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1 Introduction

This article is concerned with the following Lotka‐Volterra prey‐predator model
with nonlinear diffusion terms:

\begin{array}{ll}
u_{t}=d_{1}\triangle u+\alpha\triangle(uv)+u(m_{1}-u-cv) ,   (x, t)\in\Omega 
x(0, T) ,
v_{t}=d_{2}\triangle v+\beta\nabla\cdot[u^{2}\nabla(\frac{v}{u})]+v(m_{2}+bu-v) 
,   (x, t)\in\Omega\cross(0, T) ,
u=v=0,   (x, t\cdot)\in\partial\Omega\cross(0, T) ,
u(x, 0)=u_{0}(x)\geq 0, v(x, 0)=v_{0}(x)\geq 0,   x\in\Omega.
\end{array}
(1.1)

Here  \Omega\subset \mathbb{R}^{N} is a bounded domain with a smooth boundary  \partial\Omega . Unknown
functions  u(x, t) and  v(x, t) , respectively, denote the population densities of the
prey and the predator at location   x\in\Omega and time  t>0 . The homogeneous
Dirichlet boundary conditions assume a hostile environment for both species sur‐
rounding the habitat  \Omega . All coefficients are assumed to be spatial and temporal
homogeneous;  d_{i},  m_{1},  b and  c are positive constants;  \alpha and  \beta are nonnegative
constants;  m_{2} is a real constant which is allowed to be negative. Ecologically,
 m_{1} and  m_{2} represent the growth rates of the prey and the predator, respectively;
 b and  c denote the inter‐specific interactions due to the predation;  d_{1} and  d_{2}
are usual dispersal rates of the prey and the predator based on the Fick law.
System (1.1) contains two nonlinear diffusion terms of prototype arising in ecol‐
ogy (Okubo‐Levin [3]). One is the term  aA(uv) referred as the cross‐diffusion
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term since Shigesada‐Kawasaki‐Teramoto [4] proposed a competition model with
cross‐diffusion terms to mathematically realize the segregation of two compet‐
ing species. For the prey‐predator relationship as (1.1), the cross‐diffusion term
 \alpha\triangle(uv) models an ecological situation that individuals of the prey diffuse from
the high density area to the low density area of the enemy (predator). Another is
the term  \beta\nabla\cdot[u^{2}\nabla(v/u)] which is not widely known as the cross‐diffusion term in
spite of the description parallel to the cross‐diffusion in the book by Okubo‐Levin
[3]. The nonlinear diffusion term  \beta\nabla\cdot[u^{2}\nabla(v/u)] models an ecological situation
that individuals of the predator move towards the high density area of the feed
(prey). In the next section, following [3], we will explain reasons why such a couple
of nonlinear diffusion terms appear from the micro‐scopic modelling view‐point.

Our interest is to derive the effect of nonlinear diffusion terms  onu the set of

positive steady states. Then we will study the following stationary problem:

 \{\begin{array}{ll}
d_{1}\triangle u+\alpha\triangle(uv)+u(m_{1}-u-cv)=0,   x\in\Omega,
d_{2}\Delta v+\beta\nabla\cdot[u^{2}\nabla(\frac{v}{u})]+v(m_{2}+bu-v)=0,   x\in
\Omega,
u=v=0,   x\in\partial\Omega,
u\geq 0, v\geq 0,   x\in\Omega.
\end{array} (1.2)

On the linear diffusion system when  \alpha=\beta=0 , there are a lot of papers (e.g., [5]
and references therein) which study the set of positive solutions.

The purpose of this article is to review some results obtained by the author’s
joint researches ([1, 2]). The following four results about effects of nonlinear
diffusion terms on positive solutions of (1.2) will be introduced.

(i) A sufficient condition  \mathcal{R}(\alpha, \beta) on the  (m_{1}, m_{2}) plane for the existence of
positive solutions.

(ii) The asymptotic behavior of  \mathcal{R}(\alpha, \beta) as  \alphaarrow\infty.

(iii) The asymptotic behavior of  \mathcal{R}(\alpha, \beta) as  \betaarrow\infty.

(iv) In a special case when  \alpha=0 , the asymptotic behavior of positive solutions
as  \betaarrow\infty.

The contents of this article is as follows: In Section 2, a mechanizm of nonlinear
diffusion terms of (1.1) will be explained from an ecological modelling viewpoint.
In Section 3, we exhibits a sufficient region on the  (m_{1}, m_{2}) plane for the existence
of positive solutions (Fig. 2). In Section 4, the asymptotic behavior stated as above
 (ii)-(iv) will be introduced. Throughout this article, the usual norms of the spaces
 L^{p}(\Omega) for   p\in[1, \infty ) and  C(\overline{\Omega}) are defined by

 \Vert u\Vert_{p}  :=( \int_{\Omega}|u(x)|^{p})^{1/p} and  \Vert u\Vert_{\infty}  := \max_{x\in\overline{\Omega}}|u(x)|.
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2 Formulation of nonlinear diffusion in ecology

In this section, following the book by Okubo‐Levin [3], derivations of the cou‐
ple of nonlinear diffusion terms in (1.1) will be explained from the micro‐scopic
modelling aspect.

By the standard modelling procedure, we employ the ld‐spatio‐temporal dis‐
cretization such as

 (x, t)=(n\triangle x,j\triangle t)\in \mathbb{R}\cross(0, \infty) ,

where  n\in \mathbb{Z},  j\in \mathbb{N}\cup\{0\};\triangle x and  \Delta t are tiny meshes for the space and time,
respectively. In this setting,  \{n\triangle x\}_{n\in Z} is assumed to be a one‐dimensional habitat
of the prey and the predator, and each location  n\triangle x is called  n‐site. It is assumed
that every individual of both species must to be positioned at some site  n\Delta x and
necessarily moves to either of neighbouring site  (n-1)\triangle x or  (n+1)\triangle x in a
unit time mesh  \triangle t . Let  u(x, t) (resp.  v(x, t) ) be the number of individuals of the
prey (resp. predator) at  n‐site  x=n\Delta x and time  t=j\triangle t . Let  T(m, n) be the
transition probability of each individual from  m\triangle x to  n\triangle x in time  \triangle t , where
 |m-n|=1 (see Fig. 1). Under this setting, we estimate the difference of the
number of the prey at  n‐site in time  \triangle t by

 u(x, t+\triangle t)-u(x, t)=T(n-1, n)u(x-\triangle x, t)+T(n+1, n)u(x+\triangle
x, t)
(2.1)

 -(T(n, n-1)+T(n, n+1))u(x, t) .

Figure 1: Transition rule

Here we derive the cross‐diffusion term  (uv)_{xx} in the first equation of (1.1). For
individuals of the prey, the low density location of the enemy (predator) is more
favourable. So it is a natural situation that the transition probability  T(m, n) of
individuals of the prey depends on the number of the predator at departure site
such as

Repulsive transition  T(m, n)= \frac{\triangle t}{(\triangle x)^{2}}v(m\triangle x, t)  (|m-n|=1) ,
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where  \triangle t/(\triangle x)^{2} is related to the square root law for the Brownian motion. Sub‐
stituting this  T into the recurrent formula (2.1), we obtain the differential quotient

  \frac{u(x,t+\triangle t)-u(x,t)}{\triangle t}
 = \frac{u(x+Ax,t)v(x+\triangle x,t)-2u(x,t)v(x,t)+u(x-\triangle x,t)v(x-
\triangle x,t)}{(\Delta x)^{2}}.

By passing to the limit  \triangle tarrow 0 and  \triangle xarrow 0 , we obtain the partial differential
equation

 v_{t}=(uv)_{xx}.

This is the one dimensional version of the cross‐diffusion part in (1.1).
Next we derive the nonlinear diffusion term  (u^{2}(v/u)_{x})_{x} in the second equation

of (1.1). For individuals of the predator, the high density location of the feed
(prey) is more favourable. Then it is reasonable to assume that the transition
probability  T(m, n) for individuals of  t\dot{h}e predator depends on the number of the
prey at arrival site such as

Attractive transition  T(m, n)= \frac{\triangle t}{(\triangle x)^{2}}u(n\triangle x,t)  (|m-n|=1) .

We substituting this  T into (2.1) (with  u replaced by v) to obtain the differential
quotient

  \frac{v(x,t+\triangle t)-v(x,t)}{\triangle t}=u(x, t)\frac{v(x+Ax,t)+v(x-
\triangle x,t)-2v(x,t)}{(\triangle x)^{2}}
 - \frac{u(x+Ax,t)+u(x-Ax,t)-2u(x,t)}{(\triangle x)^{2}}v(x, t)

By the continuation procedure as  \triangle tarrow 0 and  \triangle xarrow 0 , we get the partial
differential equation  v_{t}=uv_{xx}-u_{xx}v , which is written by

 v_{t}=(u^{2}( \frac{v}{u})_{x})_{x}
This is the one dimensional version of the nonlinear diffusion part in the second
equation of (1.1).

In addition, we consider another model of  T for the prey‐predator relation. It
is also reasonable to assume that the transition probability  T(m, n) of individuals
of the predator depends on the difference of feed (prey) between at arrival and at
departure as follows:

Transition by chemotaxis  T(m, n)= \frac{\triangle t}{2(\Delta x)^{2}}(u(n\triangle x, t)-u(m\triangle x,
t)) ,
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Table 1

where  |m-n|=1 . Substituting this  T into (2.1) (with  u replaced by  v), one can
see

  \frac{v(x,t+\triangle t)-v(x,t)}{\triangle t}
 =- \frac{u(x+\Delta x,t)+u(x-\triangle x,t)-2u(x,t)}{(\triangle x)^{2}}
\frac{v(x,t)+v(x-\triangle x,t)}{2}

 - \frac{u(x+\triangle x,t)-u(x,t)}{\triangle x}(\frac{v(x+\triangle x,t)-v(x,t)
}{2\triangle x}+\frac{v(x,t)-v(x-\triangle x,t)}{2\triangle x}) .

By the continuation procedure, we get the partial differential equation  v_{t}=

 -u_{xx}v-u_{x}v_{x} , which can be written as

 v_{t}=-(vu_{x})_{x}.

This is an evolution equation driven by the so‐called chemotaxis term.
These PDE modellings for typical three transitions of repulsive, attractive

and difference types are generalized to the higher dimensional cases. We can
summarize the correspondence table of transition type and nonlinear diffusion
and famous PDE models with such nonlinear diffusion terms (Table 1).

3 Coexistence region

This section introduces a sufficient condition for the existence of positive solutions
of (1.2). In order to show a bifurcation aspect of the sufficient condition, we have
to collect semitrivial solutions of (1.2). Here we call  (u, v) a semitrivial solution of
(1.2) if one of the components identically vanishes over  \overline{\Omega} and the other is positive
in  \Omega . Ecologically, semitrivial solutions are corresponding to steady states such
as one of the species becomes extinct and the other survives. If  v vanishes over

166



167

 \overline{\Omega} , then  u has to satisfy the following stationary logistic equation:

 \{\begin{array}{ll}
d_{1}\triangle u+u(m_{1}-u)=0   in \Omega,
u=0   on \partial\Omega.
\end{array} (3.1)

It is well known that (3.1) admits a unique positive solution if and only if  m_{1}>

 d_{1}\lambda_{1} , where  \lambda_{1} is the least eigenvalue of  -\triangle with homogeneous Dirichlet boundary
condition on  \partial\Omega . Then we denote the positive solution by  \theta_{d_{1},m_{1}} when ml  > dı  \lambda l.
Consequently, we see that (1.2) has a semitrivial solution  (u, v)=(\theta_{d_{1},m1},0) if
 m_{1}>d_{1}\lambda_{1} . Similarly, one can verify that (1.2) has another semitrivial solution
 (u, v)=(0, \theta_{d_{2},m_{2}}) if  m_{2}>d_{2}\lambda_{1}.

A sufficient condition for the existence of positive solutions of (1.2) can be
shown in the (mı,  m_{2} ) plane as Fig. 2:

Theorem 3.1 ([1, 2]). If  m_{1}\leq d_{1}\lambda_{1} , there is no positive solution of(1.2). In  ca\mathcal{S}e

 m_{1}>d_{1}\lambda_{1} , for any fixed  (d_{1}, d_{2}, b, c)\in \mathbb{R}_{+}^{4} , there exist two continuous functions

 m_{2}=f(m_{1}, \beta) , m_{2}=g(m_{J}, \alpha)

for  (m_{1}, \alpha, \beta)\in(d_{1}\lambda_{1}, \infty)\cross\overline{\mathbb{R}}_
{+}^{2} with

 m \downarrow d_{1}\lambda_{1}\lim_{1}f(m_{1}, \beta)=\lim_{m_{1}\downarrow 
d_{1}\lambda_{1}}g(m_{1}, \alpha)=d_{2}\lambda_{J} ,

  \lim_{m_{1arrow\infty}}f(m_{1}, \beta)=-\infty and   \lim_{m_{1arrow\infty}}g(m_{1}, \alpha)=\infty
such that (1.2) admits at least one positive solution if

  \min\{f(m_{1}, \beta), g(m_{1}, \alpha)\}<m_{2}<\max\{f(m_{1}, \beta), g(m_{1}
, \alpha)\}.

Let us explain the bifurcation aspect of Theorem 3.1. Regarding  m_{2} as a real
bifurcation parameter for any fixed  m{\imath}>d_{1}\lambda_{1},  (u, v, m_{2})=(\theta_{d_{1},m_{1}},0, f(m], \beta))
and  (u, v, m_{2})=(0, \theta_{d_{2},g(m_{1},\alpha)}, g(m_{1}, \alpha)) are bifurcation points from which positive
solutions bifurcate. Furthermore, Theorem 3.1 ensures the existence of positive
solutions of (1.2) if  (m_{1}, m_{2}) belongs to the surrounded region by two curves
 m_{2}=f(m_{1}, \beta) and  m_{2}=g(m_{1}, \alpha) (see Fig. 2). It should be noted that  f(m_{1}, \beta)
(resp.  g(m_{1}, \alpha) ) is independent of  \alpha (resp.  \beta ).

Furthermore, in special cases when one of  \alpha and  \beta vanishes, the existence of a
bifurcation branch which connects these two semitrivial solutions was shown (see
[1] for the case  \beta=0;[21 for the other case  \alpha=0). In this sense, the region

 \mathcal{R}(\alpha, \beta):=\{(m_{1}, m_{2})\in(d_{1}\lambda_{1}, \infty)\cross
\mathbb{R}|
  \min\{f(m_{1}, \beta), g(m_{1}, \alpha)\}<m_{2}<\max\{f(m_{1}, \beta), g(m_{1}
, \alpha)\}\}

exhibits a sufficient region for the existence of positive solutions.
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 m_{2}

 =g(m_{1}, \alpha)

 =f(m_{1}, \beta)

Figure 2: A sufficient region for the existence of positive solutions of (1.2)

4 Asymptotic analysis as  \alphaarrow\infty or  \betaarrow\infty

In this section, we introduce the asymptotic behavior of  \mathcal{R}(\alpha, \beta) as the nonlinear
diffusion coefficient  \alpha or  \beta tends to infinity. In [1], the author and Yamada showed
the following dependence of  \mathcal{R}(\alpha, \beta) on  \alpha>0 (see Fig. 3  (a) ).

Theorem 4.1 ([1]). For any fixed  m_{1}>d_{1}\lambda_{1},   g(m_{1}, \alpha)\downarrow d_{2}\lambda_{1}a\mathcal{S}\alpha\uparrow\infty . In other
words, it  hold_{\mathcal{S}} that

  \lim_{\alphaarrow\infty}\mathcal{R}(\alpha, \beta)=\{(m_{1}, m_{2})\in(d_{1}
\lambda_{1}, \infty)\cross \mathbb{R}|
  \min\{f(m_{1}, \beta), d_{2}\lambda_{1} \} <m_{2}<\max\{f(m_{1}, \beta), d_{2}
\lambda_{1} \} \}.

In [2], Oeda and the author obtained the following asymptotic behavior of
 \mathcal{R}(\alpha, \beta) as  \betaarrow\infty (see Fig. 3 (b)).

Theorem 4.2 ([2]). It holds true that

  \lim_{\betaarrow\infty}\mathcal{R}(\alpha, \beta)  :=\{(m_{1}, m_{2})\in (  d_{1}\lambda_{1} , oo)  \cross \mathbb{R}|

  \min\{f^{\infty} (m_{1} ), g(m_{1}, \alpha)\}<m_{2}<\max\{f^{\infty}(m_{1} ), 
g(m_{1}, \alpha)\}\},

where

 f^{\infty}(m_{1}):= \lim_{\alphaarrow\infty}f(m_{i}, \alpha)=\frac{d_{2}}
{d_{{\imath}}}m_{1}-(\frac{d_{2}}{d_{1}}+b)\frac{||\theta_{d_{1},m_{1}}||_{2}
^{2}}{||\theta_{d_{1},m_{1}}||_{1}}.
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 \alpha)  \alpha)

 f^{\infty}(m_{1})

 \beta)  \beta)

(a)  \alphaarrow\infty (  b)  \betaarrow\infty(0<b\ll b^{*})

Figure 3: Asymptotic behaviors of  \mathcal{R}(\alpha, \beta) stated in Theorems 4.1 and 4.2.

We note the following asymptotic profile of  f^{\infty}(m_{1}) as  m_{1}\downarrow d_{1}\lambda_{1} and   m_{1}arrow\infty

obtained in [2]:

  \lim_{m_{1}\downarrow d_{1}\lambda_{1}}f^{\infty}(m_{1})=d_{2}\lambda_{1},

  \frac{d}{dm_{1}}f^{\infty}(d_{J}\lambda_{1}):=\lim_{m_{1}\downarrow d_{1}
\lambda_{1}}\frac{d}{dm}ı  f^{\infty}(m_{1})= \frac{d_{2}}{d_{1}}-(\frac{d_{2}}{d_{1}}+b)\frac{1}
{\Vert\Phi\Vert_{1}\Vert\Phi\Vert_{3}^{3}} , (4.1)
  \lim_{m_{1arrow\infty}}f^{\infty}(m_{1})=-\infty,

where  \Phi is the positive function satisfying

 -\triangle\Phi=\lambda_{1}\Phi in  \Omega,  \Phi=0 on  \partial\Omega,  \Vert\Phi\Vert_{2}=1.

Since it is verified that  \Vert\Phi\Vert_{1}\Vert\Phi\Vert_{3}^{3}>1 by the Schwarz inequality, then (4.1) gives

  \frac{d}{dm_{1}}f^{\infty}(d_{1}\lambda_{1})\{\begin{array}{ll}
>0   if 0<b<b^{*}:=\frac{d_{2}}{d_{1}}(\Vert\Phi\Vert_{1}\Vert\Phi\Vert_{3}^{3}-
1) ,
<0   if b>b^{*}
\end{array}
Therefore, when  0<b<b^{*} , the curve  m_{2}=f^{\infty}(m_{1}) is monotone increasing if
 m_{1}-d_{1}\lambda_{1}>0 is sufficiently small whereas it is monotone decreasing if  m_{1}>0 is
sufficiently large.

In the special case when  \alpha=0 , we get the following limiting characterization
of positive solutions as  \betaarrow\infty . The following result gives the asymptotic behavior
of positive solutions of (1.2) as  \alphaarrow\infty.
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Theorem 4.3 ([2]). Suppose that  \alpha=0 and  (m_{1}, m_{2}, d_{1}, d_{2}, b, c) satisfies

 m_{1}>d_{1}\lambda_{1},

 m_{2}\neq f^{\infty}(m_{1}) ,

 m_{2} \neq\frac{d_{2}}{d_{1}}m_{1}-(\frac{d_{2}}{d_{1}}-\frac{1}{c})
\frac{||\theta_{d_{1},m_{1}}||_{2}^{2}}{||\theta_{d_{1},m_{1}}||_{1}}(=:h(m_{1})
) ,

 m_{2}\neq g(m_{1},0) .

Let  \{(u_{n}, v_{n})\} be any sequence of positive solutions to (1.2) with  \alpha=0 and  \beta=
 \beta_{n}arrow\infty . Then the following alternative holds true.

(i) If  \{\beta_{n}\Vert u_{n}\Vert_{\infty}\} is unbounded, then  f^{\infty}(m_{1})<m_{2}<h(m_{1}) . In this case, for
 s\in(0,1) defined by

 m_{2}=(1-s)f^{\infty}(m_{1})+sh(m_{1}) ,

there exists a subsequence of  \{(u_{n}, v_{n})\} (which is denoted by  \{(u_{n}, v_{n})\} again)
 \mathcal{S}uch that

  \lim_{narrow\infty}(u_{n}, v_{n})=(1-s, \frac{s}{c})\theta_{d_{1},m_{1}}  in  C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega}) .

(ii) If  \{\beta_{n}\Vert u_{n}\Vert_{\infty}\} is bounded, there exists  (w, v)\in C^{2}(\overline{\Omega})\cross C^{2}(\overline{\Omega}) such that

  \lim_{narrow\infty}(\beta_{n}u_{n}, v_{n})=(w, v)  in  C^{1}(\overline{\Omega})\cross C{\imath}  (\overline{\Omega}) ,

passing to a subsequence, and moreover,  (u),  v ) is a positive solution to

 \{\begin{array}{ll}
d_{1}\triangle w+w(m_{1}-cv)=0,   x\in\Omega,
d_{2}\triangle v+\nabla\cdot[w^{2}\nabla(\frac{v}{w})]+v(m_{2}-v)=0,   
x\in\Omega,
w=v=0,   x\in\partial\Omega.
\end{array}
In the first situation (i) of Theorem 4.3, the set

  \{(u, v, m_{2})=((1-s, \frac{\mathcal{S}}{c})\theta_{d_{1)}m_{1}}, (1-s)
f^{\infty}(m_{1})+sh(m_{1})) 0<\mathcal{S}<1\}
of limit functions forms aline connects  (\theta_{d_{1},m_{1}},0, f^{\infty}(m_{1})) with  (0, \theta_{d_{1},m_{1}}/c, h(m_{1})) .

We should note that any  (u, v) on this line satisfies the following limiting system of
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(1.2) as  \beta_{n}arrow\infty which consists of the equal diffusive Lotka‐Volterra competition
equations and an integral equation:

 \{\begin{array}{ll}
d_{1}\triangle u+u(m_{1}-u-cv)=0,   x\in\Omega,
d_{1}\triangle v+v(m_{1}-u-cv)=0,   x\in\Omega,
u=v=0,   x\in\partial\Omega,
\frac{d_{2}}{d_{1}}\int_{\Omega} v(m{\imath}-- u-- cv) =\int_{\Omega}v(m_{2}+bu-
v) .   
\end{array} (4.2)

By Theorem 4.3, one can expect that almost all positive solution of (1.2) with
large  \beta can be characterized by either of type (i) or (ii). In view of the first type
(i), the coexistence steady state  (u, v) of prey and predator can be approximated
by a coexistence steady state of the equal diffusive competition model (4.2) with
an integral constraint. On the other hand, in the second type (ii), the component
of prey shrinks with order  O(1/\beta) when  \beta is sufficiently large.
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