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1 Introduction

A function f defined on positive integers  n is called additive, if

 f(mn)=f(m)+f(n)

for every coprime pair  (m. n)= ı.
In probabilistic number theory, a central problem is to decide when an additive func‐

tion  f renormalised or not possesses a ıimit distribution. First, we can study the frequency

  \nu_{x}(f(n)<u) :=\frac{1}{[x]}\#\{n\leq x : f(n)<v\}.
More generally, for additive function  f it is natural to consider when functions  \alpha(x) and
 \beta(x)>0 may be found such that frequencies

  v_{x}(\frac{f(n)-\mathfrak{a}(x)}{\beta(\tau)}<u)
possess a limiting distribution.

Erdós and Wintner [7] solved completely the case when  a(x)=0,  \beta(x)= ı. They
obtained that

 \nu_{x}(f(71)<?/)\Rightarrow F(ll)

as   xarrow\infty if and only if three series

  \sum_{|f(p)|>1}\frac{1}{p}, \sum_{|f(p)|\underline{<}1}\frac{f(p)}{p}, 
\sum_{|f(p)|\underline{<}1}\frac{f^{2}(p)}{p} (1)
converge.

Here and further  \Rightarrow is the sign of a weak convergence and  F(u) means some limit
distribution function.

The case which corresponds to the choice / 3(T)=1 was compıetely solved by Elliott
and Ryavec [2] and by Levin and Timofeev [17]. They got that there exists a real function
 \alpha(x) for which

 \nu_{x}(f(n)-a(x)<u)\Rightarrow F(u) (2)

as   x:arrow\infty if and only if there is a constant  ( so that  f (it)  = clog  n+h(,\iota) , where the
series

  \sum_{|h(p)|>1}\frac{{\imath}}{p}s \sum_{|h(p)|\leq]}\frac{h^{2}(p)}{p} (3)
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are convergent.

See also the paper of Erdó
 \acute{}

s [9].
The common case was partially solved by Erdós and Kac [8] and by Kubilius [15].

They proved that for some class of additive functions

  \nu_{x}(\frac{J(7\downarrow)-A(x)}{B(x)}<u)\Rightarrow F(u) (4)
as  \tauarrow\infty with

 A(x)= \sum_{p\leq x}\frac{f(p)}{p}, B(x)=(\sum_{p\leq x}\frac{f^{2}(p)}{p})
^{1/2}
The distributions of additive functions are interesting also on subsets of the set of

positive integers. In the literature you can find papers devoted to the behaviour of additive
functions on arithmetically interesting subsequences like

 \{an+b:\gamma 1\in \mathbb{N}\} , {  G(\prime\iota) :  Il\in \mathbb{N},  G is a polinomial},

 \{[n^{\alpha}] : n\in \mathbb{N}\} ,  \{[\mathfrak{a}n] : n\in \mathbb{N}\} , {  n:n\in \mathbb{N},  n is squarefree},

{  n:n\in \mathbb{N},  n has no large prime factors},

 \{p+a:p\in \mathbb{P}\}. \{op+b:p\in \mathbb{P}\},
and others.

The methods used in the investigation of asymptotic behaviour of additive functions
on the set of positive integers can be applied to other sequences which are well distributed
in most residue classes to moduli which are not to large.

2 Distributions on shifted primes

In the present paper I will give a survey on distributions of additive functions on the set
of shifted prime numbers.

The (črse of shifted  1 )  rin1(^{\backslash },b^{\backslash } was conside.red  1 ) y\Gamma 3_{r}\iota r\cdot t)_{C}'\iota n , Vinogra.dov, Levin [1]  K_{\subset}'\prime\iota t_{\dot{r}})  i[12,
13], Halberstam, Hildebrand [11], Timofeev [33, 34, 35, 37], Elliott [3], and others.

A. Hildebrand [ı1] and N.M. Timofeev [34] proved that

 \nu_{x}(f(p+1)<u)\Rightarrow F(u)

if and only if three series (1) converge.
The conditions for the convergence in this result are the same as in the classical

Erdós‐Wintner theorem, although the limit distributions may be different. Therefore. the
distributions of  f(n) and  f(p+1) can only converge simultaneously.

The case (2) for shifted primes was solved by Timofeev [34] as well. He got that there
exist a real function  a(x) for which

 \nu_{x}(f(n)-\alpha(x)<u)\Rightarrow F(u)
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as   xarrow\infty if and only if there is a constant  c so that  f(71)=c\log n+h(n) and the series
(3) are convergent. In this case  \alpha(x) can be chosen

 o( \tau)=r\log r+|h(p)1\leq 1\sum_{1)\leq x}\frac{h(p)}{p}
Barban, Vinogradov, Levin [1] and Hildebrand [11] considered the analogues of (4).

They proved that for some class of additive functions with suitable  \alpha(x) and  \beta(x)

 lJ_{x}( \frac{f(p+1)-\alpha(x\cdot)}{\beta(x)}<u)\Rightarrow F(u) .

Elliott [4] investigated the case

  \nu_{x}(\frac{f([x]-p)-\alpha(x)}{\beta(x)}<u)\Rightarrow F(u) .

Let  \omega(n) mean the number of prime divisors of  n . And let  \tau_{k}(n) denote the number of
ways of expressing  n as the product of  k divisors.  \tau_{2}(n)=\tau(n) is the number of divisors
of  n . From the results above, can be deduced that

lノx  ( \frac{\omega(p+1)-\log\log x}{\sqrt{\log\log x}}<u)\Rightarrow\frac{{\imath}}
{\sqrt{2\pi}}\int_{-\infty}^{u}e^{-v^{2}/2}dv=:\Phi(u) ,
  \frac{1}{\pi(x)}\sum_{p\leq x}\omega(p+1)\sim\log\log x,

  \nu_{x}(\frac{\log_{k}\tau_{k}(p+1)-\log\log x}{\sqrt{\log\log x}}<v)
\Rightarrow\Phi(v) .

Investigations of the limit behaviour of additive functions on shifted primes can be
generalized to the sum of additive functions with different shifts. The idea to consider
the sums of shifted additive functions is not new. The first result in this direction belongs
to LeVeqv  (^{\backslash }. [ı6]. hIore general results later were established  1 ) y Kul)iıius [15],  K_{c!t}'ai[14],
Hildebrand [10], Elliott [3, 4, 5, 6], Timofeev and Usmanov [36], Stepanauskas [28, 29,
30, 3ı], and others. There the cases when the values of additive functions can be taken
on different arithmetic progressions, on shifted primes, and when the number of additive
functions as summands may slowly increase together with  x were examined. All these
results were given by using elementary methods, the method of characteristic functions,
or the Kubilius model of probability spaces.

The results (general enough) for shifted primes are given by Stepanauskas [28, 30]:
1. The distributions

 \nu_{x}(f_{i}(a_{1}p+b_{1})+ +f_{s}(a_{s}p+b_{s})<u)

converge weakly as   xarrow\infty to some limit distribution if the tree series converge:

 |f_{1}.(.p.).|. \leq 1\sum_{|f_{S}(p)1\leq 1}\frac{f_{1}(p)+\cdots+f_{s}(p)}{p}
<\infty.
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  \sum_{|f_{i}(p)|>1}\frac{1}{p}<\infty_{:}\sum_{|f_{?}(p)|\leq 1}\frac{f_{i}
^{2}(p)}{p}<\infty.
The conditions for the convergence in this result are the same as in the result for arith‐
metic progressions for positive integers, although the limit distributions may be different.
Therefore, the distributions of the sum for  f_{i}(a_{i}n+b_{i}) and the sum for  f_{i}(a_{i}p+b_{i}) can
only converge simultaneously.

2. Let  \phi be the Euler totient function,  \sigma(Ib) be the sum of positive divisors of  n . Then

  \nu_{x}(\frac{\phi(o_{1}p+b_{1})...\cdot\phi(o_{s}p+b_{s})}{(c\iota_{1}p+b_{1}
)..(a_{s}p+b_{s})}<u)\Rightarrow F(?1) .

  \nu_{x}(\frac{\sigma(o_{1}p+b_{{\imath}})...\cdot\sigma(a_{s}p+b_{s})}
{(c\iota_{1}p+b_{1})..(a_{s}p+b_{s})}<u)\Rightarrow F(u)_{:}

  u_{x}(\frac{\phi(o_{1}p+b_{1})\ldots\phi(o_{k}p+b_{k})\sigma(o_{k+1}p+b_{k+1}
\ldots\phi(a_{s}p+b_{s})}{(a_{1}p+b_{1})\ldots(a_{s}p+b_{s})}<u)\Rightarrow F(u)
as  Xarrow\infty.

3. Let for  i=1 , 2, . . . ,  s

 f_{i}(p)arrow 0, parrow\infty,

  \sum_{\log\log x<p\leq x}\frac{f_{i}^{2}(p)}{p}arrow 0, xarrow\infty,
and for at least one of  f_{k}

  \sum_{p\leq x}\frac{f_{k}^{2}(I,)}{p}arrow\infty, xarrow\infty.
Then the sum

 f_{1}(a_{1}p+b_{1})+\cdots+.f_{s}(a_{s}q+b_{s})

is asymptotically uniformly distributed  mod 1 on the set of primes.
4. Let the integer‐valued additive functions  f_{i} ,  i=1 , ,  s , be such that the series

  \sum_{|f_{t}(p)|\neq 0}\frac{1}{])}<\infty.
converge. Then

 \nu_{x}(f_{1}(a_{1}p+b_{1})+\cdots+f_{s}(a_{s}p+b_{s})=k)arrow\lambda_{k} :  xarrow\infty,

for every  k\in \mathbb{Z}.
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3 Distributions of sets of additive functions

on shifted primes

Elliott [4] showed that every stable law  F can occur as a limit distribution for

  \iota\prime_{x}(\frac{f(n)-\mathfrak{a}(x)}{\beta(x)}<Z1) (5)
with suitable chosen  a and  \beta and that there are uncountably many distributions  F which
cannot occur as the limit distributions for (5) no matter how they are centred and nor‐
malised. The Poisson distribution is among them.

It is clear that the set of possible limit distributions can be expanded if we consider
additive functions which values vary together with  x . i.e. the sets of additive functions
 f_{x}(n) :  \tau\geq 2 . In the books [15. 3, \cdot 4] there were considered (at most) additive functions

 h_{x} having a special expression:

 h_{x}(n)= \frac{f(7\iota)}{\beta(x)},
where  \beta is some normalising function. The more common sets were investigated by Šiaulys
[18, 19, 20, 21, 22].

The question which appear here is what happens with the case of shifted primes.

In [23, 24] by Šiaulys and Stepanauskas the case of the Poisson limit distribution was
considered. I will present here several consequences.

Let  f_{x} :  x\geq 2_{:} be a set of strongly additive functions such that  f_{x}(p)\in\{0,1\}  \forall p\in
 \mathbb{P},  \forall x\geq 2.

1. For every parameter  \lambda>0 the Poisson distribution

  \Pi(u, \lambda):=\sum_{k=0,1,k<v}..\frac{\lambda^{k}}{A\cdot!}e^{-k}
can occur (accordingly choosing  f_{x} ) as limit distribution for

 \nu_{x}(f_{x}(p+1)<u) , \nu_{x}(f_{x}(p+1)+g_{x}(p+2)<u) .

2. Let

 f_{x}(p)=\begin{array}{l}
1 if logz: <p\leq(\log x:)^{\alpha}.
0 otherwise;
\end{array}
and

 g_{x}(p)=\begin{array}{l}
1 if \log\log x<p\leq(\log\log a^{\pi})^{\beta},
0 otherwise,
\end{array}
with some  0 ,  \beta>1 . Then

  \lim_{xarrow\infty}\nu_{\lambda}(f_{x}(p+1)=k)=\frac{(\log \mathfrak{a})^{k}}{
\cap k!},
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  \lim_{xarrow\infty}\nu_{x}(f_{x}(p+1)+g_{x}(p+2)=k)=\frac{(\log o\beta)^{k}}
{\alpha\beta k!}.
3. Let  \prime\sqrt{}) and  \chi be unboundedly increasing functions such that  \log V'(x)/\log xarrow 0

and  \log\lambda(x)/\log xarrow 0 as   xarrow\infty . Then

 \#\{p\leq x, p+lhasexactly kprimefactorsfromt heinterval (   \psi l(x\cdot), \psi^{o}(x\cdot)]\}\sim\frac{(\log\cap)^{k}}{\alpha K!}
\frac{T}{\log x}\dot{}

 p \# {  \underline{<}x_{:}
 (p+1)(p+2) has exactly

 k

prime factors }  \sim\underline{(2\log\alpha)^{k}}\underline{J^{\cdot}}.
from the interval  (\psi(x)_{:}\psi^{o}(x) ]  \alpha^{2}k!  \log x

 \#\{p\leq x, t_{theinterva1(\psi,(x)\psi^{\mathfrak{a}}(x)]
andthepr\dot{{\imath}}me}(p+{\imath})(p+,2)hasexact1yk,pr\dot{{\imath}}me,factorsfrom(  \tau/,(\gamma\cdot)\tau/f^{\alpha}(x)],\cup(\chi.(x)\chi^{\theta}(\tau)]wherehr imeforSp+arecounted f  rom\}\sim\frac{(\log\alpha\beta)^{k}}{\alpha\beta k!}\frac{I}{\log x}factors of  p+2 from  ()_{\backslash }'(x) ,  x^{\beta}(x) ]

Discrete uniform distribution

  u(u, L):=\frac{1}{L}\sum_{A<u}k=0,1,\ldots,L-11
for shifted primes was considered by Šiaulys, Stepanauskas and Žvinyte [32, 27]. I give
only some consequences from these investigations.

1. The discrete uniform distribution  U(\iota\nu, L) can occur as a limit distribution for

 lJ_{x}(f_{x} ( p+ ı)  <v) ,  \nu_{x}(f_{x}(p+1)+g_{x}(p+2)<u)

with some set of additive functions if  L=2 and cannot occur if  L=3.4.5\ldots..

2. Let

.  f_{x}(p)=\begin{array}{ll}
1   if p=3,
0   otherwise.
\end{array}
Then

 \nu_{x}(f_{x}(p+1)<v)\Rightarrow \mathcal{U}(u, 2) .

3. Let

.  f_{x}(p)+.q_{x}(q)=\begin{array}{ll}
1   if p=2,
0   otherwise.
\end{array}
Then

 \nu_{x} (f_{x}(n)+g_{x}(n+ {\imath}) <v)\Rightarrow \mathcal{U}(u, 2) .

4. Let either

 f_{x}(p)=g_{x}(p)=\begin{array}{ll}
1   if p=5,
0   otherwise,
\end{array}

196



l97

or

.  f_{x}(P)+q_{x}(J))=\begin{array}{ll}
1   if p=3.
0   otherwise.
\end{array}
Then

 \nu_{x}(f_{x}(p+1)+g_{x}(p+2)<u)\Rightarrow u(u_{:}2) .

In the proofs of the main results for the Poisson and discrete limit distributions, the
authors combined different methods. It was used elementary ınethods, the method of
characteristic functions, and the Kubilius method of probability spaces. But the method
of factorial moments played here the crucial role.

It would be interesting to examine the binomial, the Bernoulli, the shifted Poisson,
the geometrical, and other distributions for shifted primes. Can they occur or not? It is
known  [25_{:}26] that some of them can occur as limit distributions even for  1J_{x}(f(n)<u) .
but some of them can not.
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sumoto for the possibility to take part in the symposium at RIMS.
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