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Abstract

In this paper, we consider an equality test of high‐dimensional covariance matrices
under the strongly spiked eigenvalue (SSE) model. We introduce an eigenvalue model
called the “strongly spiked eigenvalue (SSE) model” which was proposed by Aoshima
and Yata (2018). We give a new test procedure based on the spiked eigenstructures.

1 Introduction

Suppose we have two classes \pi_{i},  i=1,2 . We define independent  d\cross n_{i} data matrices,
 X_{i}=[x_{i1}, x_{in_{\iota}}],  i=1,2 , for  \pi_{i},  i=1,2 , where  x_{ij},  j=1,  n_{i} , are independent and
identically distributed (i.i.  d. ) as a  d‐dimensional distribution with a mean vector  \mu_{i} and
covariance matrix  \Sigma_{i}(\geq O) . We assume  n_{i}\geq 4,  i=1,2 . The eigen‐decomposition of  \Sigma_{i}
is given by

 \Sigma_{i}=H_{i}A_{i}H_{i}^{T},

where  A_{i}=diag(\lambda_{1(i)}, \ldots, \lambda_{d(i)}) having  \lambda ı(i)  \geq  \geq\lambda_{d(i)}(\geq 0) and  H_{i}= [hı(i),  h_{d(i)} ] is
an orthogonal matrix of the corresponding eigenvectors. Let

 X_{i}-[\mu_{i}, \mu_{i}]=H_{i}A_{i}^{1/2}Z_{i}
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for  i=1,2 . Then,  Z_{i} is a  d\cross n_{i} sphered data matrix from a distribution with the zero
mean and identity covariance matrix. Let

 Z_{i}=[z_{1(i)}, z_{d(i)}]^{T} and  z_{j(i)}=(z_{j1(i)}, \ldots, z_{jn_{x}(i)})^{T},  j=1,  d

for  i=1,2 . Note that  E(z_{jk(i)}z_{j'k(i)})=0(j\neq j') and  Var(z_{j(i)})=I_{n_{\iota}} , where  I_{n},
denotes the  n_{i}‐dimensional identity matrix. Also, note that if  X_{i} is Gaussian,  z_{jk(i)}s are
i.i.  d . as the standard normal distribution,  N(0,1) . We assume that the fourth moments
of each variable in  Z_{i} are uniformly bounded for  i=1,2 . Also, we consider the following
assumption:

(A‐i)  E(z_{qj(i)}^{2}z_{sj(i)}^{2})=1 and  E(z_{qj(i)}z_{sj(i)}z_{tj(i)}z_{uj(i)})=0 for all  q\neq s,  t,  u.

This kind of assumption was made by Bai and Saranadasa (1996), Chen and Qin (2010)
and Aoshima and Yata (2011). We note that (A‐i) naturally holds when  X_{i} is Gaussian.

We consider a test problem as follows:

 H_{0}:\Sigma_{1}=\Sigma_{2} vs.  H_{1}:\Sigma_{1}\neq\Sigma_{2} . (1)

Schott (2007) gave a test procedure when   d/n_{i}arrow c_{i}\in[0, \infty ) and normal distribution.
Aoshima and Yata (2011) gave a test procedure based on the quantity of  tr(\Sigma_{1}-\Sigma_{2}) .
They also discussed sample size determination so as to have prespecified size and power
simultaneously. Li and Chen (2012) and Endo et al. (2018) considered the test problem by
using the quantity of  tr\{(\Sigma_{{\imath}}-\Sigma_{2})^{2}\} . The above literatures discussed asymptotic properties
of their test procedures when   darrow\infty and   n_{i}arrow\infty under the following eigenvalue condition:

  \frac{\lambda_{1(i)}^{2}}{tr(\Sigma_{\dot{i}}^{2})}arrow 0 as   darrow\infty for  i=1,2 . (2)

Aoshima and Yata (2018) called (2) the “non‐strongly spiked eigenvalue (NSSE) model”
On the other hand, Ishii et al. (2016) investigated asymptotic properties of the first
principal component and considered the test problem (1) when   darrow\infty while  n_{i}s are fixed
under the following eigenvalue condition:

  \lim_{darrow}\inf_{\infty}\{\frac{\lambda_{1(\dot{\iota})}^{2}}{tr(\Sigma_{i}^
{2})}\}>0 for  i=1 or 2. (3)

Aoshima and Yata (2018) called (3) the “strongly spiked eigenvalue (SSE) model” and
showed that high‐dimensional data often have the SSE model. Ishii  (2017a, b) considered
two‐sample tests under the SSE model when   darrow\infty while  n_{i}s are fixed. The SSE model
is very difficult to handle because of the influence of strongly spiked noise. Aoshima and
Yata (2018) created a data‐transformation technique for twosample tests which transforms
the SSE model to the NSSE model. In this paper, we focus on the SSE model and give
a new test procedure for (1) by using a different approach from the data‐transformation
technique.

In Section 2, we introduce the test statistic given by Li and Chen (2012). We em‐
phasize that one should construct test procedures by considering the eigenstructure of
high‐dimensional data. In Section 3, we give a new test procedure under the SSE model.
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2 Performance of the earlier test procedure under the SSE
model

In this section, we investigate the performance of the test procedure given by Li and
Chen (2012). For (1) they assumed

 tr(\Sigma_{i}\Sigma_{j}\Sigma_{k}\Sigma_{l})=0\{tr(\Sigma_{i}\Sigma_{j})
tr(\Sigma_{k}\Sigma_{l})\} (4)

for any  i,  j,  k and  l\in\{1,2\} . Note that (4) is one of the NSSE models. They proposed a
test statistic as follows:

 U=A_{n_{1}}+A_{n_{2}}-2tr(S_{1n_{1}}S_{2n_{2}}) , (5)

where  S_{in_{\iota}} is the sample covariance matrix having  E(S_{in_{z}})=\Sigma_{i} and

 A_{n_{i}}= \frac{1}{n_{i}(n_{\dot{i}}-1)}\sum_{j\neq k}^{n_{l}}(X_{ijikjl}
^{\tau_{x_{ik})^{2}-\frac{2}{n_{i}(n_{i}-1)(n_{i}-2)}\sum_{j\neq k\neq\iota}^{n_
{i}}x^{T}x_{i}x_{ij}^{T}x_{\dot{i}}}}
 + \frac{1}{n_{i}(n_{i}-1)(n_{i}-2)(n_{\dot{i}}-3)}\sum_{j\neq k\neq l\neq l'}
^{n_{l}}x_{ij}^{T}x_{ik}x_{il}^{T}x_{il'}.

Note that  U is an unbiased estimator of

 ||\Sigma_{1}-\Sigma_{2}||_{F}^{2}=tr\{(\Sigma_{1}-\Sigma_{2})^{2}\} (  =\triangle , say).

In this paper, we consider the divergence condition such as  darrow\infty,   n_{1}arrow\infty and  n_{2}arrow\infty,

which is equivalent to

  marrow\infty , where  m= \min\{d, n_{1}, n_{2}\}.

Under (4) and some regularity conditions, they showed the following asymptotic result:

  \frac{U-\Delta}{Var(U)^{1/2}}\Rightarrow N(0,1) a s   marrow\infty . (6)

Here,  "\Rightarrow denotes the convergence in distribution and  N(0,1) denotes a random variable
distributed as the standard normaı distribution.

Let us show a toy example about the asymptotic null distribution of  U in (6). We set
 d=2048 and nı  = n2  =100 . We assumed  N_{d}(0, \Sigma) for each class under  H_{0}:\Sigma_{1}=\Sigma_{2}=
 \Sigma . Let us write a  k\cross l zero matrix by  O_{k,l} . We set

 \Sigma=  (o_{d-2,2}^{\Sigma}(1) O_{2,d-2 ,\Sigma_{(2)}}) having  \Sigma_{(2)}=(0.3^{|i-j|})

and considered two cases:

(i)  \Sigma_{(1)}=diag(d^{1/3}, d^{1/6}) and (ii)  \Sigma_{(1)}=diag(d^{1}, d^{1/2}) .

24



25

(i) When  \Sigma_{(1)}=diag(d^{1\int 3}, d^{1/6}) (ii) When  \Sigma_{(1)}=diag(d^{1}, d^{1/2})

Figure 1: The histograms of (normalized)  U for a NSSE model (in the left panel) and for
a SSE model (in the right panel). The solid line denotes the p.d.  f. of  N(0,1) .

Note that (i) is a NSSE model and (ii) is a SSE model. We generated independent pseudo‐
random observations from each class and calculated (normalized)  U 1000 times. In Fig.1,
we gave histograms for (i) and (ii). One can observe that  U does not converge to  N(0,1)
for (ii). In order to overcome this inconvenience, we modify  U under a SSE model and
newly construct a test procedure for the SSE model in Section 3.

3 Modification of  U under a SSE model

We assume the following assumption for the eigenvaıues:

(A‐ii)   \frac{\sum_{s--2}^{d}\lambda_{s(\dot{i})}^{2}}{\lambda_{1(i)}^{2}}=o(1) as   darrow\infty for  i=1,2.

Note that (A‐ii) is one of the SSE models. Also, note that (A‐ii) implies the conditions
that  \lambda_{2(i)}/\lambda_{1(i)}arrow 0 and  \lambda_{1(i)}^{2}/tr(\Sigma_{i}^{2})arrow 1 as   darrow\infty . For a spiked model as

 \lambda_{j(i)}=a_{j(i)}d^{\alpha_{J(i)}}(j=1, \ldots, k_{i}) and  \lambda_{j(i)}=c_{j(i)}(j=k_{i}+1, \ldots, d)

with positive (fixed) constants,  a_{j(i)}s,  c_{j(i)}s and  \alpha_{j(i)}s , and a positive (fixed) integer  k_{i},
(A‐ii) holds when  \alpha_{1(i)}>1/2 and  \alpha_{1(i)}>\alpha_{2(i)}.

In addition, we consider the following condition:

(  A‐iii)  z_{1j(i)},  j=1,  n_{i} , are i.i.  d . as  N(0,1) for  i=1,2.

For all  i,  j,  E\{(z_{{\imath} j(i)}^{2}-1)^{2}\}=2 under (  A‐iii). Let

 K=2\lambda_{1({\imath})}^{2}/n_{1}+2\lambda_{1(2)}^{2}/n_{2}.
We have the following result.
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Lemma 1 (Ishii et al., 2017). Under (A‐i) to ( A ‐iii) and  H_{0} , it holds that as   marrow\infty

 U=( \sum_{j={\imath}}^{n_{1}}\underline{\lambda_{1}}(ı)  (z_{1j(1)}^{2}-1)_{-\sum_{k={\imath}}^{n_{2}}\frac{\lambda_{1(2)}(z_{1k(2)}^{2}
-1)}{n_{2}})^{2}-K}n_{1}+o_{p}(K) .

Let

 T=U/K+1.

Then, we have an asymptotic distribution of  T under  H_{0}.

Theorem 1 (Ishii et al., 2017). Under (A‐i) to  (A ‐ii i) and  H_{0} , it holds that as   marrow\infty

 T\Rightarrow\chi_{1}^{2}.

Here,  \chi_{\nu}^{2} denotes a random variable distributed as a  \chi^{2} distribution with  \nu degrees of
freedom.

Since  \lambda ı(i)s are unknown, we need to estimate them. It is well known that the sample
eigenvalues get too much noise for high‐dimensional data. See Jung and Marron (2009),
Yata and Aoshima (2009), Ishii et al. (2016) and Shen et al. (2016) for the details. We
consider estimating  \lambda ı(i)s by using the noise‐reiuction  (NR) methodology given by Yata
and Aoshima (2012). We denote the dual matrix of  S_{in_{t}} by  S_{Dn_{l}} and define its eigen‐
decomposition as follows:

 S_{iD}=(n_{i}-1)^{-1}(X_{i}-\overline{X}_{i})^{T}(X_{i}-\overline{X}_{i})

 = \sum_{s={\imath}}^{n_{l}-1}\hat{\lambda}_{s(i)}\hat{u}_{s(i)}\hat{u}_{s(i)}
^{T},
where  \overline{X}_{i}=[\overline{x}_{i}, \overline{x}_{i}] and   \overline{x}_{i}=n_{i}^{-1}\sum_{j=1}^{n_{l}}x_{ij} for  i=1,2 . If one uses the NR method,
 \lambda_{j(i)}s are estimated by

  \tilde{\lambda}_{j(i)}=\hat{\lambda}_{j(i)}-\frac{tr(S_{iD})-\sum_{s=1}^{j}
\hat{\lambda}_{s(i)}}{n_{i}-1-j} (j=1, \ldots, n_{i}-2) .

Note that  \tilde{\lambda}_{j(i)}\geq 0 w.p.1 for  j=1,  n_{i}-2 . Yata and Aoshima (2012, 2013) showed
that  \tilde{\lambda}_{j} (i) has consistency properties when   darrow\infty and   n_{i}arrow\infty . On the other hand,
Ishii et al. (2016) gave asymptotic properties of  \tilde{\lambda}_{1} (i) when   darrow\infty while  n_{i} is fixed. Let
 s_{1(i)}= \sum_{j=1}^{n_{l}}(z_{{\imath} j(i)}-\overline{z}_{1(i)})^{2}/(n_{i}-
1) for  i=1,2 , where   \overline{z}_{1(i)}=n_{i}^{-{\imath}}\sum_{j=}^{n_{l}} ı  z_{1j(i)}.

Theorem 2 (Yata and Aoshima, 2013 and Ishii et al., 2016). Under (A‐i) and (A‐ii),  it

holds that as   darrow\infty

  \frac{\tilde{\lambda}_{1(i)}}{\lambda_{1(i)}}=\{\begin{array}{ll}
s{\imath}(i)+op(l)   when n_{i} is fixed,
1+o_{p}(1)   when n_{i}arrow\infty.
\end{array}
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Under (A‐i) to ( A ‐iii), it holds that as   darrow\infty

 (n_{i}-1) \frac{\overline{\lambda}_{1(i)}}{\lambda_{1(i)}}
\Rightarrow\chi_{n_{t}-1}^{2} when  n_{i} is fixed,

and   \sqrt{\frac{n_{i}-1}{2}}(\frac{\tilde{\lambda}_{1(i)}}{\lambda_{1(i)}}-1)
\Rightarrow N(0,1) when  n_{i}arrow\infty.

Let  \tilde{K}=2\tilde{\lambda}_{{\imath}(1)}^{2}/n_{1}+2\tilde{\lambda}_{1(2)}^{2}
/n_{2} and

 \overline{T}=U/\tilde{K}+1.

We have the following result.

Theorem 3 (Ishii et al., 2017). Under (A‐i) to ( A ‐iii) and  H_{0} , it holds that as   marrow\infty

 \tilde{T}\Rightarrow\chi_{1}^{2}.

We consider testing (1) for a given  \alpha\in(0,1/2) by

rejecting  H_{0}\Leftrightarrow\overline{T}\geq c_{1}(\alpha) , (7)

where  c_{1}(\alpha) denotes the upper  \alpha point of  \chi_{1}^{2} . Then, under (A‐i) to (  A‐iii), it holds that as
  marrow\infty

Size  =\alpha+o(1) .

See Ishii et al. (2017) for the asymptotic power of the test procedure by (7).

4 Simulation

We compared the performance of the test by  \overline{T} with the test by  U in numerical simu‐
lations. Independent pseudo‐random observations were generated from  N_{d}(0, \Sigma_{i}) . We set
 \alpha=0.05 and

 \Sigma_{i}= (0_{d-2,2}^{\Sigma_{i(1)}} \Sigma_{i(2)}^{O_{2,d-2}}), i=1,2,
where  O_{k,l} is the  k\cross l zero matrix. We set

 \Sigma_{1(1)}=diag(d^{2/3}, d^{1/2}) and  \Sigma_{1(2)}=(0.3^{|i-j|^{i/3}}) .

As for the alternative hypothesis, we considered  \Sigma_{2}=2\Sigma_{1} . Note that (A‐i) to (  A‐iii) are
met. We set  (n_{1}, n_{2})=(\lceil 3d^{1/2}\rceil, \lceil 4d^{1/2}\rceil) and  d=2^{8} for  s=5 , 10, where  \lceil x\rceil denotes
the smallest integer  \geq x.
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Figure 2: The performances of the tests by  \overline{T} and  U . We set  (n_{1}, n_{2})=(\lceil 3d^{1/2}\rceil, \lceil 4d^{1/2}\rceil)
and  d=2^{S} for  s=5 , 10. The values of  \overline{\alpha} are denoted by the dashed lines in the left
panel and the vaıues of  1-\overline{\beta} are denoted by the dashed lines in the right panel.

We checked the performance by 2000 replications. We defined  P_{r}=1 (or  0 ) when
 H_{0} was falsely rejected (or not) for  r=1 , 2000, and defined   \overline{\alpha}=\sum_{r=1}^{2000}P_{r}/2000 to
estimate the size. We also defined  P_{r}=1 (or  0 ) when  H_{1} was falsely rejected (or not) for
 r=1 , 2000, and defined  1- \overline{\beta}=1-\sum_{r=1}^{2000}P_{r}/2000 to estimate the power. Note that
their standard deviations are less than 0.011. In Fig. 2, we plotted  \overline{\alpha} (left panel) and  1-\overline{\beta}
(right panel).

One can observe that the test by  \overline{T} gave preferable performances. On the other hand,
the test by  U gave a bad performance with respect to the size. Remember that  U was
constructed under (2). We emphasize that it is very important to select a suitable test
procedure depending on the eigenstructure.
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