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1. INTRODUCTION

This note is a survey of the papers [22, 23] which is a joint work with
Satoshi Masaki (Osaka university). In this note, we consider the final state
problem for the Klein‐Gordon equation with a critical nonlinearity in space
dimensions d=1,2,3 :

(1.1)  (\square +1)u=\lambda|u|^{2/d}u t\in \mathbb{R}, x\in \mathbb{R}^{d},
 u-u_{ap}arrow 0 in  L^{2} as  tarrow+\infty,

where 口  =\partial_{t}^{2}-\triangle is d’Alembertian,  u :  \mathbb{R}\cross \mathbb{R}^{d}arrow \mathbb{R} is an unknown function,
 u_{ap} :  \mathbb{R}\cross \mathbb{R}^{d}arrow \mathbb{R} is a given function, and  \lambda is a non‐zero real constant.
To explain why we consider this problem, we briefly review known results
on the global existence and long time behavior of solutions to the nonlinear
Klein‐Gordon equation

(1.2)  (\square +1)u=\lambda|u|^{p-1}u, t\in \mathbb{R}, x\in \mathbb{R}^{d},
where  p>1 and  \lambda\in \mathbb{R}\backslash \{0\} . The point‐wise decay of a solution to the linear
Klein‐Gordon equation is  O(t^{-d/2}) as   tarrow\infty , so the linear scattering theory
indicates that the power  p=1+2/d will be a borderline between the short
and the long range scattering theories. This formal observation was firstly
justified by Glassey [6], Matsumura [24] and Georgiev and Yordanov [4] for
  p\leq ı  + 2/d. More precisely, they proved that if  1<p\leq 1+2/d , then
the equation (1.2) has no non‐trivial solution which scatter to a solution to
the linear Klein‐Gordon equation as   tarrow\infty . On the other hand, Hayashi
and Naumkin [10] proved that if  p>1+2/d and  d=1,2 , then a small
solution to (1.2) scatters to a solution to the linear Klein‐Gordon equation.
See also Georgiev and Lecente [3] for earlier results. The readers are referred
to [7, 15, 28, 29, 30, 32] for the small data scattering when  d\geq 3 and  p is
large.

From the above results we see that for the case where  p\leq 1+2/d , the
long time behavior of solution to (1.2) is different from that of the linear
Klein‐Gordon equation. So, we are interested in the long time behavior of
solution to (1.2) for  p\leq 1+2/d . For the critical case  p=1+2/d and
 d=1 , Georgiev and Yordanov [4] studied point‐wise decay of a solution to
the initial value problem. Delort [1] obtained an asymptotic behavior of a
global solution to (1.2) under the assumption that the support of the initial
data is compact. See also Lindblad and Soffer [17] for an alternative proof
of [1]. The compact support assumption in [1] was later removed by Hayashi
and Naumkin in [8] by using the vector field approach by Klainerman [15].

 \rceil
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Recently, the authors [22, 23] considered (1.2) with  p=1+2/d and  d=2,3
and specified an asymptotic profile  u_{ap} that allows a unique solution  u which
converges to  u_{ap} as  tarrow\infty.

To state the main theorems in [22, 23] precisely, we introduce an asymp‐
totic profile  u_{ap} which we work with. To this end, we first recall that a
solution to the linear Klein‐Gordon equation

 \{\begin{array}{ll}
(口 +1) v=0 t\in \mathbb{R}, x\in \mathbb{R}^{d},   
v(0, x)=\phi_{0}(x) , \partial_{t}v(0, x)=\phi_{1}(x)   x\in \mathbb{R}^{d}
\end{array}
behaves like

 v=t^{-\frac{d}{2}}1_{\{|x|<t\}}(t, x)A_{1}(\mu)\cos(\alpha-\beta)+o(t^{-
\frac{d}{2}}) ,

in  L^{\infty} as   tarrow\infty , where  1_{\Omega}(t, x) is the characteristic function supported on
 \Omega\subset \mathbb{R}^{{\imath}+d},  \mu=x/\sqrt{t^{2}-|x|^{2}},

 A_{1}(\mu)  =  \sqrt{P_{1}^{2}(\mu)+Q_{1}^{2}(\mu)},
 P_{1}(\mu)  =   \{\mu\rangle^{\frac{d+2}{2}}\{\cos(\frac{d\pi}{4})({\rm Re}\hat{\phi}_{0}(\mu)
-\langle\mu\}^{-1}{\rm Im}\hat{\phi}_{1}(\mu))

‐   \sin(\frac{d\pi}{4})({\rm Im}\hat{\phi}_{0}(\mu)+\langle\mu\rangle^{-1}{\rm 
Re}\hat{\phi}_{1}(\mu))\},
Qı (  \mu )  =   \{\mu\rangle^{\frac{d+2}{2}}\{\sin(\frac{d\pi}{4})({\rm Re}\hat{\phi}_{0}(\mu)
-\langle\mu\rangle^{-1}{\rm Im}\hat{\phi}_{1}(\mu))

 + \cos(\frac{d\pi}{4})({\rm Im}\hat{\phi}_{0}(\mu)+\langle\mu\rangle^{-1}{\rm 
Re}\hat{\phi}_{1}(\mu))\},
 \alpha=\langle\mu\rangle^{-1}t and  \beta\in(0,2\pi ] is given by

  \cos\beta=\frac{P_{1}}{A_{1}}, \sin\beta=\frac{Q_{1}}{A_{1}},
see Hörmander’s book [11] for instance. For given final state  (\phi_{0}, \phi_{1}) , we
define an asymptotic profile  u_{ap} by

(1.3)  u_{ap}(t, x)  :=  t^{-\frac{d}{2}}1_{\{|x|<t\}}(t, x)A_{1}(\mu)\cos(\alpha+\Psi(\mu)\log t-\beta) ,

where the phase correction term is given by

(1.4)  \Psi(I^{L})=\{\begin{array}{ll}
-\frac{3}{8}\lambda\langle\mu\}^{-1}A_{1}^{2}(\mu)   if d=1,
-\frac{4\lambda}{3\pi}\langle\mu\rangle^{-1}A_{1}(\mu)   if d=2,
-\frac{\Gamma(\frac{{\imath} 1}{6})}{\sqrt{\pi}\Gamma(\frac{7}{3})}
\lambda\{\mu\rangle^{-1}A_{{\imath}}(\mu)^{\frac{2}{3}}   if d=3.
\end{array}
The final state  (\phi_{0}, \phi_{1}) is taken from the function space  Y defined by

 Y := \{(\phi_{0}, \phi_{1})\in S'(\mathbb{R}^{d})\cross S'(\mathbb{R}^{d});
\Vert(\phi_{0}, \phi_{1})\Vert_{Y}<\infty\},
 \Vert(\phi_{0}, \phi_{1})\Vert_{Y}  :=  \Vert\phi_{0}\Vert_{H_{x}^{2}}+\Vert x\phi_{0}\Vert_{H^{3}}.+\Vert x^{2}
\phi_{0}\Vert_{H_{x}^{4}}

 +\Vert\phi_{1}\Vert_{H_{x}^{1}}+\Vert x\phi_{1}\Vert_{H_{x}^{2}}+\Vert x^{2}
\phi_{1}\Vert_{H_{x}^{3}}.
The main results in [22, 23] are summarized as follows.
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Theorem 1.1. Let  d=1,2,3 . Then for  d/4<\gamma<1 , there exist a suffi‐
ciently large number  T\geq e and a sufficiently small number  \varepsilon>0 such that
if  \Vert(\phi_{0}, \phi_{1})\Vert_{Y}<\varepsilon then there exists a unique solution  u(t) for the equation
(1. 1) satisfying

 u\in C([T, \infty);L_{x}^{2}) ,

(1.5)   \sup_{t\geq T}t^{\gamma}\Vert u-u_{ap}\Vert_{L^{\infty}((t,\infty);L_{x}^{2})}
<\infty,
where the asymptotic profile  u_{ap} is defined by (1.3).

Note that for the one dimensional case, Theorem 1.1 is proved by Hayashi
and Naumkin [9] under weaker assumption on the final data. We also note
that Lindblad and Soffer [ı6] showed existence of a modified wave operators
for (1.2) for large final data in the case where  \lambda<0.

Remark 1.2. For the two and three dimensional cases, the coefficients of
the phase function  \Psi come from the first Fourier‐cosine coefficients of a
  2\pi‐periodic function  |\cos\theta|^{2/d}\cos\theta . See Sections 4 and 5 for the detail.

Remark 1.3. The global existence and asymptotic behavior of a solution
to the Klein‐Gordon equation with the cubic quasi‐linear nonlinearity is
studied by Moriyama [26], Katayama [12], and Sunagawa [33] in one space
dimension. Concerning the Klein‐Gordon equation with the quadratic non‐
linearity in two dimensions, Ozawa, Tsutaya, and Tsutsumi [27] proved a
global existence result and characterized the asymptotic behavior of a small
solution to (1.2) with a smooth, quadratic, semi‐linear nonlinearity, i.e.,
nonlinear term depends on  u,  \partial_{t}u,  \nabla u . Delort, Fang, and Xue [2] extended
Ozawa‐Tsutaya‐Tsutsumi’s result to the case where the nonlinear term is
quasi‐linear. See also Kawahara and Sunagawa [14] and Katayama, Ozawa
and Sunagawa [13] for related works.

The proof of Theorem 1.1 consists of two parts. As a first step, we solve
a Cauchy problem at infinite initial time for  \dagger he  equation(1.1) for a given
assymptotic profile which decays like a solution to the linear Klein‐Gordon
equation and approximately solves (1.ı) for large time. Next, we construct
an asymptotic profile satisfying those properties which is a crucial part of
our proof. In Section 2 we solve a Cauchy problem at infinite initial time
for the equation (1.1) in an abstract framework (Proposition 2.1). Then in
Sections 3,4 and 5, we explain how to construct a function which satisfies
the assumptions in Proposition 2.1 for the case d  = ı, 2 and 3, respectively.

2. ABSTRACT CAUCHY PROBLEM

For  T>0 , we define the function spaces  X_{T} by

 X_{T} := \{w\in C([T, \infty);L_{x}^{2});\Vert_{W}\Vert_{X_{T}}<\infty\},

  \Vert_{W}\Vert_{X_{T}} := \sup_{t\geq T}t^{\gamma}(\Vert w\Vert_{L_{t}
^{\infty}((t,\infty);H_{x}^{1/2})}+\Vert w\Vert_{L^{q}((t,\infty);L_{x}^{r})}) ,
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where  d/4<\gamma<1 and

 (q, r)=\{\begin{array}{ll}
(4, \infty)   if d=1,
(4, 4)   if d=2,
(\frac{10}{3}, \frac{10}{3})   if d=3.
\end{array}
Proposition 2.1. Let  d=1,2,3 and let  N(u)=\lambda|u|^{2/d}u . Let  \gamma be a
constant such that  d/4<\gamma<1 . Then there exist a sufficiently large  T>0

and a sufficiently small  \eta>0 such that if  A(t, x) satisfies

(2.1)  \Vert A(t)\Vert_{L_{x}}\infty\leq\eta t^{-1},
(2.2)  \Vert(\square +1)A(t)-N(A)(t)\Vert_{L_{x}^{2}}\leq\eta t^{-1-\gamma},
then there exists a unique solution  u for the equation (1.1) satisfying

 u\in C([T, \infty);L_{x}^{2}) ,

(2.3)   \sup_{t\geq T}t^{\gamma}(\Vert u-A\Vert_{L^{\infty}((t,\infty);H_{x}^{1/2})}+
\Vert u-A\Vert_{L^{q}((t,\infty);L_{x}^{r})})<\infty.
By Proposition 2.1, once we find a function  A satisfying (2.1) and (2.2), we

can show the existence of a unique solution  u to the equation (1.1) satisfying
 u-A\in X_{T} . In Sections 3,4 and 5, we construct a function  A satisfying the
conditions (2.1) and (2.2) for a given final state (  \phi_{0} ,  \phi ı)  \in Y.

Let us give an outline of proof for Proposition 2.1. To prove this propo‐
sition, we use the following inhomogeneous Strichartz estimates associated
with the Klein‐Gordon equation. Let

(2.4)   \mathcal{G}[g](t):=\int_{t}^{\infty}\sin((t-\tau)\sqrt{1-\triangle})(1-
\triangle)^{-1/2}g(\tau)d\tau.
Lemma 2.2. Let  2\leq r<(2d)/(d-2) and  2/q+d/r=d/2 . Then we have

 \Vert \mathcal{G}[g]\Vert_{L_{t}^{q}([T,\infty),L_{x}^{r})} \leq C\Vert(1-
\triangle)^{\frac{d}{4}-\frac{d+2}{2r}}g\Vert_{L_{t}^{q'}([T,\infty),L_{x}^{r'})
},
 \Vert \mathcal{G}[g]\Vert_{L_{t}^{\infty}([T,\infty),L_{x}^{2})} \leq C\Vert(1-
\triangle)^{\frac{d-2}{8}-\frac{d+2}{4r}}g\Vert_{L_{t}^{q'}([T,\infty),L_{x}
^{r'})},

 \Vert \mathcal{G}[g]\Vert_{L_{t}^{q}([T,\infty),L_{x}^{r})} \leq C\Vert(1-
\triangle)^{\frac{d-2}{8}-\frac{d+2}{4r}}g\Vert_{L_{t}^{1}([T,\infty),L_{x}^{2})
}.
Proof of Lemma 2.2. The above inequalities follow from the  L^{p}-L^{q} estimate
for the solution to the Klein‐Gordon equation by [18] and the duality argu‐
ment by [34]. Since the proof is now standard, we omit the detail. 口

Outline of the proof of Proposition 2.1. We put  v=u-A and  F=(\square +
 1)A-N(A) . Then the equation (1.1) is equivalent to

(2.5) (口  +1 )  v=N(v+A)-N(A) —F.

The associate integral equation to the equation (2.5) is

(2.6)  v=\mathcal{G}[\{N(v+A)-N(A)\}-F],

where  \mathcal{G} is given by (2.4). We show the existence of a unique solution  v to
the equation (2.6) in  X_{T} for sufficiently large  T>0 and sufficiently small
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 \eta>0 by the contraction argument. To this end, we define the nonlinear
operator  \Phi by

 \Phi v:=\mathcal{G}[\{N(v+A)-N(A)\}-F]

for  v\in\overline{X}_{T}(\rho) and the function space  \overline{X}_{T}(\rho) by

 \overline{X}_{T}(\rho)=\{w\in C([T, \infty);L_{x}^{2});\Vert_{W}\Vert_{X_{T}}
\leq\rho\},

where  \rho>0 and  T>0 . Note that  \overline{X}_{T}(\rho) is a complete metric space with
the  \Vert .  \Vert_{X_{T}} ‐metric. By using Lemma 2.2, we are able to show that for any

 \rho>0,  \Phi is a contraction map on  \overline{X}_{T}(\rho) if  T>0 is sufficiently large and
 \eta>0 is sufficiently small. Hence the Banach fixed point theorem yields
Proposition 2.1. 口

3. OUTLINE OF THE PROOF OF THEOREM 1.1 CASE:  d=1

In this section, we give an outline of the proof of Theorem 1.1 for  d=1

by using the argument by Delort [1]. We now explain how to construct the
function  A=A(t, x) satisfying the conditions (2.1) and (2.2). It will turn out
that  A=u_{ap} does not work well, and so that we need further modification.
The conclusion is that the choice  A  :=u_{ap}+v_{ap} works, where  u_{ap} is the first
approximation given by (1.3) and  v_{ap} is the second approximation which is
of the form

(3.1)  v_{ap} := t^{-\frac{3}{2}}1_{\{|x|<t\}}A_{3}(\mu)\cos(3(\alpha+\Psi(\mu)\log t-
\beta)) .

Here the phase function  \Psi is the same as (1.4), and choice of  A_{3} will be
specified later. Remark that  v_{ap}(t)=O(t^{-1}) in  L_{x}^{2} . Toward the conclusion,
we will observe (i) why the second approximation  v_{ap} is required, and (ii)
what is the appropriate choice of  A_{3} . Hereafter, we consider the case  |x|<t
only because  u_{ap} and  v_{ap} are identically zero in the region  |x|\geq t.

We first focus on the nonlinear part  N(u_{ap})=\lambda|u_{ap}|^{2}u_{ap} . Since  N(u)=
 \lambda|u|^{2}u is polynomial in  (u, \overline{u}) , it is easy to pick up a resonant part from
 N(u_{ap}) . Indeed, we have

(3.2)  N(u_{ap}) = \lambda t^{-\frac{3}{2}}A_{1}(I^{L})^{3}\cos^{3}(\alpha+\Phi(\mu)
\log t-\beta)

 =  \frac{3}{4}\lambda t^{-\frac{3}{2}}A_{1}^{3}(\mu)\cos(\alpha+\Phi(\mu)\log t
-\beta)
 + \frac{1}{4}\lambda t^{-\frac{3}{2}}A_{{\imath}}^{3}(\mu)\cos(3(\alpha+
\Phi(\mu)\log t-\beta))

 = :  N_{r}(u_{ap})+N_{nr}(u_{ap}) .

Since both of the resonant and non‐resonant parts are  O(t^{-1}) in  L_{x}^{2} , we need
to cancel out those terms by the linear part, otherwise (2.2) fails. Thanks
to the phase correction  \Psi , we have the desired cancellation of the resonant
part. Namely, we have

 (\square +{\imath})u_{ap}=N_{r}(u_{ap})+O (t.-2(\log t)^{2})
in  L^{2} as   tarrow\infty . We then add a second approximation  v_{ap} of  u , given in
(3.1), in order to cancel the non‐resonant term  N_{nr}(u_{ap}) out. This is the
reason why we need the second approximation  v_{ap}.
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To obtain the desired cancellation, we will choose suitable  A_{3} . More
precisely, we choose  A_{3} so that the leading term of  (\square +1)v_{ap} and  N_{nr}(u_{ap})
coincide. By a computation, we have

 (\square +1)v_{ap}=-8t^{-\frac{3}{2}}A_{3}(\mu)\cos(3(\alpha+\Phi(\mu)\log t-
\beta))+O(t^{-2}(\log t)^{2})
in  L^{2} as   tarrow\infty . Hence. we obtain the specific choice

(3.3)  A_{n}( \mu)=-\frac{\lambda}{32}A_{1}^{3}(\mu) .

With this choice, the leading term of  (\square +1)v_{ap} and  N_{nr}(u_{ap}) successfully
cancel out each other. Thus, we see that  A=u_{ap}+v_{ap} satisfies the conditions
(2.1) and (2.2).

Notice that this kind of approximation was introduced in Hörmander
[11] for the Klein‐Gordon equation with polynomial nonlinearity in  (u, \overline{u}) .
See also [25, 31] for the nonlinear Schrödinger equation with polynomial
nonlinearity in  (u, \overline{u}) .

4. OUTLINE OF THE PROOF OF THEOREM 1.1 CASE:  d=2

In this section, we give an outline of the proof of Theorem ı. 1 for  d=2

which is given by [22].
We now explain how to construct the function  A=A(t, x) satisfying the

conditions (2.1) and (2.2). We choose  A:=u_{ap}+v_{ap} , where  u_{ap} is the first
approximation given by (1.3) and  v_{ap} is the second approximation which is
of the form

(4.1)  v_{ap} :=  t^{-2}1_{\{|x|<t\}}\sum_{n=2}^{\infty}A_{n}(\mu)\cos(n(\alpha+
\Psi(\mu)\log t-\beta)) .

Here the phase function  \Psi is given by  (1.\dot{4}) , and choice of  A_{n} will be specified
later. Remark that  v_{ap}(t)=O(t^{-1}) in  L_{x}^{2} . Hereafter, we consider the case
 |x|<t only because  u_{ap} and  v_{ap} are identically zero in the region  |x|\geq t.

We first focus on the nonlinear part  N(u_{ap})=\lambda|u_{ap}|u_{ap} . Unlike the
one dimensional case, the nonlinear term  N(u)=\lambda|u|u is not polynomial in
 (u, \overline{u}) , so it becomes difficult to pick up a resonant part from  N(u_{ap}) . Taking
a hint from our previous paper [21], we use the Fourier series expansion of
 N(u_{ap}) to decompose  N(u_{ap}) into the resonant part and the rest, the non‐
resonant part. This decomposition is done as follows.

(4.2)  N(u_{ap})
 = \lambda t^{-2}A_{1}(\mu)^{2}|\cos(\alpha+\Phi(I^{4})\log t-\beta)
|\cos(\mathfrak{a}+\Phi(\mu)\log t-\beta)

 =  \lambda t^{-2}A_{1}(\mu)^{2}\sum_{n>1}c_{n}\cos(n(\alpha+\Phi(\mu)\log t-
\beta))
 = c_{1}\lambda t^{-2}A_{1}(\mu)^{2}\cos(\alpha+\Phi(\mu)\log t-\beta)

 + \sum_{n\geq 2}\lambda c_{n}t^{-2}A_{1}(\mu)^{2}\cos(n(\alpha+\Phi(\mu)\log t-
\beta))
 = :  N_{r}(u_{ap})+N_{nr}(u_{ap}) ,
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where  c_{n} is the n‐th Fourier coefficients for the function  |\cos\theta|\cos\theta :

 c_{n}= \frac{1}{\pi}\int_{0}^{2\pi}|\cos\theta|\cos\theta\cos n\theta d\theta=\
{\begin{array}{ll}
- \frac{8}{\pi}\frac{\sin(\frac{n}{2}\pi)}{n(n^{2}-4)}   if n is odd,
0   if n is even.
\end{array}
This kind of technique was also used in Sunagawa [33] to pick up the resonant
term from the cubic nonlinearity in one space dimension. As we explained
in Section 2, for the one dimensional case, the Fourier series for  N(u_{ap})
consists of only two terms. We would emphasize that, in our setting, the
Fourier series consists of infinitely many terms, so we need to take care of the
convergence of the Fourier series, which seems a new ingredient. Fortunately,
it turns out that the nonlinearity  |u|u has enough smoothness to ensure the
convergence of the Fourier series for  |u|u . We mention similar but slightly
different expansion of a nonlinearity into a infinite Fourier sires is used by
the flrst author and Miyazaki [ı9] in the context of nonlinear Schrödinger
equation.

Since both of the resonant and non‐resonant parts are  O(t^{-1}) in  L_{x}^{2} , we
need to cancel out those terms by the linear part, otherwise (2.2) fails.
Thanks to the phase correction  \Psi , we have the desired cancellation of the
resonant part. Namely, we have

 (\square +1)u_{ap}=N_{r}(u_{ap})+O(t^{-2}(\log t)^{2}) ,  in  L^{2}

as   tarrow\infty . We then add a second approximation  v_{ap} of  u , given in (4.1), in
order to cancel the non‐resonant term  N_{nr}(u_{ap}) out.

To obtain the desired cancellation, we will choose suitable  A_{n} . More
precisely, we choose them so that the leading term of n‐th term of  (\square +
 1)v_{ap} and n‐th term of the Fourier expansion of  N_{nr}(u_{ap}) coincide. By a
computation, we have

(口  +1 )  v_{ap}  =  t^{-2} \sum_{n=2}^{\infty}(1-n^{2})A_{n}(\mu)\cos(n(\alpha+\Phi(\mu)\log t-
\beta))
 +O(t^{-2}(\log t)^{2}) , in  L^{2}

as   tarrow\infty . Hence, we obtain the specific choice

(4.3)  A_{n}(\mu)=\{\begin{array}{ll}
\frac{8\sin(\frac{n}{2}\pi)}{\pi n(n^{2}-1)(n^{2}-4)}\lambda A_{1}^{2}(\mu)   if
n is odd,
0   if n is even.
\end{array}
With this choice, the leading term of the n‐th term of  (\square +1)v_{ap} and the
n‐th term of the Fourier expansion for  N_{nr}(u_{ap}) successfully cancel out each
other. Further, it turns out that the error term can be handled thanks to
fast decay of  A_{n} in  n . Remark that the coefficients of  A_{n} is order  O(|n|^{-5}) as
 |n|arrow\infty . The decay rate of the Fourier coefficients reflects the smoothness
of the nonlinearity  \lambda|u|u . Thus, we see that  A=u_{ap}+v_{ap} satisfies the
conditions (2. 1) and (2.2).

5. OUTLINE OF THE PROOF OF THEOREM 1.1 CASE:  d=3

In this section, we give an outline of the proof of Theorem 1.1 for  d=3

which is given by [23]. In this case, the power becomes a fractional number,
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so the argument in the two dimensional case [22] is not directly applicable.
To overcome this difficulty, we use the argument by Ginibre and Ozawa [5].

We now explain how to construct the function  A=A(t, x) satisfying the
conditions (2.1) and (2.2). The conclusion is that the choice  A  :=\~{u}_{ap}+\tilde{v}_{ap}
works, where  \~{u}_{ap} is the first approximation given by

 \~{u}_{ap} := t^{-\frac{3}{2}}1_{\{|x|<t\}}A_{1}(\mu)\cos(\alpha+\tilde{\Psi}
(\mu)\log t-\beta) ,

where  \tilde{\Psi} is given by

 \tilde{\Psi}(\mu)=\sqrt{A_{1}^{2}(\mu)+t^{-1}}
and  \tilde{v}_{ap} is the second approximation which is of the form

(5.1)   \tilde{v}_{ap} := t^{-\frac{5}{2}}1_{\{|x|<t\}}\sum_{n=2}^{\infty}A_{n}(\mu)
\cos(n(\alpha+\tilde{\Psi}(\mu)\log t-\beta)) .

where choice of  A_{n} will be specified later. Note that  \tilde{v}_{ap}(t)=O(t^{-1}) in
 L_{x}^{2} . Hereafter, we consider the case  |x|<t only because  \tilde{u}_{ap} and  \tilde{v}_{ap} are
identically zero in the region  |x|\geq t.

We first focus on the nonlinear part  N(\tilde{u}_{ap})=\lambda|\~{u}_{ap}|^{2/3}\~{u}_{ap} . As is the case
of  d=2,  N(u)=\lambda|u|^{2/3}u is not polynomial in  (u, \overline{u}) , so we use the Fourier
series expansion of  N(\tilde{u}_{ap}) to decompose  N(\~{u}_{ap}) into the resonant part and
the rest, the non‐resonant part. This decomposition is done as follows.

(5.2)  N(\~{u}_{ap})

 = \lambda t^{-\frac{5}{2}}A_{1}(\mu)^{\frac{5}{3}}|\cos(\alpha+\tilde{\Phi}
(\mu)\log t-\beta)|^{\frac{2}{3}}\cos(\alpha+\tilde{\Phi}(\mu)\log t-\beta)

 =  \lambda t^{-\frac{5}{2}}A_{1}(\mu)^{\frac{5}{3}}\sum_{n\geq 1}c_{n}
\cos(n(\alpha+\tilde{\Phi}(\mu)\log t-\beta))
 = \lambda t^{-\frac{5}{2}}A_{1}(\mu)^{\frac{5}{3}}c_{1}\cos(\alpha+\tilde{\Phi}
(\mu)\log t-\beta)

 + \sum_{n\geq 2}\lambda c_{n}t^{-\frac{5}{2}}A_{1}(\mu)^{\frac{5}{3}}
\cos(n(\alpha+\tilde{\Phi}(\mu)\log t-\beta))
 = :  N_{r}(\tilde{u}_{ap})+N_{nr}(\tilde{u}_{ap}) ,

where  c_{n} are the Fourier coefficients for the function  |\cos\theta|^{2/3}\cos\theta :

 c_{n}= \frac{1}{\pi}\int_{0}^{2\pi}|\cos\theta|^{\frac{2}{3}}\cos\theta\cos 
n\theta d\theta.
Note that  c_{n} are explicitly given by

 \{  0 if  n is even,
  \frac{2(-i)^{\frac{n-1}{2}\Gamma(\frac{11}{6})\Gamma(\frac{3n-5}{6})}}
{\sqrt{\pi}\Gamma(-\frac{{\imath}}{3})\Gamma(\frac{3n+11}{6})} if  n is odd,

see Masaki, Miyazaki and Uriya [20] for the detail. Since both of the resonant
and non‐resonant parts are  O(t^{-1}) in  L_{x}^{2} , we need to cancel out those terms
by the linear part, otherwise (2.2) fails. Thanks to the phase correction  \tilde{\Psi} ,
we have the desired cancellation of the resonant part. Namely, we have

 (\square +1)\~{u}_{ap}=N_{r}(\~{u}_{ap})+O(t^{-\frac{11}{5}}(\log t)) ,  in  L^{2}
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as   tarrow\infty . We then add a second approximation  \tilde{v}_{ap} of  u , given in (5.1), in
order to cancel the non‐resonant term  N_{nr}(\~{u}_{ap}) out.

To obtain the desired cancellation, we will choose  A_{n} appropriately. More
precisely, we choose them so that the leading term of n‐th term of  (\square +
 1)\tilde{v}_{ap} and n‐th term of the Fourier expansion of  N_{nr}(\~{u}_{ap}) coincide. By a
computation, we have

 (\square +{\imath})\tilde{v}_{ap}  =  t^{-\frac{5}{2}} \sum_{n=2}^{\infty}(1-n^{2})A_{n}(\mu)\cos(n(\alpha+\Phi(\mu)
\log t-\beta))
 +O(t^{-2}) , in  L^{2}

as   tarrow\infty . Hence, we obtain the specific choice

(5.3)  A_{n}( \mu)=\frac{c_{n}\lambda}{1-n^{2}}A^{\frac{5}{13}}(\mu) .

With this choice, the leading term of the n‐th term of  (\square +1)\tilde{v}_{ap} and the
n‐th term of the Fourier expansion for  N_{nr}(\~{u}_{ap}) successfully cancel out each
other. Further, it turns out that the error term can be handled thanks to fast
decay of  A_{n} in  n . Remark that the coefficients of  A_{n} is order  O(|n|^{-14/3}) as
 |n|arrow\infty . The decay rate of the Fourier coefficients reflects the smoothness
of the nonlinearity  \lambda|u|^{2/3}u . Thus, we see that  A=\~{u}_{ap}+\tilde{v}_{ap} satisfies the
conditions (2. 1) and (2.2).
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