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Abstract

Erdó
 \acute{}

s [4] conjectured that, for any integer  m\geq 9 , the digit 2 appears at least once
in the ternary expansion of  2^{m} . More precisely, Dupuy and Weirich [3] conjectured
that. for any sufficiently large  m , the digits 0,ı, and 2 appear “uniformly” in the
ternary expansion of  2^{m} . This is still open. Stewart [10] obtained a lower bound
for the number of nonzero digits in the ternary expansion of  2^{m} , thus giving (very)
partial results of ‘uniformity In this report, we investigate the number of nonzero
digits in the base‐b expansion of more general smooth numbers and introduce the
main results established in [2].

1 Problems on the base‐b expansion of  a^{n}

Throughout this survey,  b denotes an integer greater than 1. The main purpose of this
report is the study of the uniformity of the digits in the base‐b expansion of smooth
numbers. We now recall the definition of smooth numbers. We denote by  P[n] the
greatest prime factor of an integer  n\geq 2 . For convenience, let  P[1]  :=1 . Let  x be
a positive real number. Recall that a positive integer  n is  x‐smooth if  P[n]\leq x . For
instance, let  a be an integer greater than 1. Then,  a^{m} is  P[a] ‐smooth for any nonnegative
integer  m . In this section we review open problems related to the base‐b expansions of
powers of integers.

In 1979, Erdó
 \acute{}

s [4] conjectured that, if  m is an integer greater than 8, then the digit 2
appears at least once in the ternary expansion of  2^{m} (note that  2^{8}=3^{\overline{D}}+3^{2}+3+1 ). Let
 T be a positive integer. Denote by  N(T) the number of integers  m with  0\leq m\leq T such
that the ternary expansion of  2^{m} omits 2. It is still unproven whether  N(T) is bounded
as  T tends to infinity. In 1980, Narkiewicz [7] showed that

 N(T)\leq 1.62T^{\log_{3}2},
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where  \log_{3}2= (log2)/(1og3)  \approx 0.63092 . Moreover, for any positive real number  \lambda_{:} let
 N_{\lambda}(T) be the number of integers  m with  0\leq m\leq T such that the ternary expansion of
 \lfloor\lambda 2^{m}\rfloor omits 2. Lagarias [6] proved that

 N_{\lambda}(T)\leq 25T^{0.9725}.

for any  T\geq T_{0}(\lambda) , where  T_{0}(\lambda) is a positive number depending only on  \lambda.

Recall that two positive integers  a and  b are multiplicatively independent if  a^{i}b^{j}\neq 1 for
any integers  (i, j)\neq(0,0) . Let  a and  b be multiplicatively independent positive integers.
Let  v=v_{1}v_{2}\ldots v_{\iota} be any finite word over the alphabet  \{0,1, . . . , b-1\} of length   l\geq ı.
Lagarias [6] conjectured that  v occurs at least once in the base‐b expansion of  a^{m} for
any sufficientlč large integer  m . Erdós conjecture treats the case  l=1 . We introduce a
related result from [5]. Let  p be a prime number and  a\geq 2 an integer coprime to  p . Let
 v=v_{1}v_{2}\ldots v_{i} be any finite word over the alphabet  \{0.1_{:L} .p-1\} with length  l\geq 1.
Let  \gamma(\geq 2) be the number of circular shift occurrences of  v in  vv=v_{1}v_{2}\ldots v_{i}v_{1}v_{2}\ldots v_{l}.

Moreover, let  e_{p}(v:_{!}a^{m}) be the number of (possibly overlapping) occurrences of  v in the
base‐p expansion of  a^{m} . It is shown in [5] that we have

 1 i_{M}\sup_{arrow\infty}\frac{p(v;a^{m})}{\log m}\geq\frac{\gamma-1}{l\log p}.
It efining  E\cdot d". conj  (^{\backslash },(^{\backslash }.tn1^{\cdot}(),  Dn ])  ny_{\dot{c}11( }dW\backslash irich [3] ])  1^{\cdot}()1 )  O_{\iota}*(^{\backslash }.(  th_{(}\backslash . following  1 )robl  \backslash on th  (\backslash .

uniformity of digits. Let  p and  q be distinct prime numbers. Let  h be an integer with
 0\leq h\leq p-1 . Then Dupuy and Weirich [3] conjectured that

  \lim_{marrow\infty}\frac{e_{p}(h;q^{m})}{\log_{p}(q^{m})}=\frac{{\imath}}{p}.
Moreover, they obtained the following partial results in the direction of the conjecture
stated above. Let  kI )  e a fixed  1 )(  s^{\backslash }itive integer.  \Gamma_{o1\dot{c}}) .ny integer  m,  h with  0\leq m,   0\leq h\leq
 p-1 , let

 q^{m}=s_{0}+\mathcal{S}_{1}(p)(p)_{p+\cdots+s_{M}^{(p)}p^{\Lambda\prime}}
be the base‐p expansion of  q^{m} , where   M=\lfloor\log_{p}(q^{m})\rfloor and  s_{i}^{(p)}\in\{0,1, , p-1\} for  i=

 0 , ,  M . Let  e_{p}(h, k;q^{m}) be the number of occurrences of  h in the word  s_{k-1}^{(p)}\ldots s_{1}^{(p)}s_{0}^{(p)}.
Then

  \lim_{karrow\infty}\lim_{Narrow\infty}\frac{1}{N}\sum_{m=1}^{N}\frac{e_{p}(h,
k;q^{m})}{k}=\frac{1}{p}.
It is in general very difficuıt to get some non‐trivial information on the number of oc‐
currences  e_{p}(h;q^{m}) of a fixed digit  h in  q^{m} . In the next section we consider the number
of nonzero digits, which also gives partial results for the uniformity of digits. In Section
2, we introduce various results on the number of nonzero digits of smooth numbers. In
Section 3, we present the main new results obtained in [2], which improve and extend the
results of Section 2.
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2 Number of nonzero digits of smooth numbers

For any positive integer  n , let  \lambda_{b}(n) be the number of nonzero digits in the base‐b expansion
of  n . If the conjecture by Dupuy and Weirich in Section 1 is true, then

 m arrow\infty 1\dot{{\imath}}m\frac{\lambda_{p}(q^{m})}{\log_{p}(q^{m})}=
\frac{p-1}{p}.
However, it is still unknown whether

 1 i_{M}\sup_{arrow\infty}\frac{\lambda_{p}(q^{m})}{\log_{p}(q^{m})}>0.
We introduce the lower bounds for the number of nonzero digits established by Stewart
[10]. Let  a and  b be multiplicatively independent integers greater than 1. Let  \varepsilon be an
arbitrary positive real nu1nber. Then Stewart [10] showed that there exists an effectively
computable positive number  C_{1}(a_{:}b_{\dot{\ovalbox{\tt\small REJECT}}}\varepsilon) such that

  \lambda_{a}(n)+\lambda_{b}(n)\geq(1-\varepsilon)\frac{\log\log n}{\log\log\log
n},
for any  n\geq C_{1}(a, b, \varepsilon) . In particular, consider the case of  n=a^{m} , where  m is a nonnega‐
tive integer. Since  \lambda_{a}(a^{m})=1 , we see that

  \lambda_{b}(a^{m})\geq(1-\varepsilon)\frac{\log\log a^{m}}{\log\log\log a^{m}} , (2.1)

that is,

  \lambda_{b}(a^{m})\geq(1-\varepsilon)\frac{\log m}{\log{\imath} ogm}
\dot{\ovalbox{\tt\small REJECT}}
for any sufficiently large integer  m . The proof rests on a subtle use of estimates for
complex linear forms in the logarithms of rational numbers.

Lower bounds for the number of nonzero digits in the base‐b expansion of more general
smooth numbers were discussed in [1]. Note that  \lambda_{b}(bn)=\lambda_{b}(n) for any positive integer
 n . Thus, we assume that  n is not divisible by  b in the rest of this section. It is easy to see
that if  n\geq b+1 , then  \lambda_{b}(n)\geq 2 , which is a triviaı lower bound. Thus, we first consider
sufficient conditions for  \lambda_{b}(n)\geq 3 and  \lambda_{b}(n)\geq 4 . Note that  \lambda_{b}(n)=2 if and only if  n has
the form  n=t_{1}b^{m}+t_{0} , where  m is a positive integer and  t_{1} ,  t_{0}\in\{1,2, . . . , b-1\} . Applying
the result on the greatest prime factor of linear recurrences established by Stewart [9], we
obtain that there exists an effectively computable positive number  C_{2}(b) , depending only
on  b , such that if an integer  n\geq C_{2}(b) satisfies

 P[n] \leq(\log n)^{1/2}\exp(\frac{\log\log n}{10S\log 1\cdot g\log n}) ,

then  \lambda_{b}(n)\geq 3 . In the opposite direction, Schinzel [8] constructed arbitrary large integers
 n such that

 P[n]\leq n^{c/\log\log\log n} and  \lambda_{b}(n)=2,
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where  c is an absolute real number.

Furthermore, the following resuıt was obtained in [1]. Let  \varepsilon be an arbitrary positive real
number. Then there exists an effectively computable positive number  C_{3}(b, \varepsilon) , depending
only on  b,  \varepsilon , such that if  n\geq C_{3}(b, \varepsilon) satisfies

 P[n]\leq(1-\varepsilon) (log log  n )   \frac{\log{\imath} og\log n}{\log\log\log\log n} , (2.2)

then  \lambda_{b}(n)\geq 4 . In addition, it was also proved in [1], that, for any fixed integer  N\geq 4,
the greatest prime factor of  n tends to infinity, as  n tends to infinity and runs through
the set of integers not divisible by  b and having at most  N nonzero digits in their base‐b
expansion. Since the proof rests on the subspace theorem, no estimate for the speed of
divergence can be derived, thus no sufficient condition on  P[n] ensuring that  \lambda_{b}(n)\geq 5 was
known until very recently. In the next section we give sufficient condition for  \lambda_{b}(n)\geq k_{:}
where  k is an arbitrary positive integer.

3 Main results

In this section, we review without proof lower bounds for  \lambda_{b}(n) obtained in [2]. Through‐
out this section,  C_{i}(x, y\ldots)(i=4,5, \ldots) denote effectively coln putable positive numbers
depending only on  x,  y , .

THEOREM 3.1. Let  k be an integer greater than 2. Let  \varepsilon be an arbitrary positive real
number. Let  n\geq C_{4}(b, k, \varepsilon) be an integer not divisible by  b . Suppose that

 P[n] \leq(\frac{1}{k-2}-\varepsilon)(\log\log n)\frac{\log\log\log n}
{\log\log\log\log n} . (3.1)

Then we have  \lambda_{b}(n)\geq k+1.

Note that (3.1) generalizes (2.2). Now let  \mathcal{A} be the set of positive integers  n not
divisible by  b such that  n is  \log\log n‐smooth. Applying Theorem 3.1, we see

  \lim_{n\in A,narrow\infty} \lambda_{b}(n)=\infty.
In what follows, we investigate quantitative version of this result, that is, we give lower
bounds

 \lambda_{b}(n)\geq\varphi(n) (3.2)

for smooth numbers  n , using suitable increasing functions  \varphi with   \lim_{narrow\infty}\varphi(n)=\infty.

THEOREM 3.2. For any  n\in \mathcal{A} with  n\geq C_{5}(b) , we have

  \lambda_{b}(n)\geq\frac{1}{2}\cdot\frac{\log\log\log n}{\log\log\log\log n}.
Changing the condition of smoothness, we give another lower bound of the form (3.2).
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THEOREM 3.3. Let  n\geq C_{6}(b) be an integer not divisible by  b . Suppose that

 P[n] \leq(\log\log n)^{1/2}(\frac{\log\log\log n}{\log\log\log\log n})^{1/2}
Then, we have

  \lambda_{b}(n)\geq\frac{1}{3}(\log\log n)^{{\imath}/2}(\frac{\log\log\log n}
{\log\log\log\log n})^{1/2}
We now generalize (2.1). Let  S be a non‐empty finite set of prime numbers. Recall

that a positive integer  n is an integral  S‐unit if all the prime factors of  n are in  S . In
particular, if  p denotes the maximal element of  S , then any integral  S‐unit is  p‐smooth.

THEOREM 3.4. Let  S be a non‐empty finite set of prime numbers. Let  \varepsilon be an arbitrary
positive real number. Let  n\geq C_{7}(b_{:}S_{:}\varepsilon) be an integral  S ‐unit not divisible by  b . Then we
have

  \lambda_{b}(n)\geq(1-\varepsilon)\frac{\log\log n}{\log\log\log n} . (3.3)

Let  a\geq 2 be an integer coprime to  b . Let  S be the set of prime divisors of  a . Then,
(2.1) follows from TheoreIn 3.4.

Changing the coefficient of the right‐hand side of (3.3). we can extend (2.1) to more
general smooth numbers.

THEOREM 3.5. Let  n\geq C_{8}(b) be an integer not divisible by  b . Suppose that

 P[n] \leq\frac{1}{2}(\log\log\log n)\frac{\log\log\log\log n}
{\log\log\log\log\log n}.
Then, we have

  \lambda_{b}(n)\geq\frac{1}{2}\frac{\log\log n}{\log\log\log n} . (3.4)

Note that (3.4) is the best lower bound (upto the value   \frac{1}{2} ) for  \lambda_{b}(n) obtainable by our
method. We conclude with a general statement giving lower bounds for  \lambda_{b}(n) .

THEOREM 3.6. Let  f be a positive real valued function defined over the set of positive
integers. Assume that

  \lim_{narrow\infty}f(n)=\infty
and that there exists a real number  0<\delta<1 satisfying

  f(n)\leq (ı—  \delta )   \frac{\log\log n}{\log\log\log n}
for any sufficiently large integer  n . Set

  \Psi_{f}(n):=\frac{\log\log n}{f(n)}
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and

 \delta_{0}^{-}  := \sup\{\delta>0 :  f(n) \leq(1-\delta)\frac{\log\log n}{\log\log\log n} for  (1?r(/s(Lffi_{C.(}inll\cdot(/lar.(7^{(}n }.
Let  \varepsilon be an arbitrary positive real number. Suppose that a sufficiently large integer  n not
divisible by  b satisfies

 P[n] \leq(\delta_{0}^{-}-\varepsilon)\Psi_{f}(n)\frac{\log\Psi_{f}(n)}{\log\log
\Psi_{f}(n)}.
Then we have

 \lambda_{b}(n)\geq f(n) .

The proofs of all the results stated in this section depend on lower estimates for linear
forms in the complex logarithms of rational numbers, combined with lower estimates for
linear forms in the p‐‐adic logarithms of rational numbers, where  p is a prime divisor of  b.
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