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1. INTRODUCTION

Sarvadaman Chowla [7] proved that if p is an odd prime, then cot(27j/p)

(j=1,...,(p—1)/2) are linearly independent over the field of rational numbers.
This result follows from the non-vanishing of the Dirichlet L-series L(s,y) at
s = 1, when x is a Dirichlet character with x(—1) = —1. For another proof of

Chowla’s theorem, we refer the reader to [1, 2, 10, 12]. We note that Chowla’s
result was generalized in [13, 16].

In [6], which was written in 1964, Chowla raised the following question:

We assume that p is a prime and f is a non-zero function defined on the
integers with integer values and period p. Then, does the infinite series

never vanish?

The Chowla question is valid whenever the series converges, which is equivalent
to the condition Y ?_, f(a) = 0. Concerning this question, Baker, Birch, and
Wirsing [4] proved the following:

Theorem 1 (Baker-Birch-Wirsing [4, 13]). Let m be a positive integer and [ a
non-zero function defined on the integers with algebraic values and period m such
that
) flr) =0 i 1 < ged{», m) < m.
(ii) Them-th cyclotomic polynomial V., is wrreducible over Q(f(1), ..., f(m)).
Then,
[e ]
DAL

n
n=1

Let C be the completion of an algebraic closure of the field F,((7!)). The
Carlitz exponential function e(z), which is defined over C, is given by

n
4

(Tq” — Tq"'—l) - (Tq" - T)'

(1.1) e(z) =z+z

Then, its reciprocal c¢(z) := e(z)~! is analogous to cot z. In this report, using

¢(z), we establish an analog of Chowla’s theorem over function fields. As an
application, we give an analog of the Baker—Birch—Wirsing theorem about the
non-vanishing of Dirichlet series with periodic coeflicients at s = 1 in the function
field setup with a parity condition.



2. SOME FUNCTIONS IN FUNCTION FIELDS

Let IF, be the finite field with ¢ elements, where ¢ is a power of the prime number
p. Let A=TF,[T] and K = F,(T). Let K., = F,((T"')) be the completion of K
at oo = (T'), and let C, be the completion of an algebraic closure K of K.
For a ring R, R* denotes the unit group of R.

2.1. The Carlitz exponential. We denote by A{r} the twisted polynomial
ring whose multiplication is defined by 7a = a7 (a € A). The F,-linear ring
homomorphism p : A — A{7}, defined by 1 — 7% and T + pr = T7° + 7, is
called the Carlitz A-module. With each N € A\ {0}, p associates an additive
polynomial py(z) given by py(x) := pn(7)(z) € Alz]. This is called the Carlitz
N-polynomial. For N € A\ {0}, let p[N] = {a € C | pn(a) = 0} be the set
of Carlitz N-torsion points. The set p[N] is a cyclic A-module and its generator
(as a Carlitz A-module) is called the primitive Carlitz N-torsion point. The
minimal polynomial ®y(z) of any primitive N-torsion point over K is called the
Carlitz N-th cyclotomic polynomial. The polynomials py(z) and ®y(z) have
degrees 8" and o(N), respectively, where p(N) := #(A/NA)*. For details
on these polynomials, we refer the reader to [3]. For the primitive Carlitz N-
torsion point Ay, let Ky = K(Ay) be the field generated over K by adjoining
An. If 0 € Gal(Ky/K), then o(\y) is another primitive Carlitz N-torsion point.
Hence, there exists a € A with ged(a, N) = 1 such that o(Ay) = pa(An). The
correspondence o — a induces the isomorphism Gal(Ky/K)—(A/NA)* (see [15,
Theorem 12.8]).

There exists a unique entire function e(z) over C,, such that for each a € A,
we have p,(e(z)) = e(az) (see [9, Chapter 3]). The function e(z) is called the
Carlitz exponential. The function denoted by e(z) in the Introduction is exactly
the Carlitz exponential. Let L be the set of all zeros of e(z). Then, L is a rank
one free A-module (see [9, Corollary 3.2.9]). It is well known that L = 7TA is
analogous to 7Z. Using L, e(z) can be written as

(2.1) glzl=2 H (1 - %) .

From (1.1), it holds that €'(2) = 1.

2.2. The cotangent function. Let ¢(z) := e(z)™'. Using (1.1) and (2.1), we
have

(2.2) =28 1, i3 1

e(2) B G + 1

The analogy between ¢(z) and the usual cotangent function is that cot z is 7Z-
periodic and is expressed by

oo

1 1
otz=—+ ;
¢ Z(z-i—wn z—7rn>’

¢(z) is L-periodic and is expressed by (2.2).
For a positive integer n, let P,(z) = Z cr(z+ 17" According to Goss (8],
there exists a monic polynomial G,(X) € K[X] of degree n such that P,(z) =

w0
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G (e(z)™'). This is called the Goss polynomial. Let 7 be a generator of L.
Petrov [14] proved that

(23 D,_1c(T2) = (=7)" 1 B,(72) = (—7)" 'Gale(®2) ™),
where D,,_; is the n — 1-th hyperdifferential operator in z that is discussed by

Bosser and Pellarin in [5].

2.3. Goss L-functions. Let A, be the set of all monic elements in A and let
M e A, with deg M > 0. A group homomorphism y : (A/MA)* — C;, is called
a character modulo M. This can be extended to A by

(a) = x(a+ MA) ifged(a, M) =1,
x\a) = 0 otherwise.

For this y, let ¥ be the character defined by
X(a) = { X (((L = ]\JA)_l) if ged(a, M) =1,

0 otherwise.

The Goss L-function of x is defined by
x(a)
L = ; € N).
(0= X2 (sem

acA+

This can be thought of as an entire function on the Goss plane S, := C% X Z,,
where Z, is the ring of p-adic integers. Moreover, it has the following Euler
product expression

Lissx)= [ @—-x@)p=)".
PeAy
P:irreducible

From this, we have that
(2.4) L(s,x) #0 (s € N).

For more details, we refer the reader to the book [9, Chapter 8].

3. THE MAIN THEOREM

Let M € A, with deg M > 0 and let R); be the subset of A, defined by
Ry ={a€ Ay | dega < deg M, ged(a, M) =1}.
The main theorem of this paper is the following.

Theorem 2. Let n be a positive integer. Then, Dy_1¢(72) |,=oym (b € Ryr) are
linearly independent over K .

Remark. 1. In [13, 16], the following result was proved: Let n and m be positive
integers with m > 2. Let R be a set of ¢(m)/2 representatives mod m such that

the union {R, —R} is a complete set of residues prime to m, where ¢ is the Euler

totient function. Then, (%)n_l (cot 72)|;2a/m (a € R) are linearly independent

over the field of rational numbers. Theorem 2 is an analog of this result. The
case n = 1 in Theorem 2 is an analog of Chowla’s theorem, which was mentioned
in the introduction.



are linearly independent over the field of rational numbers. Even though the
Carlitz exponential e(z) is analogous to tan(z), an analog of Hasse’s result for
e(z) does not hold. In fact, for an irreducible polynomial P € A, with deg P > 1,
e(mb/P) (b € Ay,degb < deg P) are linearly dependent over K.

2. Hasse [10] proved that for an odd prime p, tan(z7j/p) (j =1,....(p—1)/2)

As an application of the above theorem, we have the following, which is an
analog of the Baker-Birch-Wirsing theorem (Theorem 1) under a certain condi-
tion.

Theorem 3. Let n be a positive integer and g : A — K a non-zero function,
which is defined on A/MA and then extended to A, such that

(i) g(Ca) = ¢"g(a) (a € A, CeFy);
(ii) g(a) =0 if ged(a, M) > 1;
(iii) The Carlitz M-th cyclotomic polynomial ®y; is irreducible over K,, which
is the field generated over K by adjoining {g(b) | b € A/MA}.

Z%);ﬁo.

a€A4

Then,

Remark. Let k be a positive integer. Okada [13] proved the following: Let f be a
non-zero function defined on the integers with algebraic values and period m > 2
such that

(i) f is even or odd according as k is even or odd;
(ii) f(n) =0 if ged(n,m) > 1;
(iii) The m-th cyclotomic polynomial ¥,, is irreducible over Q(f(1), ..., f(m)).
Then, 37, {8 =£

=1 nl"
Theorem 3 is an analog of this result.

From this theorem, we obtain the following.

Theorem 4. Let n be a positive integer. Let G = {x : (A/MA)* — C=_} be the
set of all characters modulo M. For A = {x € G | x(¢) = (" (C € F})}, let Fyr
be the finite field generated over F, by adjoining {x(b) | x € A,b € (A/MA)*}.
If ged(p(M),r) = 1, then the Goss L-functions L(n,x) (x € A) are linearly
independent over K.

Remark. Let k and m be positive integers with m > 2 and ged(m, ¢(m)) = 1. Let
A denote the set of all even or odd Dirichlet characters modulo m according as
k is even or odd. Then, Okada [13] proved that the Dirichlet L-functions L(k, x)
(x € A) are linearly independent over the field of rational numbers. Theorem 4
is an analog of this result as well.

4. OUTLINE OF THE PROOFS OF THEOREMS 2, 3, AND 4

4.1. Proof of Theorem 2. We will use two lemmas. The first is a form of the
Frobenius determinant relation (see Lang [11, Chapter 21)).
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Lemma 5. Let G be a finite abelian group and H a subgroup. Let A : H — C_
be a character of H and A the set of all characters of G given by

A={x:G—-C | xla =A}.
Then, for a Cy-valued function f on G with
f(ah) = A()f(a) (a€G.he H),
we have

o0 070 =TT (Txs).

XEA \a€R

where R is a complete set of representatives of G/H.

The second lemma connects D,,_1¢(Tz)|.=oym (b € Rp) with the Goss L-
function.

Lemma 6. Let n be a positive integer and let M € Ay with degM > 0. Let f
be any Co-valued function on A/MA satisfying:

(i) f(Ca) =¢"f(a) (¢ € FY);
(ii) f(a) =0 if ged(a, M) > 1.

Then, we have
fla) _ (7\" 7b
> ={m] X105
a€A4 bERr

We now prove Theorem 2. By (2.3), it suffices to prove that P, (7b/M) (b €
Ryy) are linearly independent over K. We assume that

(4.1) b;j &P, (ﬁ’) =0 (€ K).

For a € (A/MA)*, there exists @ € (A/MA)* such that a@ = 1 (mod M).
Noting that the Goss polynomial G,,(X) belongs to K[X], we map (4.1) by o7 €
Gal(K);/K) corresponding to @ € (A/MA)*. Then, we obtain

> G (oa(e@/M) ) = > P, (”J&b> =1

beR bER

Using Lemmas 5 and 6, we see that

e
Pﬂ,
R ( M )

Il

(3 won (5))

XEA aERp

M np(M)/(g-1) .
XEA

where A is the set of all characters of (A/MA)* given by A = {x : (A/MA)* —
Ci | x(Q) = ¢ (¢ € F;)}. Therefore, it follows from (2.4) that ¢, = 0 for
be Ry.
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4.2. Proof of Theorem 3. For the primitive Carlitz M-torsion point A, we
have ®,;(Ay) = 0. Since @), is defined over K, for any o € Gal(Ky,/K), we have
®pr(o(Anr)) = 0. Using the isomorphism Gal( KM/K) (A/MA)*, the set of all
roots of @ is {p.(A\r) | @ € (A/MA)*}. Combining (iii) with K := K(\y),
we obtain
[I([\/IK Kq] = [ )\]\4) 3 Kq] = (p(]\4) = [KM : [{]

Hence, Kj and K, are hnearly disjoint over K. By Theorem 2, P, (7b/M)
(b € Rys), which belong to K, are linearly independent over K. There-
fore, they are linearly independent over K, as well. Since g is non-zero, we
have g(b) # 0 for some b € Ry. Hence, using Lemma 6, >°, . g(a)/a" =

(Z)" > bery, 9(0)Pn (Tb/M) # 0. This proves Theorem 3.
4.3. Proof of Theorem 4. We assume that

(4.2) > e L(n,x) =0 (cy € K).

XEA

Let g = er A &xX- We note that this satisfies conditions (i) and (ii) in Theorem
3. Using the identity in Lemma 6, we have

@ S sonm- (X)) 5

bER a€A4

Since [Ky : K] = ¢(M) and [KF; : K] = r are coprime, K and KF, are
linearly disjoint over K. Hence, using Theorem 2, P, (7b/M) (b € Ry) are
linearly independent over KF,. Combining (4.2) with g(b) € KF, (b € Ry),
we see that g(b) =0 (b € Rys). Namely, we obtain

(4.4) D ex() =0 (be Ry).

XEA

We set d = ¢(M)/(q — 1). Letting A = {x1,...,xqa} and Ry = {b1,...,ba}, we
see that the d x d matrix (x;(b;)) is invertible. Therefore, we conclude f1om (4.4)
that ¢, =0 (x € A).
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