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1 Introduction

This article is based on [11], joint work with Professor Taka-aki Tanaka. Let w be a real
number. We denote by [z] the integral part of the real number z, namely the largest
integer not exceeding x. Hecke-Mahler series, the generating function of the sequence
{[kw]}32,, is defined by

o0
ho(z) = Z[kw]zk,
k=1
where z is complex with |z| < 1. Hecke [2] proved that, if w is an irrational number,
then h,(z) has the unit circle |z| = 1 as its natural boundary. Mahler [5] proved that,
if w is a quadratic irrational number, then the value h,(a) is transcendental, where o
is a nonzero algebraic number inside the unit circle.

In what follows, let w be a real quadratic irrational number. We denote by hf.f)(z)
the derivative of h,(z) of order [. Nishioka proved the algebraic independence of the
values of h,(z) and its derivative of any order at any fixed nonzero algebraic number
inside the unit circle.

Theorem 1 (Nishioka [8]). If « is an algebraic number with 0 < |a| < 1, then the
infinite set of the values {hg)(a) | L > 0} is algebraically independent.

On the other hand, Masser proved the algebraic independence of the values of h,(z) at
any nonzero distinct algebraic numbers inside the unit circle.

Theorem 2 (Masser [6]). The infinite set of the values {h,(a) | a € Q, 0 < |a| < 1}
1s algebraically independent.

We denote by w’ the conjugate of the real quadratic irrational number w. The following
is the main theorem of this article.
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Theorem 3 (with Tanaka [11]). Suppose that w satisfies |w—w'| > 2. Then the infinite
set of the values {h(a) |1 >0, a € Q, 0 < |a| < 1} is algebraically independent.

Corollary 1. Suppose that w is an algebraic integer. Then the infinite set of the values
{ho’( l) a) |1>0, a€Q, 0< |a| <1} is algebraically independent.

Corollary 2. Let m > 1 be a square-free integer and r a rational number. Put w =
rv/m. If |w| > 1, then the infinite set of the values {hw )[1>0,a€eQ, 0< |a| < 1}
is algebraically mdependent.

For more general irrational number w, some results on the arithmetic properties of
the values of h,(z) can be found in for example (3], [7], [1].

In the next section we consider the case where w is rational. In Section 3 we give
the sketch of the proof of Theorem 3.

2 On the case where w is rational

For any positive number w, we define

oo [k1w]

H,(z,2) = Z Z~1 e,

k1=1ko=1

As mentioned in the previous section, if w is an irrational number, then h,(z) is tran-
scendental over C(z). In the rest of this section, let w be a rational number, not
necessarily positive. We assume that w is expanded in the finite continued fraction

1

w=ag+ 1 =: [0} G508 = w553
ai + il
(o
aT
where a9 = [w] and ay, ..., a, are positive integers. We denote by {z} the fractional
part of the real number z. Put x = {w} = [0;a1,as,...,a,]. Define positive integers
Sustp (0 < <1 —1) by x = so/to,
S 1

+£ = 0<pu<sr-2
(7 Apy1 + S,J.+1/tu+1 ( )

and s,_1/t,_1 = 1/a, with s, and ¢, relatively prime for any u. Define positive integers
Pus @u (0 < < 7) by

EXIRCHECH
p,u—l Q/J—l 1 O 1 0 '



For any positive integer a, we have

For any rational number p/q, where p, g are relatively prime positive integers,

Hence

Hsu/tu(zlvzé)

Ha+w(217 22)

Hp1o(21,20) + Hyppl20, 1) =

oo [kra+kiw]

X, 2

k1=1 ko=1
oo kia+[kiw]

ki k2
>, >, A'a

ki=1 ko=1
0 ak [k1w]
k k k k
E 2 E 2* + (2123)" E Zy”
k1=1 ko=1 ko=1
0 aki+1
29 — &
E P 2 + H, (2125, 20)
1— V)
ki=1
2129 o

(-2 -zz)

Z 72t + Z P

k1>1,k2>1 k1>1,k2>1
ka<kip/q ka<kiq/p
= E zl 22 + E ~1 z2
k1>1,k2>1 k1>1,k2>1
k2<kip/q k1>k2p/q
oo oo
= E ~1 22 + E
k1=1 ko=1
2122 N zgz’{
= q.p"
(1=2)(1—2) 11—z

2129 Zt“Zs“

i 1 2

(1—2z)( ] 1-— 21 22 a,‘+1+s,,+1/t,,+1(32» “)
;1u+1+]z 31“22 B (7(LH

A=) 1= gy (4

+ Hw(zlzga 22)'

“227 21)-

(1)
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Therefore, noting the definition of p, and g, (0 < pu < 2), we see that

HX(‘ZI’ ZQ) = HSo/to(Zl , 22)

a1+1 to S0
2 2 ) a
= + — g pin (28 20, 1)
a) to s s1/t1\#1 <2 <1
(1—g)(l—2"2) 1~2"2"
P1+po g1 to S0
Z 2 2.7
_ 1 2 1 ~2 P1 .91 _Po
- + — Hy, 1, (2023, 28°)
— PO — AP a1 10 .50 S/t \<1. 29 9=1
(1 2 )(1 21 %9 ) 1- 2y %
P1+Ppo 41 to S0 P1 4q1\a2+1 _po
21 (2 21 % (21'23") 2!

Q=)&) 1o Q- A1 ) D)
G D
R e

P1+po g1 to .80 p2+p1 q2+q1
21 29 21 29 2] 25

+ o (1 5)2200. 2028)

I R D e I (A D )

Zp1t1+p051zq1t1
o 1 2 P2 502 Pl d1
1 — Zp1t1+poslzq1t1 +H52/t2(zl RIS )
1 2

Continuing this process, we see that

HX(Zl, ZQ)

r—2 Pu+1tPp  Gu+1+qu Pulp+Pu-185u qutp+qu—15u
_ Z(_l)u 3! 29 + 3! )
(1 _ Zi’/l‘flzg[l‘fl)(l _ Zim Zg“) 1 — zﬁ;’utu‘*'l’uflsuzgutu‘kqu—lsu
=0

+(_1)T'1Hsr—l/tr—l (szr—l Zgr_l ) Z¥T_2Zgr_2)-

Since
2120 gir=1ghr
HSr—l/tr-l(Z17 22) (1 — Z])(l _ 22) 1 _lztr—?ZSr—l - Har(zQ’ zl)
1 2
Z?”+1Z2 zir—lz;r—l

= +
1-2z)1=2f2) 1- zi"lzg’"’l

by (2), $y-1/t-—1 = 1/a, and (1) with w = 0, we have

Hx(zl-, Z2)
p= zf#-H'FPu Zgu+l +au Z‘;’ﬂtu"'pu—lsu Z‘Q]utu+qu—15u
= E (—1)“ e =
Pu+1 _Gu+1 Pu _An tu+pu—18 tp+qu-18
e (L—2"" 2" ) (1 — 2"2y") 1 — o Premsn putuuatu

Noting that
apz

Hy(2,1) = hy(2) = hu(2) — [SE

by x = w — ay, we see that

apz = B ZP/:+1+PN Zputu +Pu-15u
hol?) = g + 220 ((1 Y=oy T 1= zpumpulsu) € Q(2).

—

Il
o

Iz



Hence we see that h,(z) is a rational function if w is rational.

3 Proof of Theorem 3

Let © = (wy;) be an nxn matrix with nonnegative integer entries. For z = (z,...,2,) €
C", we define a multiplicative transformation 2 : C" — C™ by

Oz = <sz” w”,...,Hzf"j) . (3)

Jj=1 Jj=1

Then the iterates Q¥z (k= 0,1,2,...) are well-defined.
For any positive irrational number y, we see that

HX(Z1,22)+H1/X(22,21) = E Zl 22 + E ~1 ~2
h1>1,h2>1 h1>21,h2>1
ha<hix hi1>hox
21 22

(4)

:1—211—22.

(01 (1 a o P q
Let D= ( 10 > and E(a) = ( 01 ) for any positive integer a. Define ( ros ) X
= (px + q)/(rx + 8), where p, ¢, 7, s are nonnegative integers. Then we see that
Hpy(21,22) = —Hy(D(21,22)) (mod Q(21, 22)) (5)
and that
Hpo)y (21, 22) = Hy(E(a)(21, 22))  (mod Q(21, 22)) (6)

by (4) and (1), respectively, where D(z1, z2) and E(a)(z1, 22) are defined by (3).
Sketch of the proof of Theorem 8. Since

hy(z) +h_w(z) = Z[kw]zk - Z[—kw]zk
k=1 k=1
= D[kt 3 (k] - 1) 2F = -2 - -

>
Il
—-
ol
Il
i

we see that the algebraic independency of {(hP(@)|1>0, aeQ 0<]al <1}is

equivalent to that of {h")(a) |1 >0, a €Q, 0< [a| < 1}. Hence, considering —w
instead of w if necessary, we may assume that w > w’. Since |w — w'| > 2, there exists
an integer ag such that 0 < w —ag <1 and ' —ag < —1. Let x = w — ag. By

o0 a -
h’Y Z Ld*ag :hw(z)_i
k=1 =
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we may consider y instead of w by the same reason as above. Then y is reduced and
so expanded in a purely periodic continued fraction as follows:

1
X = [0; a1, ag, . . .] S . un

a; +

a2+.

where ay, as, ... are positive integers. Let v be its even period. Then
X = [0;a1,0as,...,a,,X] = DE(ay)DE(as) --- DE(a,)x.
Let T®) = E(a,)DE(a,_1)D--- E(a;)D. Then by (5) and (6) we have
H,(z1,20) = H (T(l)(zl, 29)) (mod Q(z1, 22)).

Let a1, ....a, be any nonzero distinct algebraic numbers with |aq], ..., |a,| < 1. Tt
is enough to show that {hx (a;) |0 <1< L, 1<1i<n}isalgebraically independent for
any sufficiently large L. Let g,(z) = Y_p—, k'[kx]2". Then the algebraic independency
of {hg(l)(ryi) |0 <1< L, 1<i<n}isequivalent to that of {g(e;) |0 <I <L, 1<

i <n}. For the ay,...,ay, there exist multiplicatively independent algebraic numbers
Bi,...,Pm with 0 < |B;] <1 (1 < j < m) such that
m
a=G[[87 @a<i<n),
j=1

where ¢; (1 <14 < n) are roots of unity and ¢;; (1 <i <mn, 1 <j < m) are nonnegative
integers (cf. [4, Lemma 3]). We define

T = diag (T™,...,TW).

m

Let ® = (21,...,Zm), Y = (Y1, ..., Ym) be variables. Let
zo = (B1,1,B2,1,...,Bm,1). (7)
and M;(x) = 2 - - - zlm. Define
Gi(z) = G(G, M, z) := H\ (G Mi(x), Mi(y))

oo kl/\]
=Y "> (M=) Mi(y) (1<i<n), (8)
k1=1 ko=1
where z = (1, Y1, T2, Y2, - - -, Tm, Ym)- By (8) we see that

D!, Gi(zo) Zemh hyJal,

where (;;, > 0. Hence the algebraic independency of {g;(o;) | 0 <1< L, 1<i<n}is
equivalent to that of {D! Gi(z) |0 <1< L, 1<i<n}.
Similarly to H,, each G; satisfies a functional equation:



Lemma 1 (Masser [6, Lemma 3.3]). There ezists a positive power T of T™ such that
Gi(z) = Gi(T2) (mod Q(z))
forany i (1 <i<mn).
The matrix 7" in Lemma 1 can be written as
: tin tio t11 ti2
T = dia, S .
lg(<t21 t22)' ’(tzl t22>)

m

Let D; = x;0/0x; and D} = y;0/9y; (1 < j < m). Since

oG, . oG, .
D,Gi(z) = xja—(Tz)tth.“ 2 4 g (T2)tnz® 'yf®  (mod Q(2))

x] J 8% J N
= tuDjGi(TZ) + tng;Gl(TZ) (HlOd Q(Z))
and
, G, - G, _ —
D]G,(Z) = yja—xj(TZ)tlgx;lly;l 1 +yj5y7(Tz)tzzx;”y§” 1 (mod Q(Z))
= tlg.DjGi(TZ) + tQQD;Gl(Tz) (and @(Z))
for1<i<mn, 1<j<m,wesee that DM D} ... DEnD! FnGi(2) (0 < ky, k), ..., km,
k;, < L, 1 <i<mn) satisfy a system of functional equations of the form
Gi(z)
DlGi(Z)

(DD} -+ DDy, ) Gi(2)

Gi(T=)
DlGi (TZ)

= 4 (mod (@(z))(LH)zm)

(DD - D,,D.)*Gi(Tz)

for 1 < i < n and for any L > 0, where A is an (L + 1)*™ x (L 4+ 1)*™ matrix with
rational entries. In order to prove the algebraic independency of {D;iGi(zg) |0<I<
L, 1 <i < n}, we use the following criterion:

Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose that f1(2),...,
fu(z) € K[z, ..., 2n] converge in an N-polydisc U around the origin of CN and satisfy
the system of functional equations of the form

fi(2) f1(Qz) bi(2)
fu(z) fm(Qz) bu(2)
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where A is an M x M matriz with entries in K and b;(z) € K(z1,...,2y) (1 <i < M).
Let o be a point in U whose components are nonzero algebraic numbers. Assume that
Q and o satisfy suitable conditions. Then, if fi(z),..., f-(2) (r < M) are linearly
independent over K modulo K(z1,...,2n), then fi(a),..., fr(a) are algebraically in-
dependent.

We can find that the matrix 7" and the point z, satisfy the condition in above lemma.
Therefore it suffices to show that {D! Gi(z) | 0 <1 < L, 1 < i < n} is linearly
independent over Q@ modulo Q(z).

On the contrary, we assume that {D}G;(z) | 0 <1 < L, 1 <i < n} is linearly
dependent over Q modulo Q(z ). Then there exist algebraic integers \j; (1 <i<n, 0 <
[ < L), not all zero, and a rational function R(z) € Q(z) such that

n L
D> "Dl Gi(z) = R(2). (9)

i=1 1=0

Substituting 1 into y1, ¥, . . . , Ym, we obtain

ZZWU Zh hX)(GMy(2)) = R (21, @a, . . ., ) € Q).

i=1 (=0

We take a sufficiently large positive integer ¢ and attempt a specialization of the form
z = (w, w’,. . w")
for a single variable w. Let t; = Z;nzl it (1 <i<n). Then
wh = M;(w', th? conwt™).
We take ¢ so large that, if M; # M, then t; # t; (1 < i < j < n) and that the

denominator of R*(w) := R'(w',w",...,w'™) € Q(w) does not vanish. Let \, = Aill;,
(1<i<n, 0<1<L). Then we have

L o0
DXy (G Zakw = R*(w),

where

w = 3 ok [B] g

1<i<n =0
tilk

- TR

1<i<n =0
t,‘lk



and {-} denotes the fractional part. Since R*(w) € Q(w) and since a; (k > 0) are
algebraic integers, we can find

ar = Pu(k)EF + -+ Pu(R)Ey, (k> ko), (10)
where kg is a sufficiently large integer, Pi(z),..., Py(z) € Q[z] and &,...,&y are
algebraic integers. Then by a;, = O(kLT!), we see that &,..., &y are roots of unlty
(cf. [10, proof of Theorem 3.4.8]). Let N be a positive integer such that (Y = ... =
=" =--=¢" =1 Let {t},...,t.} be the maximum subset of {t1,... ,tn} with
ti#Ft, (1<i<j<r). LetT,={j|t;=t;} (1<i<r). Then (; (j € T;) are distinct
for each 14, since ag...., , (i, are dlstmct Put s =t)---t'!Nand s; = s/t; (1 <i<r).

Noting that {1,...,n} is a disjoint union of 71, ..., T,, for any k > ko and for any fixed
positive integer h, we see that

o , e\ (ks +h) [ (ks+h ks +h
" — ZZ(ZA].Z<;/,>(st;l ) <( St; )x_{( St; )x})

1<y =0 JET;
tih
S D
1=1
! Y ks +
R <(L+1)h’\zL sEx/t+ A ysbx = APs f{(—“t,—)l}>
=1 Z

ZA(“{ ks+h) } (11)

where e
t E
)\([h) Z]ET ]lC ] Zf t;lhv
! 0, otherwise,
for 1 <+i <. On the other hand, by (10) we have
et = cL) KA g L 4 ) (12)
where c(()h), e .,c(thl are algebraic numbers. We can take L such that X, (1 <i < n)
are not all zero.
Let @ = (s1x, 82X, .-..8r)). Renumbering oy, ..., a,, we may assume that tj <
th < ---<t. Thens; > -+ > s, Let p = ()\glz)sl,...,)\yz)sf) and put c(h) -

Siy (L + DA sbx/ti + 2 1sbx) = o,

Lemma 3. If p # 0, then there exists a real number 1o such that

p-(at— ([os1x] - -, [rosex])) # &
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Proof. We see that

0,1)" 3 am— ([r0s1X],---, [T08:X])
aT, 70 € [0,1/(s1x)),

aTy — (*: ceey Ky 1a 0: wis 70)7 To € [1/(81X)’ 1/(Si+lX))’

where s,41 = s, /2. Since (x,...,%,1,0,...,0) (1 <7 < r) are linearly independent and

p # 0, there exists an i such that p- (x,..., %,1,0,..., 0)#0. If p-a #0, then p-ar

takes at least two values when 7y varies in the interval [0,1/(s;x)). If p-a = 0, then

[0.1/(sr+1x)). Hence we can choose 73 € R such that

p-(amo — ([ros1x], - -, [ros:X])) # C(Lh)/- O

Lemma 4. For any real number T there exists an increasing sequence {k, },>qo of positive
integers such that

1/111)1010 ({kvsix}, .- {kusex}) = am = ([ts1x], - - -5 [TseX])

where each component of the left-hand side approaches the corresponding component of
the right-hand side from the right.

Proof. First we consider the case of 7 > 0. For any £ > 0, there exist positive integers
pe and g. such that

£
0< —pe < ——,
q=X — Pe o \/F
since there are strictly increasing sequences {p,},>o and {q,,},,zg of positive integers

i
such that 0 < ¢,x — p, < 1/g,. Let ; = (0,...,0,—1,0,...,0) (1 < i < r). Then,
every component of g.a + p.sie; + - - - + p.s,e, is positive and less than ¢/,/r, and so
llg:a + pesier + - - - + pesre.|| < e. Hence {pu(g.a + p.sie1 + - -+ + p.s,e.) | p € N} is
distributed on the half-line aR.q with equal intervals of length less than . Therefore
there exists a positive integer . such that

|t (ge@ + pesier + - - - + pes,e,) — at|| < e (13)
and every component of ji.(g.a+p.sie1+- - -+p.s.e,)—ar is nonnegative. Let p.q. = k.
and pep. = kL. It is clear that ar—([Ts1x], ..., [7s:X]) = ar+[rs1x]ei+- -+ [rs.X]e, €
[0,1)". By (13) we have

lkea + (K.s1 + [rs1x])er + - - - + (Kls, + [Ts.x])er
—(a7 + [rsix]ler + -+ -+ [Tspx]er)|| < € (14)



and hence we can choose ¢ so small that k.a+ (klsi+[7s1x])er+- -+ (kls,+[7s.x])e, €
(0,1)". Since klsi + [Ts1x], ..., kls, + [Ts,X] € Z, by the uniqueness of the fractional
part, we see that

kea + (klsi + [tsix])er + - - + (Klsp + [Tsrx])er = ({kesix}s -« - {kesix}) -
Hence by (14) there exists an increasing sequence {k, }, o of positive integers such that
,,11_,120 [ huBi% s m v o5 TRpBr i }) = @F — ([F819] s+ 5 [TE¥]) 5

where each component of the left-hand side approaches the corresponding component
of the right-hand side from the right.

Next we consider the case of 7 < 0. For any € > 0, there exist positive integers p,
and g. such that

° < <0

31\/F qeX — Pe )
since there are strictly increasing sequences {p,},>o and {g,}.>0 of positive integers
such that —1/¢, < g¢,x — p» < 0. Then {u(g-a + p.sie1 + -+ + p.s,e;) | u € N} is

distributed on the half-line aR_( with equal intervals of length less than €. By the same
way as above we can take an increasing sequence {k,},>o of positive integers such that

}Lr{)lo ({kvsix}s-- - {kusex}) = a7 = ([rs1x], .-+, [T5:X])
where each component of the left-hand side approaches the corresponding component
of the right-hand side from the right. This completes the proof. O

We assume that /\Eﬁ) (1 <i < r)arenot all zero. Then p # 0. By Lemmas 3 and 4,
we see that there exist a real number 75 and an increasing sequence {k, },>q of positive
integers such that

p-(aro = ([ros1x] -, [1os,x])) # (15)
and
1115'1010 ({k‘ysl)(} L) {kus'rX}) = 0'76 - ([T(;SlX] hrl & g {T(;STX]) (16)
= ({T651X}a ] {T(I)STX})v

where each component of the left-hand side approaches the corresponding component
of the right-hand side from the right and 7j = 7y — h/s. By (16) we see that

= Ulggo ({kvsix + hx/t1}, ... {kusex + hx/t.})

= ({(ro — h/s)six + hx/t1}, ..., {(70 — h/s)s,x + hx/t.})
= ({TOSIX}7" 'a{TUSTX})' (17)
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Since 1inng ses B 7 T = C(thl by (12) and limg_yeo agsn/kXH =30, )\1(2 sFx by
(11), we have

h h
c(Lll = E )\EL)SZ-L_HX. (18)
By (12)
Afs+h — CL 1kL+l (h)
lim * =Gy s

k—o0 kL

On the other hand, by (11), (15), (17) and (18), we have

. Qkys+h — CL+1]‘vL+1
—_ L
k() o - S A s s + R/} +
o 1/1—>n;olo kf
= lim (c(L’” + e (ks + h)x /Y, . { (ks + R)x /1)) )
# e

which is a contradiction. Hence we see that Agz) =0 (1 < < r) for any positive integer
h. Hence for h = t;k with k£ > 0 and for ¢ with 1 < ¢ <r we have

Z )‘]LC
JE€T;

Since (; (j € T;) are distinct, by non-vanishing of the Vandermonde determinant, we
see that \;;, =0 (1 <4 < n), which is a contradiction, and the proof of the theorem is
completed. 0
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