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1. INTRODUCTION

Sarvadaman Chowla [7] proved that if p is an odd prime, then  \cot(2\pi j/p)
 (j=1, \ldots, (p-1)/2) are linearly independent over the field of rational numbers.
This result follows from the non‐vanishing of the Dirichlet  L‐series  L(s_{\dot{T}}\chi) at
 \mathcal{S}=1 , when  \chi is a Dirichlet character with  \chi(-1)=-1 . For another proof of
Chowla’s theorem, we refer the reader to  [1, 2_{:}10,12] . We note that Chowla.  ts

result was generalized in [13, 16].
In [6], which was written in 1964, Chowla raised the following question:
We assume that  p is a prime and  f is a non‐zero function defined on the

integers with integer values and period  p . Then, does the infinite series

  \sum_{n=1}^{\infty}\frac{f(n)}{n}
never vanish /?

The Chowla question is valid whenever the series converges, which is equivalent
to the condition   \sum_{a=1}^{p}f(a)=0 . Concerning this question, Baker, Birch, and
Wirsing [4] proved the following:

Theorem 1  (Baker-Birch-Wirsing [ 4,13]) . Let  ml)(. a positive  i0n,t()q(.-.ra,\prime ndf a
non‐zero function defined on the integers with algebraic values and period  m such
that

(i)  f(r)=0 if  1<gcd(r, m)<m.
(ii) Th.  e m‐tlI,  c\cdot t/(;loto\uparrow(1,j_{(}:pol_{W^{b}}0\uparrow n,ial\Psi_{m} is j_{7't(}
\cdot,(u(;'ibl\prime, \ldots , f(m)) .

Then,

  \sum_{n=1}^{\infty}\frac{f(n)}{n}\neq 0.
Let  \mathbb{C}_{\infty} be the completion of an algebraic closure of the field  \Gamma_{q}((T^{-1})) . The

Carlitz exponential function  e(z) , which is defined over  \mathbb{C}_{\infty} , is given by

(1.1)   e(z)=z+\sum_{n=1}^{\infty}\frac{z^{q^{\tau l}}}{(T^{q^{n}}-T^{q^{1}-1})
\cdots(T^{q^{71}}-T)}.
Then, its reciprocal  c(z)  :=e(z)^{-1} is analogous to  \cot z . In this report, using
 c(z) , we establish an analog of  Chowla^{r}s theorem over function fields. As an
application, we give an analog of the Baker−Birch−Wirsing theorem about the
non‐vanishing of Dirichlet series with periodic coefficients at  s=1 in the function
field setup with a parity condition.
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2. SOME FUNCTIONS IN FUNCTION FIELDS

Let  \Gamma_{q} be the finite field with  q elements, where  q is a power of the prime number
 p . Let  A=\Gamma_{q}[T] and  K=\Gamma_{q}(T) . Let  K_{\infty}=\mathbb{F}_{q}((T^{-1})) be the completion of  K

at  \infty=(T^{-1}) , and let  \mathbb{C}_{\infty} be the completion of an algebraic closure  \overline{K} of  K_{\infty}.
For a ring  R,  R^{*} denotes the unit group of  R.

2.1. The Carlitz exponential. We denote by  A\{\tau\} the twisted polynomial
ring whose multiplication is defined by  \tau a=a^{q}\tau(a\in A) . The  \mathbb{F}_{q} ‐linear ring
homomorphism  \rho :  Aarrow A\{\tau\} , defined by  1\mapsto\tau^{0} and   T\mapsto\rho_{T}=T\tau^{0}+\tau , is
called the Carlitz  A‐module. With each  N\in A\backslash \{0\} ,  \rho associates an additive
polynomial  \rho_{N}(x) given by  \rho_{N}(x)  :=\rho_{N}(\tau)(x)\in A[x] . This is called the Carlitz
 N‐polynomial. For  N\in A\backslash \{0\} , let  \rho[N]=\{\alpha\in \mathbb{C}_{\infty}|\rho_{N}(\alpha)=0\} be the set
of Carlitz  N‐torsion points. The set  \rho[N] is a cyclic  A‐module and its generator
(as a Carlitz  A‐module) is called the primitivc Carlitz  N‐torsion point. The
minimal polynomial  \Phi_{N}(x) of any primitive  N‐torsion point over  K is called the
Carlitz N‐th cyclotomic polynomial. The polynomials  \rho_{N}(x) and  \Phi_{N}(x) have
degrees  q^{\deg N} and  \varphi(N) , respectively, where  \varphi(N)  :=\#(A/NA)^{*} For details
on these polynomials, we refer the reader to [3]. For the primitive Carlitz N‐
torsion point  \lambda_{N} , let  K_{N}=K(\lambda_{N}) be the field generated over  K by adjoining
 \lambda_{N} . If  \sigma\in Ga1(K_{N}/K) , then  \sigma(\lambda_{N}) is another primitive Carlitz  N‐torsion point.
Hence, there exists  a\in A with  gcd(a, N)=1 such that  \sigma(\lambda_{N})=\rho_{a}(\lambda_{N}) . The
correspondence  \sigma\mapsto a induces the isomorphism  Ga1(K_{N}/K)arrow-(A/NA)^{*} (see [15,
Theorem 12.8]).

There exists a unique entire function  e(z) over  \mathbb{C}_{\infty} such that for each  a\in A,
we have  \rho_{a}(e(z))=e(az) (see [9, Chapter 3]). The function  e(z) is called the
Carlitz exponential. The function denoted by  e(z) in the Introduction is exactly
the Carlitz exponential. Let  L be the set of all zeros of  e(z) . Then,  L is a rank
one free  A‐module (see [9, Corollary 3.2.9]). It is well known that  L=\overline{\pi}A is
analogous to  \pi \mathbb{Z} . Using  L,  e(z) can be written as

(2.1)  e(z)=z \prod_{0\neq l\in L}(1-\frac{z}{l}) .

From (1.1), it holds that  e'(z)=1.

2.2. The cotangent function. Let  c(z)  :=e(z)^{-1} Using (1.1) and (2.1), we
have

(2.2)  c(z)= \frac{e'(z)}{e(z)}=\frac{1}{z}+\sum_{0\neq l\in L}\frac{1}{z+l}.
The analogy between  c(z) and the usual cotangent function is that  \cot z is  \pi \mathbb{Z}‐
periodic and is expressed by

  \cot z=\frac{1}{z}+\sum_{n=1}^{\infty}(\frac{1}{z+\pi n}+\frac{1}{z-\pi n}) ;

 c(z) is  L‐periodic and is expressed by (2.2).
For a positive integer  n , let  P_{n}(z)= \sum_{l\in L}(z+l)^{-n} According to Goss [8],

there exists a monic polynomial  G_{n}(X)\in K[X] of degree  n such that  P_{n}(z)=
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 G_{n}(e(z)^{-1}) . This is called the Goss polynomial. Let 7 be a generator of  L.

Petrov [14] proved that

(2.3)  D_{n-1}c(\overline{\pi}z)=(-\overline{\pi})^{n-1}P_{n}(\overline{\pi}z)=(-
\overline{\pi})^{n-{\imath}}G_{n}(e(\overline{\pi}z)^{-{\imath}}) ,

where  D_{n-1} is the  n- l‐th hyperdifferential operator in  z that is discussed by
Bosser and Pellarin in [5].

2.3. Goss  L‐functions. Let  A_{+} be the set of all monic elements in  A and let

 M\in A_{+} with  \deg\lambda_{i}T>0 . A group homomorphism  \chi :  (A/MA)^{*}arrow \mathbb{C}_{\infty}^{*} is called
a character modulo  M . This can be extended to  A by

 \chi(a)=\{\begin{array}{ll}
\chi(a+MA)   if gcd(a, M)=1,
0   otherwise.
\end{array}
For this  \chi , let  \overline{\chi} be the character defined by

 \overline{\chi}(a)=\{\begin{array}{ll}
\chi((a+l\downarrow_{i}IA)^{-1})   if gcd(a_{\dot{}}M)=1_{:}
0   otherwise.
\end{array}
The Goss  L‐fUnction of  \chi is defined by

 L(s,  \chi)=\sum_{a\in A+}\frac{\chi(a)}{a^{s}} (s\in \mathbb{N}) .

This can be thought of as an entire function on the Goss plane  S_{\infty}  :=\mathbb{C}_{\infty}^{*}\cross \mathbb{Z}_{p},
where  \mathbb{Z}_{p} is the ring of  p‐adic integers. Moreover, it has the following Euler
product expression

 L( \mathcal{S}, \chi)= \prod_{P\in A_{+},P:irreducible}(1-\chi(P)P^{-s})^{-1}
From this, we have that

(2.4)  L(s, \chi)\neq 0 (s\in \mathbb{N}) .

For more details, we refer the reader to the book [9, Chapter 8].

3. THE MAIN THEOREM

Let  M\in A_{+} with  \deg 11\ell>0 and let  R_{M} be the subset of  A_{+} defined by

 R_{II}=\{a\in A_{+}|\deg a<\deg M, gcd(a, M)=1\}.

The main theorem of this paper is the following.

Theorem 2. Let  n be a positive integer. Then,  D_{n} ‐ıc  (\overline{\pi}z)|_{z=b/M}(b\in R_{M}) are
linearly independent over  K.

Remark. 1. In [13, 16], the following result was proved: Let  n and  m be positive
integers with  m>2 . Let  R be a set of  \phi(m)/2 representatives  mod m such that
the union  \{R, -R\} is a complete set of residues prime to  m , where  \phi is the Euler

totient function. Then,  ( \frac{d}{dz})^{n-1}(\cot\pi z)|_{z=a/m}(a\in R) are linearly independent
over the field of rational numbers. Theorem 2 is an analog of this result. The
case  n=1 in Theorem 2 is an analog of Chowla’s theorem, which was mentioned
in the introduction.
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2. Hasse [10] proved that for an odd prime  p_{:}\tan(\pi j/p)(j=1, \ldots, (p-1)/2)
are linearly independent over the field of rational numbers. Even though the
Carlitz exponential  e(z) is analogous to  \tan(z) , an analog of Hasse’s result for
 e(z) does not hold. In fact, for an irreducible polynomial  P\in A_{+} with  \deg P>1,
 e(\overline{\pi}b/P)(b\in A_{+}, \deg b<\deg P) are linearly dependent over  K.

As an application of the above theorem, we have the following, which is an
analog of the Baker−Birch−Wirsing theorem (Theorem 1) under a certain condi‐
tion.

Theorem 3. Let  n be a positive integer and  g :  Aarrow\overline{K} a non‐zero function,
which is defined on  A/MA and then extended to  A , such that

(i)  g(\zeta a)=\zeta^{n}g(a)  (a\in A, \zeta\in\Gamma_{q}^{*}) ;
(ii)  g(a)=0 if  gcd(a_{:}M)>1 ;

(iii) The Carlitz M‐th cyclotomic polynomial  \Phi_{M} is irreducible over  K_{g} . which
is the field generated over  K by adjoining  \{g(b)|b\in A/l1lA\}.

Th  \prime.,

  \sum_{a\in A+}\frac{g(a)}{a^{n}}\neq 0.
Remark. Let  k be a positive integer. Okada [13] proved the following: Let  f be a
non‐zero function defined on the integers with algebraic values and period  m>2

such that

(i)  f is even or odd according as  k is even or odd;
(ii)  f(n)=0 if  gcd(n, m)> ı;

(iii) The m‐th cyclotomic polynomial  \Psi_{m} is irreducible over  \mathbb{Q}(f(1), \ldots , f(m)) .

Then,   \sum_{n=1}^{\infty}\frac{\int(n)}{n^{k}}\neq 0.
Theorem 3 is an analog of this result.

From this theorem, we obtain the following.

Theorem 4. Let  n be a positive integer. Let  G=\{\chi : (A/MA)^{*}arrow \mathbb{C}_{\infty}^{*}\} be the
set of all characters modulo M. For  \Lambda=\{\chi\in G|\chi(\zeta)=\zeta^{n}(\zeta\in\Gamma_{q}^{*})\} , let  F_{q^{r}}
be the finite field generated over  F_{q} by adjoining  \{\chi(b)|\chi\in\Lambda, b\in(A/MA)^{*}\}.
If  gcd(\varphi(]1[), r)=1 , then the Goss  L ‐functions  L(n, \chi)(\chi\in\Lambda) are linearly
independent over  K.

Remark. Let  k and  m be positive integers with  m>2 and  gcd(m, \phi(m))=1 . Let
 \Lambda denote the set of all even or odd Dirichlet characters modulo  m according as
 k is even or odd. Then, Okada [13] proved that the Dirichlet  L‐fUnctions  L(k, \chi)
 (\chi\in\Lambda) are linearly independent over the field of rational numbers. Theorem 4
is an analog of this result as well.

4. OUTLINE OF THE PROOFS OF THEOREMS 2, 3, AND 4

4.1. Proof of Theorem 2. We will use two lemmas. The first is a form of the

Frobenius determinant relation (see Lang [11, Chapter 21]).
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Lemma 5. Let  G be a finite abelian group and  H a subgroup. Let  \lambda :  Harrow \mathbb{C}_{\infty}^{*}
be a character of  H and  \Lambda the set of all characters of  G given by

 \Lambda=\{\chi:Garrow \mathbb{C}_{\infty}^{*}|\chi|_{H}=\lambda\}.

Then, for a  \mathbb{C}_{\infty} ‐valued function  f on  Gu) ith

 f(ah)=\lambda(h)f(a) (a\in G, h\in H) ,

we have

 b,c \in R\det f(b^{-1}c)=\prod_{\chi\in\Lambda}(\sum_{a\in R}\overline{\chi}(a)
f(a)) ,

where  R is a complete set of representatives of  G/H.

The second lemma connects  D_{n-1}c(\overline{\pi}z)|_{z=b/M}(b\in R_{\Lambda I}) with the Goss L‐

function.

Lemma 6. Let  n be a positive integer and let  M\in A_{+} with  \deg M>0 . Let  f
be any  \mathbb{C}_{\infty} ‐valued function on  A/l1\ell A satisfying:

(i)  f(\zeta a)=\zeta^{n}f(a)(\zeta\in\Gamma_{q}^{*}) ;
(ii)  f(a)=07fgcd(a, M)>1.

  \sum_{a\in A_{+}}\frac{f(a)}{a^{n}}=(\frac{\overline{\pi}}{M})^{n}\sum_{b\in 
R_{\Lambda I}}f(b)P_{n}(\frac{\overline{\pi}b}{M}) .

We now prove Theorem 2. By (2.3), it suffices to prove that   P_{n}(\overline{\pi}b/M)(b\in
 R_{1f}) are linearly independent over  K . We assume that

(4.1)   \sum_{b\in R_{\Lambda I}}c_{b}P_{n}(\frac{\overline{\pi}b}{lM})=0 (c_{b}\in K) .

For  a\in(A/MA)^{*} , there exists  \overline{a}\in(A/MA)^{*} such that  a\overline{a}\equiv 1(mod f1I) .
Noting that the Goss polynomial  G_{n}(X) belongs to  K[X] , we map (4.1) by  \sigma_{\overline{a}}\in

 Ga1(K_{M}/K) corresponding to  \overline{a}\in(A/MA)^{*} Then, we obtain

  \sum_{b\in R_{\Lambda}}, c_{b}G_{n}(\sigma_{\overline{a}}(e(\overline{\pi}
b/i1I))^{-1})=\sum_{b\in R_{\Lambda f}}c_{b}P_{n}(\frac{\overline{\pi}
\overline{a}b}{M})=0.
Using Lemmas 5 and 6, we see that

 b,c \in R_{\Lambda J}\det P_{n}(\frac{\overline{}\pi\overline{b}c}{M}) = \prod_
{\chi\in\Lambda}(\sum_{a\in Rflf}\overline{\chi}(a)P_{n}(\frac{\overline{\pi}a}
{M}))
 = ( \frac{lM}{\overline{\pi}})^{n\varphi(M)/(q-1)}\prod_{\chi\in\Lambda}L(n, 
\overline{\chi}) ,

where  \Lambda is the set of all characters of  (A/MA)^{*} given by  \Lambda=\{\chi :  (A/MA)^{*}arrow
 \mathbb{C}_{\infty}^{*}|\chi(\zeta)=\zeta^{-n}(\zeta\in\Gamma_{q}^{*})\} . Therefore, it follows from (2.4) that  c_{b}=0 for
 b\in R_{M}.
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4.2. Proof of Theorem 3. For the primitive Carlitz  l1I‐torsion point  \lambda_{M;} we
have  \Phi_{11}(\lambda_{M})=0 . Since  \Phi_{M} is defined over  K , for any  \sigma\in Ga1(K_{\Lambda},/K)_{:} we have
 \Phi_{M}(\sigma(\lambda_{M}))=0 . Using the isomorphism  Ga1(K_{I1I}/K)\cong(A/MA)^{*} , the set of all
roots of  \Phi_{M} is  \{\rho_{a}(\lambda_{M})|a\in(A/MA)^{*}\} . Combining (iii) with  K_{M}  :=K(\lambda_{M}) ,
we obtain

 [K_{1\mathfrak{l}},K_{q} : K_{g}]=[K_{q}(\lambda_{M}) : K_{g}]=\varphi(M)=
[K_{l1J} : K].
Hence,  K_{\Lambda}, and  K_{g} are linearly disjoint over  K . By Theorem 2,  P_{n}(\overline{\pi}b/M)
 (b\in R_{41l}) , which belong to  K_{M} . are linearly independent over  K . There‐
fore, they are linearly independent over  K_{g} as well. Since  g is non‐zero, we
have  g(b)\neq 0 for some  b\in R_{M} . Hence, using Lemma 6,   \sum_{a\in A+}g(a)/a^{n}=
 ( \frac{\overline{\pi}}{M})^{n}\sum_{b\in R_{\Lambda I}}g(b)P_{n}
(\overline{\pi}b/M)\neq 0 . This proves Theorem 3.

4.3. Proof of Theorem 4. We assume that

(4.2)   \sum_{\chi\in\Lambda}c_{\lambda}L(n, \chi)=0 (c_{\chi}\in K) .

Let   g= \sum_{\chi\in\Lambda}c_{\chi}\chi . We note that this satisfies conditions (i) and (ii) in Theorem
3. Using the identity in Lemma 6, we have

(4.3)   \sum_{b\in R_{\Lambda J}}g(b)P_{n}(\overline{\pi}b/M)=(\frac{lM}
{\overline{\pi}})^{n}\sum_{a\in A+}\frac{g(a)}{a^{n}}=0.
Since  [K_{M} : K]=\varphi(\Lambda\prime I) and  [KF_{q^{r}}. : K]=r are coprime,  K_{M} and  K\Gamma_{q^{2}} are
linearly disjoint over  K . Hence, using Theorem 2,  P_{n}(\overline{\pi}b/l1I)(b\in R_{M}) are
linearly independent over  K\Gamma_{q} Combining (4.2) with  g(b)\in KF_{q^{r}}(b\in R_{M}) ,
we see that  g(b)=0(b\in R_{M}) . Namely, we obtain

(4.4)   \sum_{\chi\in\Lambda}c_{\lambda}\chi(b)=0 (b\in R_{11l}) .

We set  d=\varphi(M)/(q-1) . Letting  \Lambda=\{\chi_{1}, , \chi_{d}\} and  R_{\Lambda i}=\{b_{1}, . . . , b_{d}\} , we
see that the  d\cross d matrix  (\chi_{i}(b_{j})) is invertible. Therefore, we conclude from (4.4)
that  c_{\chi}=0(\chi\in\Lambda) .
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