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Abstract

In this paper, we consider two‐sample tests for covariance matrices in high‐dimensional
settings. We introduce the extended cross‐data‐matrix (ECDM) methodology. We con‐
struct test statistics by using the ECDM methodology. We show that the ECDM test
statistics have the consistency property and the asymptotic normality in high‐dimensional
settings. We propose a new test procedure based on the ECDM test statistics and evaluate
its asymptotic size and power from theoretical and numerical aspects.
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1 Introduction

High‐dimension, low‐sample‐size (HDLSS) data situations occur in many areas of modern
science such as genetic microarrays, medical imaging, text recognition, finance, chemometrics,
and so on. In recent years, substantial work has been done on HDLSS asymptotic theory in
which the sample size  n is fixed or   narrow\infty while  n/parrow 0 as the data dimension  parrow\infty.

Hall et al. [6] and Yata and Aoshima [11] explored several types of geometric representa‐
tions of HDLSS data. Yata and Aoshima [11] developed the noise‐reduction methodology and
gave consistent estimators of both the eigenvalues and eigenvectors together with principal
component (PC) scores in the HDLSS context. The HDLSS asymptotic theory was created
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under the assumption that either the population distribution is Gaussian or random vari‐
ables in a certain sphered data matrix have the  \rho‐mixing dependency. However, Yata and
Aoshima [10] developed the HDLSS asymptotic theory without such the assumptions. More‐
over, they created a new principal component analysis (PCA) called the cross‐data‐matrix
(CDM) methodology that is applicable to constructing an unbiased estimator in HDLSS non‐
parametric settings. Aoshima and Yata [2] developed a variety of inference for HDLSS data
such as given‐bandwidth confidence regions, two‐sample tests, tests of the equality of two
covariance matrices, classification, variable selection, regression, tests of the correlation co‐
efficients and so on, and also discussed the sample size determination to ensure prespecified
accuracy for each inference. Yata and Aoshima [12] improved the test of the correlation co‐
efficients by using the extended cross‐data‐matrix (ECDM) methodology that is an extension
of the CDM method. One of the advantages of the ECDM methodoıogy is to produce an
unbiased estimator having small asymptotic variance at a low computational cost.

In this paper, we consider two‐sample tests for high‐dimensional covariance matrices.
Let  x_{h1},  x_{hn_{h}} be independent and identically distributed (i.i.  d. ) samples of a p‐‐variate
random variable from populations  \pi h(h=1,2) . We assume  n_{1}/n_{2}arrow\theta\in(0, \infty) and  nh<p
for  h=1,2 . We assume that  x_{hj} has an unknown mean vector  \mu_{h} and unknown covariance

matrix  \Sigma_{h}(\geq O) for  h=1,2 . We consider a test problem as follows:

 H_{0}:\Sigma_{1}=\Sigma_{2} vs.  H_{1} :  \Sigma_{1}\neq\Sigma_{2} . (1)

The test problem has been studied in the conventional low‐dimensional settings. In particular,
the likelihood ratio test (LRT) is commonly used and enjoys certain optimality under regular‐
ity conditions, see Anderson [1]. However, in the high‐dimensional settings, the conventional
test procedures such as the LRT perform poorly or are not even defined since the sample
covariance matrix  S , the simplest estimator of the population covariance matrix  \Sigma , performs
poorly. Li and Chen [8] gave a test statistic based on  U‐statistics for high‐dimensional data.
However, it requires high computational cost. Srivastava et al. [9] improved the statistic in
terms of computational cost. In this paper, we shall produce statistics by the ECDM method
and propose a new test procedure for (1).

The rest of the paper is organized as follows. In Section 2, we state assumptions required
in the construction of a test procedure for (1). In Section 3, we introduce the ECDM method‐
ology. In Section 4, we produce test statistics for (1) by using the ECDM methodology. We
show that the ECDM test statistics have the consistency property and the asymptotic nor‐
mality in high‐dimensional settings. We propose a new test procedure based on the ECDM
test statistics and evaluate its asymptotic size and power theoretically. Finally, in Section 5,
we give simulation studies to check the performance of the proposed test procedure.

2 Assumptions

In this section, we introduce the basic assumptions for the test of hypotheses (1). The
eigen‐decomposition of  \Sigma_{h} is given by  \Sigma_{h}=H_{h}\Lambda_{h}H_{h}^{T} , where  \Lambda_{h}=diag(\lambda_{h1}, \ldots, \lambda_{hp}) is a
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diagonal matrix of eigenvalues,  \lambda_{h1}\geq  \geq\lambda_{hp}\geq 0 , and  H_{h} is an orthogonal matrix of the
corresponding eigenvectors.

Now, we assume the following model:

 x_{hj}=\Gamma_{h}w_{hj}+\mu_{h} , for  h=1,2,

where  \Gamma_{h}=(\gamma_{h1}, \ldots, \gamma_{hq_{h}}) is a  p\cross q_{h} matrix for some  q_{h}>0 such that  \Gamma_{h}\Gamma_{h}^{T}=\Sigma_{h} , and

 w_{hj}=(w_{h1j}, \ldots, w_{hq_{h}j})^{T},  j=1,  n_{h} , are i.i.  d . random vectors having  E(w_{hj})=0 and
 Var(w_{hj})=I_{q_{h}} . Here,  I_{q_{h}} denotes the identity matrix of dimension  q_{h} . Let  Var(w_{hrj}^{2})=M_{hr},
 r=1,  q_{h};h=1,2 . We assume that   \lim\sup_{parrow\infty}M_{hr}<\infty for all  h,  r . Similar to Aoshima

and Yata [3] and Bai and Saranadasa [4], we assume that

(A‐i)  E(w_{hrj}^{2}w_{hsj}^{2})=E(w_{hrj}^{2})E(w_{hsj}^{2})=1 and  E(w_{hrj}w_{hsj}w_{htj}w_{huj})=0 for all  r\neq s,  t,  u.

We assume the following assumption instead of (A‐i) as necessary:

(A‐ii)  E(w_{hr_{1}j}^{\alpha_{1}}w_{hr_{2}j}^{\alpha_{2}}\cdots w_{hr_{v}j}
^{\alpha_{v}})=E(w_{hr_{1}j}^{\alpha_{1}})E(w_{hr_{2}j}^{\alpha_{2}})\cdots E(w_
{hr_{v}j}^{\alpha_{v}}) for all   r_{1}\neq r_{2}\neq  \neq r_{v}\in
 [1, q_{h}] and  \alpha_{i}\in[1,4],  i=1,  v , where  v\leq 8 and   \sum_{\iota={\imath}}^{v}\alpha_{i}\leq 8.

See Chen and Qin [5] about (A‐ii). Note that (A‐ii) implies (A‐i). Note that (A‐ii) is naturally
satisfied when  x_{hj} is Gaussian. We assume the following assumption for  \Sigma_{h} as necessary:

(  A‐iii)   \frac{tr(\Sigma_{h}^{4})}{tr(\Sigma_{h}^{2})^{2}}arrow 0 as   parrow\infty for  h=1,2.

Note that  tr(\Sigma_{h}^{4})/tr(\Sigma_{h}^{2})^{2}arrow 0 as   parrow\infty for  h=1,2” is equivalent to  \lambda_{h1}/tr(\Sigma_{h}^{2})^{{\imath}/2}arrow 0
 a\mathfrak{Z}parrow\infty for  h=1,2”. Let  m= \min\{p, n_{1}, n_{2}\} and  \triangle=||\Sigma_{1}-\Sigma_{2}||_{F}^{2}=tr\{(\Sigma_{1}-\Sigma_{2})^{2}\}.
We assume one of the following two assumptions as necessary:

(A‐iv)   \frac{tr(\Sigma_{h}^{2})}{n_{h}\triangle}arrow 0 as   marrow\infty for  h=1,2 ;

(A‐v)   1 i_{M}\sup_{arrow\infty}\{\frac{n_{h}\triangle}{tr(\Sigma_{h}^{2})}\}<\infty for  h=1,2.

3 ECDM methodology

The ECDM methodology was developed by Yata and Aoshima [12, 13] as an extension
of the CDM method due to Yata and Aoshima [10]. Throughout this section, we omit the
subscript with regard to the population. Let   n_{(1)}=\lceil n/2\rceil and  n(2)=n-n_{(1)} , where  \lceil x\rceil
denotes the smallest integer  \geq x . Let

 V_{n(1)(k)}=\{\begin{array}{ll}
\{\lfloor k/2\rfloor-n_{(1)}+1, \lfloor k/2\rfloor\}   if \lfloor k/2\rfloor 
\geq n({\imath}),
\{1, \lfloor k/2\rfloor\}\cup\{\lfloor k/2\rfloor+n_{(2)}+1, n\}   otherwise;
\end{array}
 V_{n(2)(k)}=\{\begin{array}{ll}
\{\lfloor k/2\rfloor+1, \lfloor k/2\rfloor+n_{(2)}\}   if \lfloor k/2\rfloor\leq
n_{(1)},
\{1, \lfloor k/2\rfloor-n_{(1)}\}\cup\{\lfloor k/2\rfloor+1, n\}   otherwise
\end{array}
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for  k=3,  2n-1 , where  \lfloor x\rfloor denotes the largest integer  \leq x . Let  \# S denote the number
of elements in a set  S . Note that  \# V_{n(l)(k)}=n_{(l)},  l=1,2,   V_{n(1)(k)}\cap V_{n(2)(k)}=\emptyset and

 V_{n(1)(k)}\cup V_{n(2)(k)}= {ı,  n} for  k=3,  2n-1 . Also, note that  i\in V_{n(1)(i+j)} and
 j\in V_{n(2)(i+j)} for  i<j(\leq n) . Let

  \overline{x}_{n(1)(k)}=n_{(1)}^{-1}\sum_{j\in V_{n(1)(k)}}x_{j}
and

  \overline{x}_{n(2)(k)}=n_{(2)}^{-1}\sum_{j\in V_{n(2)(k)}}x_{j}
for  k=3,  2n-1 . Then, Yata and Aoshima [12] gave an estimator of  tr(\Sigma^{2}) by

 W_{n}= \frac{2u_{n}}{n(n-1)}\sum_{i<j}^{n}\{(x_{i}-\overline{x}_{n(1)(i+j)})
^{T}(x_{j}-\overline{x}_{n(2)(i+j)})\}^{2} , (2)

where  u_{n}=n_{(1)}n_{(2)}/\{(n_{(1)}-1)(n_{(2)} -{\imath})\} . Note that  E(W_{n})=tr(\Sigma^{2}) . Let  m_{0}= \min\{p, n\}.
Aoshima and Yata [3] and Yata and Aoshima [13] gave the following result.

Theorem 3.1 ([3, 13]). Assume (A‐i). Then, it holds that as   m_{0}arrow\infty

 Var( \frac{W_{n}}{tr(\Sigma^{2})})=(\frac{4}{n^{2}}+\frac{8tr(\Sigma^{4})+
4\sum_{r--1}^{q}(M_{r}-2)(\gamma_{r}^{T}\Sigma\gamma_{r})^{2}}{tr(\Sigma^{2})
^{2}n})\{1+o(1)\}.
Remark 1. When  x_{j} is Gaussian, it holds that as   m_{0}arrow\infty

Var  ( \frac{W_{n}}{tr(\Sigma^{2})})=(\frac{4}{n^{2}}+\frac{8tr(\Sigma^{4})}
{tr(\Sigma^{2})^{2}n})\{1+o(1)\}.

4 Two‐sample tests for covariance matrices

In this section, we consider two‐sample tests for covariance matrices using the ECDM
methodology. Let us consider the following hypotheses which are equivalent to (1):

 H_{0}:\triangle=0 vs.  H_{1} :  \triangle>0.

Note that  \Delta=tr(\Sigma_{1}^{2})+tr(\Sigma_{2}^{2})-2tr(\Sigma_{1}\Sigma_{2}) . Li and Chen [8] proposed a test statistic as
follows:

 U=A_{n_{1}}+A_{n_{2}}-2tr(S_{1n_{1}}S_{2n}2) ,
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where  S_{hn_{h}} is the sample covariance matrix having  E(S_{hn_{h}})=\Sigma_{h} and

 A_{n_{h}}= \frac{1}{n_{h}(n_{h}-1)}\sum_{j\neq k}^{n_{h}}(x_{hj}^{T}x_{hk})^{2}
-\frac{2}{n_{h}(n_{h}-1)(n_{h}-2)}\sum_{j\neq k\neq l}^{n_{h}}x_{hk}^{T}x_{hj}x_
{hj}^{T}x_{hl}
 + \frac{1}{n_{h}(n_{h}-1)(n_{h}-2)(n_{h}-3)}\sum_{j\neq k\neq l\neq l'}^{n_{h}}
x_{hj}^{T}x_{hk}x_{hl}^{T}x_{hl'}.

Under (A‐ii), (  A‐iii) and some regularity conditions, they showed the following asymptotic
result:

  \frac{U-\triangle}{2tr(\Sigma_{1}^{2})/n_{1}+2tr(\Sigma_{2}^{2})/n_{2}}
\Rightarrow N(0,1) as   marrow\infty . (3)

Here,  "\Rightarrow denotes the convergence in distribution and  N(0,1) denotes a random variable
distributed as the standard normal distribution. However, the computational cost of  A_{n_{h}} is
of the order,  O(pn_{h}^{4}) , which is inappropriate for practical use. On the other hand, Srivastava
et al. [9] modified  A_{n_{h}} as

  \frac{(n_{h}-1)(n_{h}-2)tr(M_{h}^{2})-n_{h}(n_{h}-1)tr(D_{h}^{2})+tr(D_{h})
^{2}}{n_{h}(n_{h}-1)(n_{h}-2)(n_{h}-3)} (  =A_{n_{h}}^{*} , say),

where  Y_{h}=(y_{h1}, \ldots, y_{hn_{h}}),  y_{hj}=x_{hj}-\overline{x}_{h},j=1,  n_{h},   \overline{x}_{h}=n_{h}^{-1}\sum_{j=1}^{n_{h}}x_{hj},  M_{h}=

 Y_{h}^{T}Y_{h},  D_{h}=diag(y_{h1}^{T}y_{h1}, \ldots, y_{hn_{h}}^{T}y_{hn_{h}}) , for  h=1,2 . The computational cost of  A_{n_{h}}^{*} is
of the order,  O(pn_{h}^{2}) . Let

  \sigma U=2(\frac{1}{n_{1}-1}+\frac{1}{n_{2}-1})\frac{(n_{1}-1)tr(\Sigma_{1}
^{2})+(n_{2}-1)tr(\Sigma_{2}^{2})}{n_{1}+n_{2}-2}
and

 \hat{\sigma}_{U}=2  ( \frac{1}{n_{1}-}ı
 +   \frac{1}{n_{2}-1})\frac{(n_{1}-1)A_{n_{1}}^{*}+(n_{2}-1)A_{n2}^{*}}{n_{1}+
n_{2}-2}.

Then, they gave a test procedure for (1) by

rejecting  H_{0} \Leftrightarrow\frac{U}{\hat{\sigma}_{U}}>z_{\alpha} , (4)

where  z_{\alpha} is a constant such that   P\{N(0,1)>z_{\alpha}\}=\alpha . Then, under (A‐ii) and (  A‐iii), it
holds that as   marrow\infty

Size  =\alpha+o(1) .

Also, we have the following result.
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Theorem 4.1. Assume (A‐ii) and ( A ‐iii). The test by (4) has that as   marrow\infty

Power  = \Phi(\frac{\triangle}{\sigma_{U}}-z_{\alpha})+o(1) , (5)

where  \Phi(\cdot) denotes the  c.d.f. of  N(0,1) .

In this paper, we give a more powerful test statistic compared with  U.

4.1 A test statistic based on the ECDM methodology

Now, by using the ECDM methodology, we estimate  \triangle by

 T=W_{n_{1}}+W_{n_{2}}-2tr(S_{1n_{1}}S_{2n_{2}}) ,

where  W_{n_{h}}s are given by (2). Note that   E(T)=\triangle . Also, note that the computational cost
of  W_{n_{h}} is of the order,  O(pn_{h}^{2}) . Let

  \sigma^{2}=\sum_{h=1}^{2}(\frac{4}{n_{h}^{2}}tr(\Sigma_{h}^{2})^{2}+\frac{8}
{n_{h}}tr\{(\Sigma_{h}^{2}-\Sigma_{1}\Sigma_{2})^{2}\}+\frac{4}{n_{h}}\sum_{r=1}
^{q_{h}}(M_{hr}-2)\{\gamma_{hr}^{T}(\Sigma_{1}-\Sigma_{2})\gamma_{hr}\}^{2})
 + \frac{8}{n_{1}n_{2}}tr(\Sigma_{1}\Sigma_{2})^{2}.

Then, we have the foılowing result.

Lemma 4.1. Assume (A‐i). It holds that as   marrow\infty

 Var(T)=\sigma^{2}\{1+o(1)\}.

From Lemma 4.1 we have the following result.

Theorem 4.2. Assume (A‐i) and (A‐iv). It holds that as   marrow\infty

  \frac{T}{\Delta}=1+o_{P}(1) .

Next, we consider the case when (A‐iv) is not met. Let

  \sigma_{T}^{2}=\frac{4}{n_{1}^{2}}tr(\Sigma_{1}^{2})^{2}+\frac{4}{n_{2}^{2}}tr
(\Sigma_{2}^{2})^{2}+\frac{8}{n_{1}n_{2}}tr(\Sigma_{1}\Sigma_{2})^{2}
and

  \hat{\sigma}_{T}^{2}=\frac{4}{n_{1}^{2}}W_{n_{1}}^{2}+\frac{4}{n_{2}^{2}}W_{n_
{2}}^{2}+\frac{8}{n_{1}n_{2}}tr(S_{1n1}S_{2n2})^{2}
We have the following result.
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Lemma 4.2. Assume (A‐i), ( A ‐iii) and (A‐v). It holds that as   marrow\infty

 \sigma^{2}=\sigma_{T}^{2}\{1+o(1)\}.

Note that as   marrow\infty

  \frac{\hat{\sigma}_{T}^{2}}{\sigma_{T}^{2}}=1+O_{P(1)}
under (A‐i). From Lemma 4.2 we have the following result.

Theorem 4.3. Assume (A‐ii), ( A ‐iii) and (A‐v). It holds that as   marrow\infty

  \frac{T-\triangle}{\hat{\sigma}_{T}}=\frac{T-\triangle}{\sigma_{T}}+o_{P}(1)
\Rightarrow N(0,1) .

Now, we consider a more powerful test statistic. Let

 c= \max\{\frac{tr(\Sigma_{1})}{tr(\Sigma_{2})}, \frac{tr(\Sigma_{2})}
{tr(\Sigma_{1})}\} and   \hat{c}=\max\{\frac{tr(S_{1n1})}{tr(S_{2n_{2}})}, \frac{tr(S_{2n2})}
{tr(S_{1n1})}\}.
Then, under (A‐i), we have that as   marrow\infty

 \hat{C}=C+O_{P(1)} . (6)

We propose the following test statistic:

 T_{*}=\hat{c}T.

Note that  T_{*}\geq T w.p.ı. Also, note that as   marrow\infty

 T_{*}=T\{1+o_{P}(1)\}

under (A‐i) and  H_{0} . Then, from Theorems 4.2 and 4.3, we have the following results.

Corollary 4.1. Assume (A‐i) and (A‐iv). It holds that as   marrow\infty

  \frac{T}{c\triangle}*=1+o_{P}(1) .

Corollary 4.2. Assume (A‐ii), ( A ‐iii) and (A‐v). It holds that as   marrow\infty

  \frac{T_{*}/c-\Delta}{\hat{\sigma}_{T}}\Rightarrow N(0,1) .
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4.2 A more powerful two‐sample test

We give a test procedure for (1) by

rejecting  H_{0} \Leftrightarrow\frac{T}{\hat{\sigma}_{T}}*>z_{\alpha} . (7)

Then, we have the following results.

Theorem 4.4. Assume (A‐ii) and ( A ‐iii). The test by (7) has that as   marrow\infty

 Size=\alpha+o(1) and Power  = \Phi(\frac{\triangle}{\sigma_{T}}-z_{\alpha}/c)+o(1) .

Corollary 4.3. Assume (A‐iv) under  H_{1} . Assume also (A‐i). Then, the test by (7) has that
as   marrow\infty

Power  =1+o(1) .

Remark 2. We consider testing (1) by (7) with  T instead of  T_{*} . Then, it has (5) as  marrow\infty.

From Theorems 4.1 and 4.4, when  c>1 , the asymptotic power of (7) is greater than that
of (4). Thus, we recommend to use the test by (7).

5 Simulation studies

In this section, we summarize simulation studies of the findings. We used computer
simulations to study performances of the test procedures by (4) and (7). Independent pseudo‐
random normal observations were generated from  \pi_{h} :  N_{p}(0, \Sigma_{h}) for  h=1,2 . We set  \alpha=0.05

and  \Sigma_{1}=B(0.3^{|i-j|^{1/3}})B , where

 B=diag[\{0.5+1/(p+1)\}^{1/2}, \{0.5+p/(p+1)\}^{1/2}].

As for the alternative hypothesis, we set  \Sigma_{2}=1.2B(0.4^{|i-j|^{1/3}})B . We considered four cases
for  p and  n_{l}s :

(I)  p=2^{S}(s=4, \ldots, 10),   n_{1}=n_{2}=4\lceil(p/2)^{1/2}\rceil ;

(II)  p=2^{S}(s=4, \ldots, 10),  n_{1}=2\lceil(p/2)^{1/2}\rceil,   n_{2}=4\lceil(p/2)^{1/2}\rceil ;

(III)  p=1000,  n_{1}=n_{2}=5s(s=1, \ldots, 10) ;

(IV)  p=1000,  n_{1}=4s,  n_{2}=8s(s=1, \ldots, 10) .
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 g_{2}p  2p

(I)  p=2^{S}(s=4, \ldots, 10),   n_{1}=n_{2}=4\lceil(p/2)^{1/2}\rceil
 \ulcorner

 g_{2}p  2p

(II)  p=2^{s}(s=4, \ldots, 10),  n_{1}=2\lceil(p/2)^{1/2}\rceil,   n_{2}=4\lceil(p/2)^{1/2}\rceil

(III)  p=1000,  n_{1}=n2=5s ( s= ı 10)

(IV)  p=1000,  n_{1}=4s,  n_{2}=8s(s=1, \ldots, 10)

Figure 1: The performances of the test procedures by (4) and (7). For each panel, the value
of (4) is denoted by the dashed ıine and the value of (7) is denoted by the solid line.
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For each case, we checked the performance by 2000 replications. We defined  P_{r}=1 (or  0 )
when  H_{0} was falsely rejected (or not) for  r=1 , 2000, and defined   \overline{\alpha}=\sum_{r=1}^{2000}P_{r}/2000
to estimate the size. We also defined  P_{r}=1 (or  0 ) when  H_{1} was falsely rejected (or not)
for  r=1 , 2000, and defined  1- \overline{\beta}=1-\sum_{r=1}^{2000}P_{r}/2000 to estimate the power. Note
that their standard deviations are less than 0.0ıl. In Figure 1, we plotted  \overline{\alpha} (left panel)
and  1-\overline{\beta} (right panel) in case of (I) to (IV). We observed that both the test procedures
gave preferable performances for the size in (I) to (IV). However, the test procedure by (7)
gave better performance compared to (4) with respect to the power. See Section 4.2 for the
theoretical reason.

Appendix

Proof of Theorem 4.1. Note that  tr(\Sigma_{1}^{2})=tr(\Sigma_{2}^{2})\{1+o(1)\} as   parrow\infty under (A‐v). Also,
note that

  \sum_{r=1}^{q_{h}}\{\gamma_{hr}^{T}(\Sigma_{1}-\Sigma_{2})\gamma_{hr}\}^{2}
\leq tr  [\{\Sigma_{h}(\Sigma_{1}-\Sigma_{2})\}^{2}]\leq\lambda_{h1}^{2}\triangle=
o(tr(\Sigma_{h}^{2})\triangle) (8)

under (  A‐iii) for  h=1,2 . Then, it holds that  \sigma/\sigma U=1+o(1) under (  A‐iii) and (A‐v). Thus,
from Theorems 1 and 2 in Li and Chen [8], under (A‐ii), (  A‐iii) and (A‐v), we have that as
  marrow\infty

 P( \frac{U}{\hat{\sigma}_{U}}>z_{\alpha})=P(\frac{U-\triangle}{\sigma U}
>z_{\alpha}-\frac{\triangle}{\sigma_{U}}+o_{P}(1))
 =\Phi  (\begin{array}{l}
\underline{\triangle}-z_{\alpha}
\sigma_{U}
\end{array})  +o(1) .

On the other hand, from (8), under (A‐ii) and (A‐iv), it holds that  Var(U)/\triangle^{2}= o(ı), so
that  U/\triangle=1+o_{P}(1) . Then, we have that

 P( \frac{U}{\hat{\sigma}_{U}}>z_{\alpha})=P(\frac{\triangle}{\sigma_{U}}\{1+
o_{P}(1)\}>z_{\alpha})arrow 1
from the fact that  \sigma_{U}/\triangle=o(1) under (A‐iv). Thus, by considering the convergent subse‐
quence of  \triangle/\sigma_{U} , we can conclude the result.  \square 

Proof of Lemma 4.1. Assume (A‐i). Recall that

 T=W_{n_{1}}+W_{n_{2}}-2tr(S_{1n1}S_{2n_{2}}) and  U=A_{n1}+A_{n2}-2tr(S_{1n_{1}}S_{2n_{2}}) .
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Note that   E(T)=\Delta . By noting that  Cov(W_{n_{1}}, W_{n_{2}})=0 , it holds that

Var  (T)=Var(W_{n_{1}})+Var(W_{n_{2}})+4Var (tr  (S_{1n_{1}}S_{2n_{2}}) )

 -4Cov(W_{n_{{\imath}}}, tr(S_{1n_{1}}S_{2n2}))-4Cov(W_{n_{2}}, tr(S_{1n_{1}}
S_{2n_{2}})) .

From Theorem 3.1 and (6.2) in [8], we can claim that  Var(W_{n_{h}})=Var(A_{n}h)\{1+o(1)\} as   marrow

 \infty for  h=1,2 . Also, we can claim that  Cov(W_{n_{h}}, tr(S_{1n_{1}}S_{2n_{2}}))=Cov(A_{n_{h}}, tr(S_{1n_{1}}S_{2n_{2}}
))\{1+
 o(1)\} for  h=1,2 . Then, from (2.5) and (6.ı) in [8], we can conclude the result.  \square 

Proof of Theorem 4.2. From (8), under (A‐i) and (A‐iv), it holds that  Var(T)/\triangle^{2}  = o(ı), so
that T/  \triangle= l  + op(ı). It concludes the result.  \square 

Proof of Lemma 4.2. From (8), we can conclude the result.  \square 

Proof of Theorem 4.3. Similarly to Proof of Lemma 3.1 in Ishii et al. [7], under (A‐i), we can
claim that  W_{n_{h}}=A_{n_{h}}+o_{P}(\sigma) as   marrow\infty for  h=1,2 . From (8), it holds that  \sigma=\sigmaT{l  + o(ı)}
under (  A‐iii) and (A‐v). Then, in a way similar to Proof of Theorem 1 in [8], we can conclude
the result.  \square 

Proofs of Corollary 4.1 and Corollary 4.2. From Theorems 4.2 and 4.3, by using Slutsky’s
theorem, we can conclude the results.  \square 

Proof of Theorem 4.4. Similarly to Proof of Theorem 4.1, by using Corollary 4.2, we can
conclude the result.  \square 

Proof of Corollary 4.3. By using Corollary 4.1, we can conclude the result.  \square 
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