, u)\in BV(\mathbb{R}^{N})\cross W_{0}^{s,p}(\overline{\Omega}) .

Remark 3.4. In [5] we needed the assumption   \frac{1}{2}<s<1 . This assumption is not
needed in the fractional case, i. e., all the results here hold for every  0<\mathcal{S}<1.

3.1. The regularized optimal control problem. Let  n\in \mathbb{N} and  \mathcal{F}_{n}:[0, \infty )  arrow

 [0, \infty) be a function in  C^{1}([0, \infty)) satisfying

(3.3)  \{\begin{array}{ll}
\mathcal{F}_{n}(\tau)=\tau   if 0\leq\tau\leq n^{2},
\overline{J^{-}}_{n}(\tau)=n^{2}+1   if \tau\geq n^{2}+1,
\tau\leq \mathcal{F}_{n}(\tau)\leq\tau+\delta   if n^{2}\leq\tau<n^{2}+1 for 
some \delta\in(0,1) .
\end{array}
Let  \triangle_{p} be the  p‐Laplace operator defined in  (1_{\overline{l}}) . It is well‐known that  \Delta_{p} is a
degenerate operator if  p>2 . This is also the case for the operator  \Delta_{p,a} defined
in (1.8). To overcome the degeneracy in the case  p>2 , an  (\varepsilon,p)‐regularization
 \Delta_{\varepsilon,n,p,a} of  A_{p,a} has been introduced (see e.g.  [1\check{o}] ) as follows:

 \Delta_{\varepsilon,n,p_{)}a}u=div(a(x)(\varepsilon+\mathcal{F}_{n}(|\nabla u|^
{2}))^{R_{\frac{-2}{2}}}\nabla u) ,

where  \mathcal{F}_{n} is the function defined in (3.3) for  n\in N and  \varepsilon>0 is a small parameter.
Using the classical definition of degenerate elliptic operators, one cannot immedi‐
ately say that  (-\Delta)_{p}^{s} (or  \mathcal{L}_{p}^{s}(\kappa, \cdot) ) is degenerate for  p>2 . We refer to [39] for a
discussion on this topic.
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But inspired by the convergence given in (2.10), we introduce the operator
 (-\Delta)_{p,\epsilon,n}^{s}(K, \cdot) defined for  u\in L_{s}^{p-1}(\mathbb{R}^{N}) and  x\in \mathbb{R}^{N} by

 (- \triangle)_{p,\varepsilon,n}^{s}(\kappa, u):=C_{N,p},{}_{s}P.V.\int_{\mathbb
{R}^{N}}\kappa(x-y)\mathcal{G}_{\varepsilon,n,p}(u)\frac{u(x)-u(y)}{|x-y|^{N+2s}
}dy,
where  \sqrt{}n(n\in \mathbb{N}) is the function given in (3.3),  \varepsilon>0 is a small parameter and
 \mathcal{G}_{\varepsilon,n,p}(u) is given by

(3.4)   \mathcal{G}_{\varepsilon,n,p}(u):=[\varepsilon+\mathcal{G}_{n}(u)]^{L_{2}^{-
\underline{2}}}=[\varepsilon+\mathcal{F}_{n}(\frac{|u(x)-u(y)|^{2}}{|x-y|^{2s}})
]^{L_{2}^{-\underline{2}}}
with

(3.5)   \mathcal{G}_{n}(u):=\overline{Jr}_{n}(\frac{|u(x)-u(y)|^{2}}{|x-y|^{2s}}) .

We call  (-\Delta)_{p,\varepsilon,n}^{s}(\kappa, \cdot) an  (\varepsilon,p)‐regularization of  (-\Delta)_{p}^{s}(\kappa, \cdot) .
Let  \xi,  f\in L^{2}(\Omega) be given functions and   p\in[2, \infty). Now we consider our so

called regularized optimal control problem (ROCP):

(3.6) Minimize   \{E(\kappa, u) :=\frac{1}{2}\int_{\Omega}|u-\xi|^{2}dx+\int_{\Omega}
|\nabla\kappa|\}
subject to the constraints

(3.7)  \kappa\in \mathfrak{A}_{ad},

and

(3.8)  \{\begin{array}{ll}
(-\Delta)_{p,\varepsilon,n}^{s}(\kappa, u)+u=f   in \Omega
 u=0   on \mathbb{R}^{N}\backslash \Omega,
\end{array}
The following is our notion of weak solutions to the system (3,8).

Definition 3.5. Let  n\in \mathbb{N},  \varepsilon>0,  \kappa\in \mathfrak{A}_{ad} and  f\in L^{2}(\Omega). A  u\in W_{0}^{s,2}(\overline{\Omega}) is said

to be a weak solution to the system (3.8) if the equality

(3.9)   \overline{\Gamma}_{\varepsilon,n,p}^{\kappa}(u, \varphi)=\int_{\Omega}f\varphi
dx
holds for every  \varphi\in W_{0}^{s_{)}2}(\overline{\Omega}) , where for  u,  \varphi\in W_{0}^{s,p}(\overline{\Omega}) we have set

  \overline{\Gamma}_{\varepsilon,n,p}^{\kappa}(u, \varphi):=\int_{\Omega}
u\varphi dx
  \frac{C_{N,p,s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa(x-y)
\mathcal{G}_{\varepsilon,n,p}(u)\frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^
{N+2s}}dxdy.

The following result for (ROCP) holds with very minor changes in the proofs
in [5]. Besides the aforementioned changes one also need to replace the expression
of  \mathcal{E}_{p,s}^{\kappa} in [  \prime\prime , Eq. (4.2)] by

  \overline{\mathcal{E}}_{p,s}^{\kappa}(u, \varphi):=\int_{\Omega}u\varphi dx
 + \frac{C_{N,p,s}}{2}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa(x-y)|u(x)
-u(y)|^{p-2}\frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+sp}}dxdy,
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for  u,  \varphi\in W_{0}^{s,p}(\overline{\Omega}) . We next state our second main result.

Theorem 3.6. Assume Assumption ”.1. Then for evew  \varepsilon>0 and  n\in \mathbb{N} , the
ROCP  (3.6)-(3.8) has at least one solution  (\kappa_{\varepsilon,n}, u_{\varepsilon,n})\in BV(\mathbb{R}^{N})\cross W_{0}
^{s,2}(\overline{\Omega}) .

We conclude the paper by stating the convergence of solutions of ROCP to the
solutions of OCP.

Theorem 3.7. Assume Assumption ,?,1. Let  0<t\leq s<1 with  t=s if  p=2.
Let  n\in N and  \varepsilon>0 . Let  \{(\kappa_{\varepsilon,n}^{\star}, u_{\varepsilon,n}^{\star})\}_{\varepsilon>0,
n\in N}\subset BV(\mathbb{R}^{N})\cross W_{0}^{s,2}(\overline{\Omega}) be an

arbitrary sequence of solutions to the ROCP  (3.6)-(3.S) . Then  \{(\kappa_{\varepsilon,n}^{\star}, u_{\varepsilon,n}^{\star})\}_{\varepsilon>0,
n\in N}
is bounded in  BV(\mathbb{R}^{N})\cross W_{0}^{t,2}(\overline{\Omega}) and any cluster point  (\kappa_{\star}, u_{\star}) with respect to the
(weak

 *

, weak) topology of  BV(\mathbb{R}^{N})\cross W_{0}^{t,2}(\overline{\Omega}) is a solution to the OCP (1.1),  (].A) )
and (1.3). In addition, if  \kappa_{\varepsilon,n}^{\star}harpoonup*\kappa_{\star} in  BV(\mathbb{R}^{N}) and  u_{\varepsilon,n}^{\star}harpoonup u_{\star} in  W_{0}^{t,2}(\overline{\Omega}) , as

 \varepsilonarrow 0 and   narrow\infty (that is, as  (\varepsilon, n)arrow(0, \infty) ), then the following assertions hold.

(3.10)

  \lim  (\kappa_{\varepsilon,n}^{\star}, u_{\varepsilon,n}^{\star})=(\kappa_{\star}, u_
{\star}) stongly in  L^{1}(\mathbb{R}^{N})\cross W_{0}^{t,2}(\overline{\Omega}) .
 (\varepsilon,n)arrow(0,\infty)

(3.11)

  \lim_{(\varepsilon,n)arrow(0,\infty)}\int_{\mathbb{R}^{N}}
|\nabla_{K_{\varepsilon,n}^{\star}}|=\int_{\mathbb{R}^{N}}|\nabla_{K_{\star}}|.
(3.ı2)

  \lim  \chi_{(\mathbb{R}^{N}\cross \mathbb{R}^{N})\backslash (\mathbb{R}^{N}\cross 
\mathbb{R}^{N})_{n}(u_{\varepsilon,n}^{\star})}U_{\varepsilon,n,(p,s)}^{\star}=
U_{\star,(p,s)} strongly in  L^{p}(\mathbb{R}^{N}\cross \mathbb{R}^{N}) .
 (e,n)arrow(0,\infty)

  \lim_{(\varepsilon,n)arrow(0,\infty)}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}
}\kappa_{\varepsilon,n}^{\star}(x-y)[\varepsilon+\mathcal{G}_{n}(u_{\varepsilon,
n}^{\star})]^{g_{\frac{-2}{2}}}\frac{|u_{\varepsilon,n}^{\star}(x)-
u_{\varepsilon_{)}n}^{\star}(y)|^{2}}{|x-y|^{N+2s}}dy
(3.13)

 = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\kappa_{\star}(x-Y)\frac{|u_{\star}
(x)-u_{\star}(y)|^{p}}{|x-y|^{N+sp}}dxdy.
(3.14)

  \lim  I(\kappa_{\varepsilon,n}^{\star}, u_{\varepsilon,n}^{\star})=g(\kappa_{\star}, 
u_{\star}) ,

 (\varepsilon,n)arrow(0,\infty)

where we recall that  \mathcal{G}_{n} is given by (3.5). Here

 ( \mathbb{R}^{N}\cross \mathbb{R}^{N})_{n}(u_{\varepsilon,n}^{\star}):=\{(x, y)
\in \mathbb{R}^{N}\cross \mathbb{R}^{N}:\frac{|u_{\varepsilon,n}^{\star}(x)-
u_{\varepsilon,n}^{\star}(y)|}{|x-y|^{s}}>\sqrt{n^{2}+1}\} .
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