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1 Introduction

High‐dimension, low‐sample‐size (HDLSS) data situations occur in many areas of modern
science such as genetic microarrays, medical imaging, text recognition, finance, chemometrics,
and so on. Suppose we have independent and d‐variate two populations,  \Pi_{i} , i  = ı, 2, having an
unknown mean vector  \mu_{i} and unknown covariance matrix  \Sigma_{i} for each  i . We have independent
and identically distributed (i.i.  d. ) observations,  x_{i1},  x_{in_{\iota}} , from each  \Pi_{i} . We assume
 n_{i}\geq 2,  i=1,2 . Let  x_{0} be an observation vector of an individual belonging to one of the two
populations. Let  N=n_{1}+n_{2} . We assume  x_{0} and  x_{ij}s are independent.

In this paper, we consider classification in the HDLSS context such as   darrow\infty while  N is

fixed. In the HDLSS context, Hall et al. [6], Marron et al. [8] and Qiao et al. [12] considered
distance weighted classifiers. Hall et al. [7], Chan and Hall [5] and Aoshima and Yata [2]
considered distance‐based cıassifiers. In particular, Aoshima and Yata [2] gave the misclassifi‐
cation rate adjusted classifier for multiclass, high‐dimensional data in which misclassification
rates are no more than specified thresholds. On the other hand, Aoshima and Yata [1, 3] con‐
sidered geometric classifiers based on a geometric representation of HDLSS data. Aoshima
and Yata [4] considered quadratic classifiers in general and discussed asymptotic properties
and optimality of the classifiers under high‐dimension, non‐sparse settings. For linear SVM
in HDLSS settings, Hall et al. [6], Chan and Hall [5] and Qiao and Zhang [13] showed that
the misclassification rates tend to zero as   darrow\infty under certain severe conditions. Nakayama
et al. [9] investigated asymptotic properties of linear SVM for HDLSS data. They proposed
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a bias‐corrected linear SVM and showed that it gives preferable performances compared to
linear SVM. On the other hand, Nakayama et al. [10] investigated asymptotic properties of
SVM with the Gaussian kernel for HDLSS data.

In this paper, we consider a general framework of SVM in the HDLSS context where
  darrow\infty while  N is fixed. In Section 2, we investigate asymptotic properties of SVM in the
HDLSS. In Section 3, we give asymptotic properties of SVM for both the linear and the
Gaussian kernels.

2 A general framework of SVM

In this section, we consider a general framework of SVM.

2.1 Setup of SVM

Since HDLSS data are mostly separable by a hyperplane, we consider the hard‐margin
SVM as follows:

 y(x)=w^{T}\phi(x)+b , (1)

where  \phi(\cdot) is a feature map,  w is a weight vector and  b is an intercept term. Let us write
that  (x_{1}, \ldots, x_{N})=(x_{11}, \ldots, x_{1n_{1}}, x_{21}, \ldots, x_{2n_{2}}) . Let  t_{j}=-1 for  j=1,  n_{1} and  t_{j}=1
for  j=n_{1}+1,  N . By differentiating the Lagrangian formulation with respect to  w and
 b , we obtain the following dual form:

 L( \alpha)=\sum_{j=1}^{N}\alpha_{j}-\frac{1}{2}\sum_{j=1_{J}}^{N}\sum_{=1}^{N}
\alpha_{j}\alpha_{j'}t_{j}t_{j'}k(x_{j}, x_{j'}) ,

where  k(x_{j}, x_{j'})=\phi(x_{j})^{T}\phi(x_{j'}) is a kernel function, and  \alpha=(\alpha_{1}, \ldots, \alpha_{N})^{T} and  \alpha_{j}s are
Lagrange multipliers such as  w= \sum_{j=1}^{N}\alpha_{j}t_{j}\phi(x_{j}) . The optimization problem can be trans‐
formed into the following:   \arg\max_{\alpha}L(\alpha) subject to

 \alpha_{j}\geq 0,  j=1 , . . . ,  N , and   \sum_{j=1}^{N}\alpha_{j}t_{j}=0 . (2)

Let us write that

  \hat{\alpha}=(\hat{\alpha}_{1}, \ldots,\hat{\alpha}_{N})^{T}=\arg\max_{\alpha}
L(\alpha) subject to (2).

There exist some  x_{j}s satisfying that  t_{j}y(x_{j})= ı (i.e.,  \hat{\alpha}_{j}\neq 0). Such  x_{j}s are called the support
vector. Let  \hat{S}=\{j|\hat{\alpha}_{j}\neq 0, j= {\imath}, N\} and  N_{\hat{S}}=\#\hat{S} , where  \# A denotes the number of
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elements in a set  A . The intercept term is given by   \hat{b}=N_{\hat{S}}^{-1}\sum_{j\in\hat{S}}\{t_{j}-\sum_{j\in\hat{S}}
\hat{\alpha}_{j'}t_{j'}k(x_{j}, x_{j})\}.
Then, the classifier in (1) is defined by

  \hat{y}(x)=\sum_{j\in\hat{S}}\hat{\alpha}_{j}t_{j}k(x, x_{j})+\hat{b} . (3)

Finally, in SVM, one classifies  x_{0} into  \Pi_{1} if  \hat{y}(x_{0})<0 and into  \Pi_{2} otherwise. See Vapnik [14]
for the details. Let  e(i) denote the error rate of misclassifying an individual from  \Pi_{i} into the
other class for  i=1,2 . We claim that a classifier has consistency if

 e(i)=o(1) as   darrow\infty for i  = ı, 2. (4)

In this paper, we investigate the following typical kernels.

(I) The linear kernel:  k(x_{j}, x_{j'})=x_{j}^{T}x_{j'} ; and
(II) The Gaussian kernel:  k(x_{j}, x_{j'})=\exp(-\Vert x_{j}-x_{j'}\Vert^{2}/\gamma) ,

where  \gamma(>0) is a scale parameter.

2.2 Asymptotic properties of SVM

First, we assume the following assumption as   darrow\infty :

(A‐i)  k(x_{1j}, x_{1j'})=\beta_{1}+o_{P}(\triangle) for all  1\leq j<j'\leq n_{1} ;

 k(x_{1j}, x_{1j})=\beta_{2}+op(\triangle) for all  1\leq j\leq n_{1} ;

 k(x_{2j}, x_{2j'})=\beta_{3}+o_{P}(\triangle) for all  1\leq j<j'\leq n_{2} ;

 k(x_{2j}, x_{2j})=\beta_{4}+o_{P}(\triangle) for all  1\leq j\leq n_{2} ; and

 k(x_{1j}, x_{2j'})=\beta_{5}+o_{P}(\triangle) for alll  \leq j\leq n_{1},1\leq j'\leq n_{2} ;

 k(x_{0}, x_{ij})=\beta_{2i-1}+o_{P}(\triangle) when  x_{0}\in\Pi_{i} for all  1\leq j\leq n_{i} and  i=1,2 ;

 k(x_{0}, x_{i'j})=\beta_{5}+o_{P}(\triangle) when  x_{0}\in\Pi_{i} for all  1\leq j\leq n_{\iota'} and  i'\neq i.

Here,  \beta\iota is a variable (which may depend on d) for  l=1 , 5 and  \triangle=\beta_{1}+\beta_{3}-2\beta_{5},
where  \triangle>0,  \beta_{2}-\beta_{1}\geq 0 and  \beta_{4}-\beta_{3}\geq 0.

We note that  \triangle is a distance between the two populations. For example,  \triangle=\Vert\mu_{1}-\mu_{2}\Vert^{2} when
 k(\cdot, \cdot) is the linear kernel. See Section 3.ı for the details. Let  \eta_{1}=\beta_{2}-\beta_{1} and  \eta_{2}=\beta_{4}-\beta_{3} . We

note that   \sum_{j=1}^{n_{1}}\alpha_{j}=\sum_{j=n_{1}+1}^{N}\alpha_{j} (  =\alpha_{\star} , say) under (2). Then, from Section 2 of Nakayama
et al. [ı1], we have the following lemma.

Lemma 1 ([11]). Under (2) and (A‐i), it holds that as   darrow\infty

 L( \alpha)=2\alpha_{\star}-\frac{\Delta}{2}\alpha_{\star}^{2}-\frac{1}{2}(\eta_
{1}\sum_{J=1}^{n_{1}}\alpha_{j}^{2}+\eta_{2}\sum_{j=n_{1}+1}^{N}\alpha_{j}^{2})+
o_{P}(Aa^{2}.) .
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We can claim that

  \max\alpha\{-\frac{1}{2}(\eta_{1}\sum_{J=1}^{n_{1}}\alpha_{J}^{2}+\eta_{2}
\sum_{J^{=n}1+1}^{N}\alpha_{J}^{2})\}=-\frac{\alpha_{\star}^{2}}{2}(\eta_{1}
/n_{1}+\eta_{2}/n_{2})
when  \alpha_{1}=  =\alpha_{n_{1}}=\alpha_{\star}/n_{1} and  \alpha_{n_{1}+1}=  =\alpha_{N}=\alpha_{\star}/n_{2} under (2). Let  \triangle_{*}=

 \triangle+\eta_{1}/n_{1}+\eta_{2}/n_{2} . We consider the following condition:

  \lim_{darrow}\inf_{\infty}\frac{\eta_{i}}{\triangle}>0 for  i=1,2 . (5)

Then, in a way similar to Section 2 of Nakayama et al. [9], from Lemma 1 it holds that

  \max_{\alpha}L(\alpha)=-\frac{\triangle}{2}*(\alpha_{\star}-\frac{2+o_{P}
({\imath})}{\triangle_{*}})^{2}\{1+o_{P}(1)\}+\frac{2+o_{P}(1)}{\Delta_{*}} (6)

under (2), (5) and (A‐i), so that  \alpha_{\star}\approx 2/\triangle_{*} . Then, from (6), we have the following result.

Proposition 1 ([11]). Let  \delta=\eta_{1}/n_{1}-\eta_{2}/n_{2} . Assume (A‐i) and (5). It holds that as   darrow\infty

  \hat{\alpha}_{j}=\frac{2}{\Delta_{*}n_{1}}\{1+o_{P}(1)\} for all  j=1,  n_{1} ; and

  \hat{\alpha}_{j}=\frac{2}{\triangle_{*}n_{2}}\{1+o_{P}(1)\} for all  j=n_{1}+1,  N.

Furthermore, it holds that as   darrow\infty

  \hat{y}(x_{0})=\frac{\Delta}{\triangle_{*}}((-1)^{i}+\frac{\delta}{\triangle}+
o_{P}(1)) when  x_{0}\in\Pi_{i} for  i=1,2.

Now, we consider the following condition:

(C‐i)   \lim\sup\frac{|\delta|}{\triangle}<1.  darrow\infty

For the misclassification rates, from Section 2 of Nakayama et al. [11], we have the following
results.

Theorem 1 ([11]). Under (A‐i) and (C‐i), SVM (3) holds consistency (4).

Coroılary 1 ([11]). Under (A‐i), SVM (3) holds the following properties:

 e(1)=1+o(1) and  e(2)=o(1) as   darrow\infty (7)

if   \lim\dot{{\imath}}nf\frac{\delta}{\Delta}darrow\infty>1 ; and

 e(1)=o(1) and  e(2)=1+o(1) as   darrow\infty (8)
 \delta

if   \lim_{darrow}\sup_{\infty}\overline{\triangle}<-1.
For linear SVM, Nakayama et al. [9] showed consistency (4) and the results in Corollary

1. From Corollary 1, if  |\delta| is larger than  \triangle , SVM would give a bad performance. Nakayama
et al. [1ı] proposed a robust SVM in HDLSS settings.
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3 Asymptotic properties of SVM with kernel functions (I) or
(II)

We assume that ıim   \sup_{darrow\infty}\Vert\mu_{i}\Vert^{2}/d<\infty and  tr(\Sigma_{i})/d\in(0, \infty) as   darrow\infty for  i=1,2.
Here, for a function,  f(\cdot) , “ f(d)\in(0, \infty) as   darrow\infty” implies   \lim\inf_{darrow\infty}f(d)>0 and
  \lim\sup_{darrow\infty}f(d)<\infty . Similar to Aoshima and Yata [2], we assume the following assumption
for  \Pi_{i}s as necessary:

(A‐ii) Let  z_{ij},  j=1,  n_{i} , be i.i.  d . random  p_{i} ‐vectors having  E(z_{ij})=0 and  Var(z_{ij})=
 I_{p_{i}} for each  i(=1,2) and some  p_{i} . Let  z_{lj}=(z_{i1j}, \ldots, z_{ip_{\iota}j})^{T} whose components satisfy
that   \lim\sup_{darrow\infty}E(z_{irj}^{4})<\infty for all  r and

 E(z_{irj}^{2}z_{xsj}^{2})=E(z_{irj}^{2})E(z_{isj}^{2})=1 and  E(z_{irj}z_{isj}z_{itj}z_{iuj})=0

for all  r\neq s,  t,  u . Then, the observations,  x_{ij}s , from each  \Pi_{i}(i=1,2) are given by
 x_{ij}=\Gamma_{i}z_{ij}+\mu_{i},  j=1,  n_{i} , where  \Gamma_{i} is a  d\cross p_{\dot{i}} matrix such that  \Gamma_{i}\Gamma_{i}^{T}=\Sigma_{i}.

Note that  z_{irj}s are i.i.  d . as the standard normal distribution when the  \Pi_{i}s are Gaussian

and  \Gamma_{i}=H_{i}\Lambda_{i}^{1/2} , where  A_{i}=diag(\lambda_{i(1)}, \ldots, \lambda_{i(d)}) is a diagonal matrix of eigenvalues,
 \lambda_{i(1)}\geq  \geq\lambda_{i(d)}\geq 0 , and  H_{i} is an orthogonal matrix of the corresponding eigenvectors.
Thus, (A‐ii) naturally holds when the  \Pi_{i}s are Gaussian.

3.1 Linear kernel function (I)

We consider linear SVM (LSVM), that is, the classifier (3) having kernel function (I). We
set  \beta_{1}=\Vert\mu_{1}\Vert^{2},  \beta_{2}=\Vert\mu_{1}\Vert^{2}+tr(\Sigma_{1}),  \beta_{3}=\Vert\mu_{2}\Vert^{2},  \beta_{4}=\Vert\mu_{2}\Vert^{2}+tr(\Sigma_{2}) and  \beta_{5}=\mu_{1}^{T}\mu_{2}, so

that

 \triangle=\Vert\mu_{1}-\mu_{2}\Vert^{2} (  =\triangle_{(I)} , say) and  \eta_{\dot{i}}=tr(\Sigma_{i}) (  =\eta_{i(I)} , say) for  i=1,2.

We note that LSVM is invariant to linear transformations on the data set. Thus, in Section
3.1, we assume  \mu_{2}=0 without loss of generality, so that  \beta_{3}=\beta_{5}=0,  \beta_{4}=\eta_{2(I)} and
 \triangle_{(I)}=\Vert\mu_{1}\Vert^{2} . In addition, we assume the following condition as   darrow\infty :

(C‐ii)   \frac{tr(\Sigma_{i}^{2})}{\triangle_{(l)}^{2}}=o(1) for i  = ı, 2.

Then, from Section 3 of Nakayama et al. [11], we have the following lemma.

Lemma 2 ([ıı]). Assume (A‐ii) and (C‐ii). Then, the assumption (A‐i)  \dot{u} met for kernel
function (I).

By combining Lemma 2 with Theorem 1 and Corollary 1, we have the following results.
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Corollary 2. For LSVM, one can claim that

(4) holds if   \lim_{darrow}\sup_{\infty}\frac{|\delta_{(i)}|}{\triangle_{(I)}}< ı; (7) holds if   \lim_{darrow}\inf_{\infty}\frac{\delta_{(I)}}{\triangle_{(I)}}>1 ; and

(8) holds if   \lim_{darrow}\sup_{\infty}\frac{\delta_{(I)}}{\Delta_{(I)}}<-1
under (A‐ii) and (C‐ii), where  \dot{\delta}_{(I)}=\eta_{1(I)}/n_{1}-\eta_{2(I)}/n_{2}.

Nakayama et al. [9] provided a bias correction of linear SVM (BC‐LSVM). They com‐
pared BC‐LSVM with LSVM both in numerical simulations and actual data analyses. They
concluded that BC‐LSVM gives adequate performances for HDLSS settings even when  n_{i}s

are quite unbalanced.

3.2 Gaussian kernel function (II)

We consider Gaussian kernel SVM (GSVM), that is, the classifier (3) with kernel function
(II). We set  \beta_{1}=\exp\{-2tr(\Sigma_{1})/\gamma\} (  =\beta_{1(II)} , say),  \beta_{3}=\exp\{-2tr(\Sigma_{2})/\gamma\} (  =\beta_{3(II)} , say),
 \beta_{2}=\beta_{4}=1 , and  \beta_{5}=\exp[-\{tr(\Sigma_{1})+tr(\Sigma_{2})+\triangle_{(l)}\}/\gamma] (  =\beta_{5(Il)} , say), so that

 \triangle=\beta_{1(II)}+\beta_{3(II)}-2\beta_{5(II)} (  =\triangle_{(II)} , say) and

 \eta_{i}=1-\exp(-2tr(\Sigma_{i})/\gamma) (  =\eta_{i(II)} , say) for  i=1,2.

We note that  \triangle_{(II)}>0 when  \mu_{1}\neq\mu_{2} or  tr(\Sigma_{1})\neq tr(\Sigma_{2}) . Let   tr(\Sigma_{\min})=\min_{i=1,2}tr(\Sigma_{i})
and  \psi=\exp\{-2tr(\Sigma_{\min})/\gamma\} . We assume the following condition as   darrow\infty :

(  C‐iii)   \frac{tr(\Sigma_{i}^{2})+\Delta_{(I)}\{tr(\Sigma_{i}^{2})\}^{1/2}}
{\min\{\gamma^{2}\Delta_{(II)}^{2}/\psi^{2},\gamma^{2}\}}=o(1) for  i=1,2.

Then, from Section 3 of Nakayama et al. [11], we have the following lemma.

Lemma 3 ([11]). Assume (A‐ii) and ( C‐iii). Then, the assumption (A‐i) is met for kernel
function (II).

By combining Lemma 3 with Theorem 1 and Corollary 1, we have the folıowing results.

Corollary 3. For GSVM, one can claim that

(4) holds if   \lim_{darrow}\sup_{\infty}\frac{|\delta_{(II)}|}{\triangle_{(II)}}<1 ; (7) holds if   \lim_{darrow}\inf_{\infty}\frac{\delta_{(II)}}{\triangle_{(II)}}>1 ; and

(8) holds if   \lim_{darrow}\sup_{\infty}\frac{\delta_{(II)}}{\triangle_{(II)}}<-1
under (A‐ii) and ( C‐iii), where  \delta_{(II)}=\eta_{1(II)}/n_{1}-\eta_{2(II)}/n_{2}.
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Nakayama et al. [11] provided a bias correction of GSVM (BC‐GSVM). They compared
BC‐GSVM with GSVM both in numerical simulations and actual data analyses. They also
discussed the choice of  \gamma.
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