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ヘレ・ショウ流れ,結晶成長,紙の燃焼に対する境界追跡法について 1)
On boundary tracking methods for Hele‐Shaw flows, crystal

growth and combustion of paper

明治大学理工学部 矢崎 成俊 (Shigetoshi YAZAKI)
School of Science and Technology, Meiji University2)

Abstracts. A siınple and fast numerical lnethods for the classical Hele‐
Shaw probleln, the area‐preserving crystalline curvature flow equation, and
the closed curve versioll of Kuraınoto‐Sivashiıisky equation are presented.

1 Introduction

Let \mathcal{C}(t) be a smooth Jordan curve at time  t in the plane  \mathbb{R}^{2} . In the physical context,
 \mathcal{C}(t) is a model of interface between a viscous liquid and the air, boundary of crystal,  a

flame/smoldering front, and so on. The curve  C(t) is parameterized by  x(u, t) for  u\in[0,1]
and moves by

記  (u, t)=V(u, t)N(u, t)+W(u, t)T(u, t) , (1.1)

where  \dot{F}=\partial F/\partial t.
In this paper we follow the so‐called direct approach in which the evolution of the

position vector  x=x(u, t) is governed by equation (1.1), especially in the case where
the ılorınal  N velocity  V is given by the following equations: one phase Hele‐Shaw flow
equation, crystalline curvature flow equation, and Kuramoto‐Sivashinsky equation, while
the tangent  T velocity  W controls the grid‐point spacing to be uniform. Note that the
tangentiaı velocity  W has no effect on the shape of evolving curve, which is determined by
the value of the normal velocity  V only. Therefore, one can take  W\equiv 0 when analyzing
analytical properties of the geometric flow driven by (1.1). On the other hand, the impact
of a suitable choice of  W on the construction of ıobust and stable numerical schemes has

been pointed out by many authors (see e.g., [9, 14] and references therein).

2 Moving Jordan curve and eight examples

Time evolution of a Jordan curve  C(t) is parameterized by  x :  [0,1]\cross[0, T )  arrow \mathbb{R}^{2} s.t.
 \mathcal{C}(t)=\{x(u, t);u\in[0,1]\} and  |x'|>0 . Here  x'=\partial x/\partial u and  g(u, t)=|x'| is the
local length. We denote  |a|=\sqrt{a}a where  a\cdot b is the inner product between  a and
 b\in \mathbb{R}^{2} . The unit tangent vector is  T=x'/g=x_{s} where  s is the arc‐length parameter
 ds=gdu and  F_{s}=F^{f}/g , i.e.,  \partial/\partial s=q^{-{\imath}}\partial/\partial u is the formal definition, since the arc‐
length  s depends on  u and  t . The unit outward normal vector is lV  =-T^{\perp} where
 (a, b)^{\perp}=(-b, a) . The tangential angle  \theta is defined s.t.  T=(\cos\theta, \sin\theta)^{T} . The curvature

 \kappa is obtained from  T=x_{s} and the Fı enét formula  T_{s}=-h^{-.N} , from which it followb that
 \kappa=\theta_{s} or  \kappa=\det(x_{s}, x_{ss}) where  F_{ss}=(F'/g)'/g(sign convention is the way that  \kappa=1

if  C is a unit circle). See Figure 2.1.
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Figure 2.1: Moving Jordan curve

A geometric evolution problem can be formulated as follows: For a given initial Jordan
curve  \mathcal{C}^{0} , find a family of curves  \{C(t)\}_{0\leq t<T} , starting from  \mathcal{C}(0)=C^{0} and evolving by the
normal velocity  V.

In what follows, we show eight examples of various kinds of the normal velocity  V.

Example 2.1 A simple example of  V is the Eikonal equation  V=-1 , which is the
 L^{2}‐gradient flow of the enclosed area   \mathcal{A}(t)=\frac{1}{2}\int_{C(t)}x\cdot Nds_{i} since

  \dot{\mathcal{A}}(t)=\int_{C(t)}Vds . (2.1)

Example 2.2 Another typical example is the classical curvature flow equation  V=

 -\kappa , which is the  L^{2}‐gradient flow of the total length   \mathcal{L}(t)=\int_{C(t)}ds , since

  \dot{\mathcal{L}}(t)=\int_{C(t)}\kappa Vds . (2,2)

Then we have the curve‐shortening property (CS‐property in short)  \dot{\mathcal{L}}(t)\leq 0 , and then
  V=-\kappa is also called the curve‐shortening equation.

Example 2.3 The area‐preserving curvature flow equation   V=\{\kappa\rangle-\kappa is also
classical, where   \{F\rangle=\mathcal{L}(t)^{-1}\int_{C(t)}Fds is the average of  F along the curve  \mathcal{C}(t) . The

enclosed aiea  \mathcal{A}(t) is preserved in time (AP‐property in short), since from (2.1) we have

  \dot{\mathcal{A}}(t)=\int_{C(t)}(\langle\kappa)-\kappa)ds=\{\kappa\}
\int_{\mathcal{C}(t)}ds-\int_{C(t)}\kappa ds=0.
By means of CBS inequality, we also have the CS‐property  \dot{\mathcal{L}}\leq 0 which is the same as
the classical curvature flow equation   V=-\kappa in Example 2.2. Indeed,   V=\{\kappa\}-\kappa is the
 L^{2}‐gradient flow of  \mathcal{L} subject to area‐preserving.

Example 2.4 The fourth example is the Willmore flow equation  V=\kappa_{ss}+\kappa^{3}/2,
which is the  L^{2} ‐gradient flow of the elastic encrgy   \mathcal{E}(t)=\int_{C(t)}\kappa^{2}ds/2 , bince

  \dot{\mathcal{E}}(t)=-\int_{C(t)}(\kappa_{ss}+\frac{1}{2}\kappa^{3})Vds . (2.3)
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Example 2.5 The fifth example is the surface diffusion flow equation  V=\kappa_{ss} which
is formally obtained from the Willmore flow equation without the term  \kappa^{3}/2 . The solution
of this equation satisfies the AP‐property   \dot{\mathcal{A}}(t)=\int_{C(t)}\kappa_{ss}ds=0 . We also have the CS‐

property  \dot{\mathcal{L}}(t)\leq 0 , and in this sense, the surface diffusion flow and the area‐preserving
curvature flow are very similar each other.

Example 2.6 As we have seen, the area‐preserving curvature flow equation   V=\langle\kappa\rangle-\kappa
and the surface diffusion flow equation  V=\kappa_{ss} have the AP‐ and the CS‐properties. The
following Hele‐Shaw flow equation also has these two properties.

The Hele‐Shaw problem is description of a motion of viscous fluid in a quasi two‐
dimensional space, which was starting from a short paper [5] in 1898 by Henry Selby Hele‐
Shaw (1854‐1941). In his experiment, viscous fluid is sandwiched between two parallel
plates with a narrow gap, and the apparatus is called Hele‐Shaw ccll. He succeeded to
visualize stream lines by means of colored water in the cell. In the mathematical context,
the Hele‐Shaw problem is reduced from Navier‐Stokes equations via stationary Stokes
approximation, parabolic‐shape approximation of the velocity profile, and assumption of
the Laplace relation on the boundary, that is, the problem is stated as follows (see [8, 4]
in detail):

 \{\begin{array}{ll}
\triangle p=0   in \mathcal{D}(t) ,
p=\gamma\kappa   on \mathcal{C}(t) ,
V=-\nabla p\cdot N   on \mathcal{C}(t) ,
\end{array} (2.4)

where  \mathcal{D}(t)\subset \mathbb{R}^{2} is region occupied by fluid,  C(t)=\partial \mathcal{D}(t) is the boundary,  p is the
pressure function,  \kappa is the curvature,  \gamma>0 is the surface tension coefficient,  N is the
unit outward normal vector, and  V=x . lV is the normal velocity. See Figure 2.1.

Thus the Hele‐Shaw problem is stated as a kind of movinlg boundary problems deter‐
mining unknown function  p and unknown fluid region  \mathcal{D} . It can be described in another
way such as follows. Let  u be the velocity vector of two‐dimensional fluid. Then the
harmonicity of the pressure  p is an expression of continuation derived from the Darcy’s
law  u=-\nabla p and the incompressible condition of fluid  divu=0 , and the normal velocity
 V is derived fı om mass conservation law  x=u.

When the pressure  p and the curve  C(t) are solutions of the Hele‐Shaw problem (2.4),
then we have the CS‐property iı

 \acute{}

l the following sense

 - \dot{\mathcal{L}}(t)=\frac{1}{\gamma}\int_{C(t)}p\nabla p\cdot Nds=\frac{1}
{\gamma}\int\int_{\mathcal{D}(t)}div(p\nabla p)dxdy=\frac{1}{\gamma}
\int\int_{\mathcal{D}(f.)}|\nabla p|^{2}dxdy\geq 0.
We also have the AP‐property

  \dot{\mathcal{A}}(t)=-\int_{C(t.)}\nabla p\cdot Nds=-\int\int_{\mathcal{D}(t)}
div(\nabla p)dxdy=-.\int\int_{\mathcal{D}(t)}\triangle pdxdy=0.
Example 2.7 Let us consider the total interfacial energy   \mathcal{L}_{\sigma}(t)=\int_{C(t.)}\sigma(\theta)ds , where
 \sigma>0 is the interfacial energy density per unit arc‐length and  \theta is the tangential angle as

92



93

in Figure 2.1. Then the  L^{2} ‐gradient flow of  \mathcal{L}_{\sigma} is  V=-\kappa_{\sigma} , where  \kappa_{\sigma}=(\sigma+\sigma")\kappa is the
weighted curvature, since we have

  \dot{\mathcal{L}}_{\sigma}(t)=\int_{C(t)}\kappa_{\sigma}Vds , (2.5)

which is regarded as the anisotropic version of (2.2). The equation  V=-\kappa_{\sigma} is called the
weighted curvature flow equation. The energy density  \sigma is specified by so‐called the
Wulff shape   \mathcal{W}_{\sigma}=\bigcap_{\theta\in[0,\pi]}\{x\in \mathbb{R}^{2};x\cdot lV
(\theta)\leq\sigma(\theta)\} , where  N(\theta)=(\sin\theta, -\cos\theta)^{T} . If
 \sigma is a smooth function of  \theta and  \sigma+\sigma^{\prime f} is positive, then  (\sigma+\sigma^{\prime/})^{-1} is the curvature of the
boundary of the Wulff shape  \mathcal{W}_{\sigma} . When the Wulff shape is a polygon,  \sigma is not smooth
and is called crystalline energy density, and the gradient flow of total crystalline energy
derive the so‐called crystalline curvature flow equation, which will be discussed in §5.

Example 2.8 The last example is the case where the normal velocity  V is a linear combi‐
nation of the Eikonal, the classical curvature flow and the surface diffusion flow equations
with the coefficients  V^{(0)},  \alpha_{eff}-1 and  \delta such that

  V=V^{(0)}+(\alpha_{eff}-1)\kappa+\delta\kappa (2.6)

where  V^{(0)} is a constant speed, and  \alpha_{eff} and  \delta are positive parameters. This equation (2.6)
is equivalent to, in a certain scale, the so‐called Kuramoto‐Sivashinsky equation for
the graph  y=f(x, t) of a curved flame front [7, 15] when  V^{(0)}=1 and  \delta=4 :

  \dot{f}+\frac{1}{2}f^{\prime 2}+(\alpha_{eff}-1)f"+4f^{\prime\prime/\prime}=0 , (2.7)

where  f'=\partial f/\partial x,  f  =\partial^{2}f/\partial x^{2} and  f  =\partial^{4}f/\partial x^{4} . One can find the simple scaling
argument in [3].

If  \alpha_{eff}>1 , then  (\alpha_{eff}-1)\kappa induces instability, which is  s\dot{n}nilar to the ill‐posedness
of backward heat equation  f=-f and  \delta\kappa_{ss} plays a stabilization role of the unstable
front. An alternative stabilization method is to use the Willmore flow [10].

3 Numerical scheme for (1.1)
In the dircct approach, a moving Jordan curve is approximated by a moving Jordan
polygonal curve, say  \Gamma(t) at time  t , with  N vertices labeled  x_{1},  x_{2},  \cdot\cdot\cdot ,  x_{N} in the anti‐
clockwise order, Let  \Gamma_{i} be the i‐th edge  \Gamma_{i}=[x_{i-1}, x_{i}]  (i=1, 2, \cdots , N;x_{0}=x_{N}) . Then
the moving Jordan polygonal curve at time  t is   \Gamma(t)=\bigcup_{i=1}^{N}\Gamma_{i}(t) . Our goal here is to
construct a discretization of (1.1) in space, i.e., to derive a system of ordinary differential
equations (ODEs in short) for  \Gamma(t) : for  i=1,2 , ,  N

 \dot{x}_{i}(t)=V_{i}(t)N_{i}(t)+T:V_{i}(t)T_{i}(t) , (3.1)

where  V_{i} is the normal lV ‐cornponent of the velocity at  x_{i} , and  W_{i} the tangential  T_{i}‐
component of the velocity at  x_{i}.

The right‐hand‐side of (3.1) consists of several polygonal  quantitie_{\mathfrak{t}}s. on  \Gamma at tiıne  t,

and all of them can be constructed from  \{x_{i}\}_{i=1}^{N} through the following steps. In what
follows, these are regarded as functions of time  t with  N‐periodic index, i.e.,  F_{0}=F_{N},
FN  + ı  =F_{1}.
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Figure 3.1: Moving Jordan polygonal curve

Step 1 several polygonal quantities (see Figure 3.1)

 r_{i}=|x_{i}-x_{i-1}| : the length of  \Gamma_{i},

 L= \sum_{\dot{i}=1}^{N}r_{i} : the total length of  \Gamma,

 t_{i}=(x_{i}-x_{i-1})/r_{i} : the unit tangent vector on  \Gamma_{i},

 n_{i}=-t_{i}^{\perp} : the outward unit normal vector on  \Gamma_{i},

 \phi_{i}=sgn(\det(t_{i}, t_{i+1}))\arccos(t_{i}\cdot t_{i+1}) : the angle between the adjacent edges  \Gamma_{i} and  \Gamma i  + ı

 T_{i}=(t_{i}+t_{i+1})/(2\cos_{i}) : the unit tangent vector at  x_{i} , where  \cos_{i}=\cos(\phi_{i}/2) ,

 N_{i}=-T_{i}^{\perp} : the unit outward normal vector at  x_{i},

 \kappa_{i}=(tan_{i}+tan_{i-1})/r_{i} : the curvature on  \Gamma_{i} , where  sin_{i}=\sin(\phi_{i}/2),  tan_{i}=sin_{i}/\cos_{i} ;

Step 2 the normal velocity  V_{i}=(v_{i}+v_{i+1})/(2\cos_{i}) at  x_{i} , where
 v_{i} is a given averaged normal velocity on  \Gamma_{i} such as  v_{i}=-\kappa_{i} , and so on;

Step 3 the tangential velocity  W_{i} at  x_{i} is defined by one of the followings:

(1) Uniform Distribution Method:  W_{i}=(\Psi_{i}+c)/\cos_{i} at  x_{i} , where

  \Psi_{i}=\sum_{j=1}^{i}\psi_{j},  c=-( \sum_{j=1}^{N}\Psi_{j}/\cos_{j})/(\sum_{j=1}^{N}\cos_{j}) ,  \psi_{1}=0 and

  \psi_{j}=\frac{{\imath}}{N}\sum_{l=1}^{N}\kappa\iota^{v}\iota r_{l}-V_{j}
sin_{j}-V_{j-1}s\dot{1}n_{j-1}+(\frac{L}{N}-r_{j})\omega
for  j=2,3,  \cdot\cdot\cdot ,  N , and  \omega will be defined later;
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(2) Crystalline Method:  W_{i}=(v_{i+1}-v_{i})/(2s\dot{1}n_{i}) at  x_{i} ;

(3) Curvature Adjusted Method: an interpolation of (1) and (2);

GOAL (3.1) can be summarized as the following ODEs:

 \dot{X}=F(X) , (3.2)

where  X=  (x_{1}, x_{2}, \cdots , x_{N})\in \mathbb{R}^{2\cross N_{:}} and

 \{\begin{array}{l}
F=(F_{1}, F_{2}, \cdots, F_{N}):\mathbb{R}^{2\cross N}arrow \mathbb{R}^{2\cross 
N};
\mathbb{R}^{2\cross N}\ni X\mapsto F_{i}(X)\in \mathbb{R}^{2}(i=1,2, \cdots , N)
.
\end{array}
The background of the above steps are the followings.

Step 1 Several polygonal quantities  r_{i},  L,  t_{i},  n_{i} and  \phi_{i} are defined naturally as in Step 1.

‐ To define the tangent and nornlal vectors at  x_{i} , we use the angle  \phi_{i} between
the adjacent edges  \Gamma_{i} and  \Gamma_{i+1}  (t_{i} . t_{i+1}=\cos\phi_{i}) .  A_{b} in Figure 3.1, the unit
tangent vector  T_{i} at  x_{i} are defined by an average of the adjacent corresponding
vectors in the sense as in Step 1.

‐ To definc the curvatures on  \Gamma_{i} and at  x_{i} , we use (2.2) rather than the Frenét
formulae, i.e., we recall that the curvature can be defined by the firbt variation
of the total length  \mathcal{L} from (2.2). From (3.1), the total length  L , and  r_{i}=

 V_{i}s\dot{1}n_{i}+V_{i-1}s\dot{1}n_{i-1}+W_{i}\cos_{i}-W_{i-1}\cos_{i-1} , we obtain   \dot{L}=\sum_{i=1}^{N}\hat{\kappa}_{i}V_{i}\hat{r}_{i} , where
 \hat{r}_{i}=(r_{i}+r_{i+1})/2 , and  \hat{\kappa}_{i}=2sin_{i}/\hat{r}_{i} is the polygonal curvature at  x_{i} . It is
a natural definition since the normal velocity  V_{i} at  x_{i} is the average of the
adjacent normal averaged velocities in the sense of Step 2. Then it follows that

  \dot{L}=\sum_{\dot{x}=1}^{N}\kappa_{i} 砺  r_{i} , (3.3)

which is a discretization of (2.2), where  \kappa_{i} in Step 1 is the polygonal curvature
on  \Gamma_{i} . Note that  \kappa_{i} is same as the polygonal curvature or the crystalline
curvature in a prescribed class of polygonal curves [2] and  v_{i} is not necessarily
equivalent to  \dot{x}_{i}\cdot n_{i} (see the next step (2)).

Step 3 Let  L_{\varepsilon} be a small perturbation  \varepsilon of  L at  x_{i} only such as  x_{i}+6Z . The z‐
directional derivative of  L_{\varepsilon} is  dL_{\in}/d\varepsilon|_{\varepsilon=0}=\hat{\kappa}_{i}N_{i} .  z\hat{r}_{i} . Hence  z=-N_{i} is the

gradient direction of  L at  x_{\dot{i}} . However, from the enclosed area  A= \sum_{i=1,-}^{N}x_{i-{\imath}}^{\perp}\cdot x_{i}/2,
we have  dA_{\varepsilon}/d\varepsilon|_{\in=0}=\overline{N}_{i} .  z with  l\tilde{V}_{i}=r_{i}n_{i}+r_{i+1}n_{i+1_{\dot{\mathbb{V}}}} and hence  N_{i} is not the

same direction as  N_{i} unless  r_{i}\equiv L/N . Therefore,  N_{i} is not the gradient direction
of  A , and so an error term (coınparing with (2.1)) appears as follows:

  \dot{\Lambda}=\sum_{i=1}^{N}v_{i}r_{i}+err_{A} , err_{A}=\sum_{i=1}^{N}(W_{i}
sin_{i}-\frac{v_{\dot{i}+1}-v_{i}}{2})\frac{r_{i+1}-r_{?}}{2} . (3.4)

There are two ways to vanish  err_{A} :
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(1) To use  W_{i} satisfying  r_{i}\equiv L/N :
This method is called the uniform distribution method (UDM in short). Be‐
cause of numerical errors, an asymptotic UDM is utilized practically as follows.

To obtain the asymptotic UDM,  r_{i}arrow L/N(tarrow T_{\max}\leq\infty) , we assume that
for  i=1,2,  \cdot\cdot\cdot ,  N

 r_{i}- \frac{L}{N}=\eta_{i}e^{-\mu(t)} (\sum_{i={\imath}}^{N}\eta_{i}=0, tarrow
T_{m}1\dot{{\imath}}m..\mu(t)=\infty)
Differentiating the both sides and putting  \omega(t)=\dot{\mu}(t) , we have  r_{i}=U_{i} for
 i=1,2,  \cdot\cdot\cdot ,  N , where

 U_{i}= \frac{\dot{L}}{N}+(\frac{L}{N}-r_{i})\omega(t) , \int_{0}^{\tau_{\max}}
\omega(t)dt=\infty,
and  \omega is a large value if   T_{\max}=\infty as in this paper’s case, and we obtain the
tangential velocity equation  W_{i}\cos_{i}-W_{i-1}\cos_{i-1}=U_{i}-V_{i}sin_{i}-V_{\dot{t}-1}sin_{i-1} for
 i=1,2,  \cdot\cdot\cdot ,  N . Since these  N equations are linearly dependent, imposing the
zero‐average condition   \sum_{i=1}^{N}Ir\nearrow_{i}=0 yields  N linearly independent equations,
which can be solved as in Step 3.

(2) To use  W_{i}=(v_{i+1}-v_{i})/(2sin_{i}) :
This method is called crystalline method which is equivalent to the case  v_{i}=

 \dot{x}_{i}\cdot n_{i} , and in this case,  \Gamma is restricted in a prescribed class of polygonal curves
as mentioned in Step 1.

(3) This method is an interpolation of (1) and (2) developed by [1, 13].

To solve ODEs (3.2), one can use the following several methods: the Euler method,
a semi‐implicit method, the classical fourth order Runge‐Kutta method, and an iteration
method, depending on each problem.

4 The Hele‐Shaw flow equation in Example 2.6

The averaged notmal velocity  v_{i} in Step 2 will be approximated from the normal veloc‐
ity of the Hele‐Shaw flow equation (2.4) in Example 2.6, by means of the Method of
Fundamental Solutions (MFS in short) as foılows.

For each fixed  t\geq 0 we solve the following Dirichlet problem:

 \{\begin{array}{ll}
\triangle p=0 in \Omega(t) ,   
p=\gamma\kappa_{i} on \Gamma_{i}(t)   (i=1,2, \cdots , N) .
\end{array}
We seek the approximate solution  P of the form

  P(x)=Q_{0}+\sum_{j={\imath}}^{N}Q_{j}E_{j}(x) , E_{j}(x) :=E(x-y_{j})-E(x-
z_{j}) (x\in\overline{\Omega}(t)) , (4.1)

 P(x_{\dot{\uparrow}}^{*})=\gamma\kappa_{i} (\prime i. =1,2, \cdots , N) , (4.2)

 v_{i}=-\nabla P(x_{?:}^{*}) .  n_{i}  (i=1,2, \cdots , N) , (4.3)
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where  E(x)=\log|x|/(2\pi) is the fundamental solution of the Laplace operator  \triangle,  x_{i}^{*}=
 (x_{i}+x_{i-1})/2 is the mid point on  \Gamma_{i},  \{Q_{j}\}_{j=0}^{N} are unknown coefficients which will be solved
below,  y_{j} ’s are the singular points defined by

 y_{j}=x_{j}^{*}+dn_{j}  (j=1,2, \dot{\ovalbox{\tt\small REJECT}}N)_{\wedge}.

where  d>0 is a paraıneter controlling accuracy of MFS, and  z_{j} ’s are “dummy’j points
located in  \mathbb{R}^{2}\backslash \overline{\Omega}(t) which are not equal to the singular points  \{y_{j}\}_{j={\imath}}^{N}.

Note that  P satisfies  \triangle P=0 in  \Omega and is invariant under the trivial affine transfor‐

mation and the origin shift of the boundary data as well as the original invariant scheme
of MFS or so‐called the Charge Simulation Method (see [12] and references therein). One
can add one more condition which is required for the invariance of the original invariant
scheme of MFS. We select the condition such a way that  the weighted average of  Q_{j} ’s is
equal to  0 , that is, coefficients  \{Q_{j}\}_{\dot{j}^{=0}}^{N} are determined by (4.2) and

  \sum_{j=1}^{N}Q_{j}H_{j}=0,  H_{j}=- \sum_{i=1}^{N}\nabla E_{j}(x_{i}^{*})\cdot n_{i}r_{i},  j=1,2 , , N. (4.4)

One can solve this system of  N+1 linear equations (4.2) and (4.4) by a standard elimi‐
nation method.

As mentioned in Example 2.6, AP‐property and CS‐property hold for Hele‐Shaw prob‐
lem. When the averaged normal velocity  v_{i} on  \Gamma_{i} is defined by (4.3), if  err_{A}=0 by UDM,
then we have

  \dot{A}=\sum_{i=1}^{N}v_{i}r_{i}=\sum_{\dot{j}=1}^{N}Q_{j}H_{j}=0_{j} (4.5)

where  H_{j} ’s are in (4.4). Thus AP‐property holds in a discrete sense.
We also have the approximated CS‐property as follows.

  \dot{L}=\sum_{i=1}^{N}\kappa_{j}v_{i}r_{i}=-\sum_{i=1}^{N}\kappa_{i}\nabla 
P(x_{i}^{*})\cdot n_{i}r_{i}=-\frac{1}{\gamma}\sum_{i=1}^{N}P(x_{i}^{*})\nabla P
(x_{i}^{*})\cdot n_{i}r_{i}
 =- \frac{1}{\gamma}\sum_{?=1}^{N}\int_{\Gamma}P(x_{\dot{i}}^{*})\nabla P(x_{i}^
{*}) .  n_{i}ds

  \approx-\frac{1}{\gamma}\sum_{i=1}^{N}\int_{\Gamma_{t}}P(x)\nabla P(x)\cdot n_
{i}ds=-\frac{1}{\gamma}\int_{\Gamma}P(x)\nabla P(x)\cdot nds
 =- \frac{1}{\gamma}\iint_{1?}div(P\nabla P)dxdy=-\frac{1}{\gamma}\iint_{\Omega}
|\nabla P|^{2}dxdy\leq 0.

Note that, instead of (4.2) and (4.3), if we use

 [P]_{i}=\gamma\kappa_{i}i, i=1,2, , N , (4.6)
 v_{i}=-\{\nabla P\}_{i}\cdot n_{i},  i=1,2,  \cdot\cdot\cdot ,  N , (4.7)

where {   F\rangle_{i}=r_{i}^{-1}\int_{\Gamma_{i}}Fds is the average of  F on  \Gamma_{i} , and  [F]_{i}=\{F\nabla F\rangle_{i} .  n_{i}/\{\nabla F\}_{i} .  n_{i},

then we have  \dot{L}\leq 0 without an approximation. However, in this case we have to solve
nonlinear  N+1 equations of  \{Q_{j}\}_{\dot{j}=0}^{N} , and that computational cost is not cheap.

To solve ODEs (3.2), we use the classical fourth order Runge‐Kutta method. A precise
argument and several numerical experiments can be found in [11].
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5 The area‐preserving crystalline curvature flow equa‐
tion in Example 2.7

In the crystalline setting, we use the following additional polygonal quantities (cf. §3):

Step 1 (addition)

 h_{i}=x_{i}\cdot n_{i}=x_{i-1} .  n_{i} : the hight function for  \Gamma_{i},

 \theta_{i} : the tangent angle satisfying  t_{i}=(\cos\theta_{i}, \sin\theta_{i})^{T} . See Figure 3.1. All tangent angles
 \{\theta_{i}\}_{i=0}^{N+1} can be derived as in the following procedure: Firstly, from  t_{1}=(t_{11}, t_{12})^{T},
we have  \theta_{1}=-\arccos(t_{11}) if  t_{12}<0;\theta_{1}=\arccos(t_{11}) if  t_{12}\geq 0 . Secondly, for
 i=1,2,  \cdot\cdot\cdot ,  N , we successively compute  \theta_{i+1} from  \theta_{i} as  \theta_{i+1}=\theta_{i}+\phi_{i} . Finally, we
obtain  \theta_{0}=\theta_{1}-(\theta_{N+1}-\theta_{N}) , since  \theta_{N}=\theta_{0}+2\pi and  \theta_{N+1}=\theta_{1}+2\pi hold.

Note that all  t_{\ovalbox{\tt\small REJECT}}he polygonal quantities above and in Step 1 except  \{\theta_{i}\}_{i=0}^{N+1} satisfy the
periodic boundary conditions:  F_{0}=F_{N},  F_{N+1}=F_{1}.

Construction  (h_{i}\nu\Rightarrow x, t, n, r) . The set of vertices  \{x_{i}\}_{?.=1}^{N} can be constructed

from the sets  \{h_{i}\}_{i=1}^{N+1}-(h_{N+1}=h_{1}) and  \{\theta_{i}\}_{i=1}^{N+1}(\theta_{N+1}=\theta_{1}+2\pi) as follows. Let  t(\theta)=
 (\cos\theta, \sin\theta)^{T} and  n(\theta)=(\sin\theta, -\cos\theta)^{T} , and then we have  t_{i}=t(\theta_{i}) and  n_{i}=n(\theta_{i}) .
Since  h_{i}=x_{i}\cdot n(\theta_{i}) and  h_{i+1}=x_{i}\cdot n(\theta_{i+1}) , from the sets  \{h_{i}\}_{\dot{i}=1}^{N+1} and  \{\theta_{i}\}_{i=1}^{N+1} we obtain
 x_{i}= (hi  + ıti— hiti  + ı)/  \sin\phi_{i} for  i=1,2,  \cdot\cdot\cdot ,  N . Froın this the length of the i‐th edge can
be described as

 r_{i}= \frac{h_{i+1}}{s\dot{{\imath}}n\phi_{i}}-h_{i}(\cot\phi_{i}+\cot\phi_{i-
1})+\frac{h_{\dot{i}-1}}{s\dot{{\imath}}n\phi_{\dot{i}-1}}.
For  N‐tuples  h=(h_{1}, h_{2,}h_{N}) and  \phi=(\phi_{1}, \phi_{2}, \cdots , \phi_{N}) with the periodic boundary
conditions  F_{0}=F_{N},  F_{N+1}=F_{1} , we denote the right hand side of  r_{i} as  D_{i}(h, \phi) , i.e.,
 r_{i}=D_{i}(h, \phi) holds for  i=1,2,  \cdot\cdot\cdot ,  N.

The Wulff polygon and admissibility. Now let us restrict the polygonal curve  \Gamma

in an admissible class associated with the  N_{\sigma} ‐sided convex polygon, say the Wulff polygon
 \mathcal{W}_{\sigma} for an appropriate positive function  \sigma :   \mathcal{W}_{\sigma}=\bigcap_{?=1}^{N_{\sigma}}\{x\in \mathbb{R}^{2};x . 
n(\eta_{\dot{\lambda}})\leq\sigma(\eta_{i})\},
where  \eta_{i} is  the tangent angle of the i‐th edge of  \mathcal{W}_{\sigma}  (i=1_{:}2, \cdots , N_{\sigma}) . Such  \sigma is
called crystalline interfacial energy density. The length of the i‐th edge is described as
 l_{\sigma}(\eta_{j}.)=D_{i}(\sigma(\eta), \psi) , where  \sigma(\eta)=(\sigma(\eta_{1}), \sigma(\eta_{2}), \cdots , 
\sigma(\eta_{N_{\sigma}})),  \psi=(\psi_{1}, \psi_{2}, \cdots, \psi_{N_{\sigma}}) ,
and  \psi_{i}=\eta_{i+1}-\eta_{i}\in(0, \pi) for  i=1_{\backslash ,\prime}2,  \cdot\cdot\cdot ,  N_{\sigma}(\psi_{0}=\psi_{N_{\sigma}}, \psi_{N_{\sigma}+1}=\psi_{1}) . Note that  \sigma>0

should be satisfied  l_{\sigma}(\eta_{i})>0 for  i=1 , 2,  \cdot\cdot\cdot ,  N_{\sigma} . Let  \mathcal{N}=\{n_{i}\}_{i=1}^{N} and  \mathcal{N}_{\sigma}=\{n(\eta_{j})\}_{j=1}^{N_{\sigma}}
be the set of normal vectors on  \Gamma and  \partial \mathcal{W}_{\sigma} , respectively. The polygonal curve  \Gamma is called
 \mathcal{W}_{\sigma} ‐admissible if the following two conditions are satisfied.

(1)  \mathcal{N}\subset \mathcal{N}_{\sigma} ; (2)   \frac{(1-\lambda)n_{?:}+\lambda n_{\uparrow,+1}}{|(1-\lambda)n_{i}+\lambda 
n_{i+1}|}\not\in \mathcal{N}_{\sigma}  (i=1,2_{:}\cdots , N;n_{N+1}=n_{1};\lambda\in(0,1)) .

Let  \Gamma(t) be the  \mathcal{W}_{\sigma} ‐admissible,  N‐sided and time  t‐dependent polygonal  cui^{\sim}ve . The
curve   \Gamma(t)=\bigcup_{i=1}^{N}\Gamma_{i}(t),  \Gamma_{i}(t)=[x_{i-1}(t), x_{i}(t)] evolves by prescribed normal velocities:

 11_{i}=\dot{x}_{i}\cdot n(\theta_{i})=\dot{h}_{i}  (i=1,2, \cdots , N) ,

98



99

which will be defined later. Note that for any  \phi_{i} there is a  j\in\{1,2, , N_{\sigma}\} such that
 |\phi_{i}|=\psi_{j} holds.

The energy and the crystalline curvature. The total interfacial crystalline en‐
ergy is defined by  L_{\sigma}= \sum_{i=1}^{N}\sigma(\theta_{i})r_{i} . Since the time differential of  r_{i}=D_{i}(h, \phi) is
 r_{i}=D_{i}(\dot{h}, \phi)=D_{i}(v, \phi)_{i} where  v=(v_{1}, \cdots , v_{N}) , the time differential of  L_{\sigma} is

  \dot{L}_{\sigma}=\sum_{\dot{i}=1}^{N}\sigma(\theta_{i})D_{i}(v, \phi)=
\sum_{\dot{i}=1}^{N}v_{i}D_{i}(\sigma(\theta), \phi)=\sum_{\dot{i}=1}^{N}\kappa_
{\sigma i}v_{i}r_{i},
where  \kappa_{\sigma i}=D_{i}(\sigma(\theta), \phi)/r_{i},  D_{i}(\sigma(\theta), \phi)=\chi_{i}l_{\sigma}(\theta_{i}),  \chi_{i}=(sgn(\phi_{i-1})+sgn(\phi_{i}))/2,  \sigma(\theta)=
 (\sigma(\theta_{1}), \sigma(0_{2}), \cdots , \sigma(\theta_{N})) . The  \kappa_{\sigma i} is called the i‐th crystalline curvature, and the  \chi_{i} is
called the i‐th transition number.

The gradient flow subject to area‐preserving. The time differential of enclosed
  al\cdot eaA=\sum_{i=1}^{N}h_{i}r_{i}/2 is   \dot{A}=\sum_{i={\imath}}^{N}v_{i}r_{i} without the error term  err_{A} , since the tangential
velocity is given by (2) Crystalline Method in Step 2. As the area‐preserving gradient
flow of  L_{\sigma} , we obtain the area‐preserving crystalline curvature flow equations

 v_{i}=\langle\kappa_{\sigma}\}-\kappa_{\sigma i_{\dot{0}}}r   \{F\}=\frac{1}{L}\sum_{?={\imath}}^{N}F_{i}r_{i}  (i=1,2, \cdots, N) . (5.1)

Now we are ready to set up the problem. Let  P_{\sigma}^{N} be a set of all  \mathcal{W}_{\sigma} ‐admissible, N‐
sidcd polygonal Jordan curve in the plane. For a given  \Gamma^{0}\in P_{\sigma}^{N} find a family of curves
 \{\Gamma(t)\in P_{\sigma}^{N}\}_{0\leq t<T} satisfying  \dot{h}_{i}=v_{i}(i=1,2, \cdots , N) , starting from  \Gamma(0)=\Gamma^{0}.

An iteration. Instead of solving ODEs (3.2), we solve the equivalent ODEs  \dot{h}_{i}=v_{i}
by the following discretization

  \frac{h_{i}^{m+1/2}-h_{?}^{m}}{\tau_{m}./2}=F_{i}(h^{m+1/2})=\frac{\sum_{j=1}^
{N}k_{\sigma j}^{m+1/2}r_{j}^{m+1/2}}{\sum_{j=1}^{N}r_{\dot{j}}^{m+1/2}}-
k_{\sigma\dot{i}}^{rn+1/2_{\dot{\ovalbox{\tt\small REJECT}}}}
where  k_{\sigma i}^{7n+1/2}=D_{i}(\sigma(\nu^{m}), \phi^{7n})/r_{\dot{t}}^{m+1/2},  r_{i}^{m+1/2}=D_{i}(h^{m+1/2}, \phi^{m}) , and solve this by the
iteration as in the following steps.

(1)  l=0;y^{(l)}=h^{m} ;

(2)  y^{(l+1)}=h^{m}+F(y^{(l)})\tau_{m}/2 ;

(3) If  ||y^{(l+1)}-y^{(l)}||/r_{max}^{?\eta}\leq\delta_{to{\imath}} , then GOTO (5);

(4)  l  :=l+1 ; GOTO (2);

(5)  h^{m+1}=R^{(l+1)}\overline{y}^{(l+1)},\overline{y}^{(l+1)}=2y^{(l+1)}-h^{m},  R^{(l+1)}=\sqrt{A^{0}/\overline{A}(l+1)}.
Here  \delta_{to1}>0 is a tolerance,  A^{0} is the enclosed area of  \Gamma^{0},\overline{A}^{(j)} is the enclosed area
of a polygon constructed from the heights  \{y_{i}^{j)}\triangleleft\}_{i=1}^{N},  y^{(j)}=  (y_{1}^{(j)}, \cdot\cdot\cdot :y_{N}^{(f)}),  F(y^{(j)})=
 (F_{1}(y^{(j)}), \cdots, F_{N}(y^{(j)})),\overline{y}^{(j)}=(y_{1}^{j)}
\triangleleft, \cdot\cdot\cdot y_{N}^{j)}\dashv),  ||y^{(l+1)}-y^{(l)}||= \max_{1\underline{<}i\leq N}|y_{i}^{(l+1)}-y_{i}^{(l)}|,
and   F_{\max}=\max_{1\leq i\leq N}F_{i}.

The iteration succeeds in showinlg the collvergence   \lim_{larrow\infty}y_{i}^{(l)}=h_{i}^{7n+1} , the AP‐
property  A^{m+1}=A^{m} and the eneıgy‐decaying property   L_{\sigma}^{m+1}\leq L_{\sigma}^{\uparrow n}\cdot . See [2, 6].
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6 The closed curve version of the Kuramoto‐Sivashinsky
equation in Example 2.8

To approximate (2.6),  \kappa_{ss} is discretized as follows.

Step 1 (addition)  (\kappa_{ss})_{i}=((\kappa_{\hat{s}})_{i+1}-(\kappa_{\overline{s}})_{i-1})/(2r_
{i}) , where

 ( F_{\hat{S}})_{i}=\frac{1}{r_{i}}(\frac{F_{i+1}+F_{i}}{2\cos_{i}^{2}}-\frac{F_
{i}+F_{i-1}}{2\cos_{i-1}^{2}}) on  \Gamma_{i} . (6.1)

Then the averaged normal velocity on  \Gamma_{i} can be defined as  v_{i}=v^{(0)}+(\alpha_{eff}-1)\kappa_{i}+\delta(\kappa_{ss})_{i},
 v^{(0)}=V^{(0)}.

To compute  (\kappa_{ss})_{i} , we calculate the gradient flow of  E= \sum_{\dot{i}={\imath}}^{N}\kappa_{\dot{i}}^{2}r_{i}/2 , which is a
discrete analogue for obtaining the Willmore flow equation from (2.3). Under a direct
calculation, we have

  \dot{E}=-\sum_{i=1}^{N}((\kappa_{ss})_{i}+\frac{1}{2}\{\kappa^{3}\}_{i})v_{i}
r_{i}+err_{E_{\grave{1}}} (6.2)

where  \langle\kappa^{3}\}_{i}=(\kappa_{i}^{+}\kappa_{\dot{i}+1}^{2}+2\kappa_{i}^{3}+
\kappa_{i}^{-}\kappa_{i-1}^{2})/4 is an average of  \kappa_{i} cubed on  \Gamma_{i}(\kappa_{i}^{+}=2tan_{i}/r_{i},
 \kappa_{\iota}^{-}=2tan_{i-1}/r_{i} , n.b.  \kappa_{i}=(\kappa_{i}^{+}+\kappa_{i}^{-})/2) , and  err_{E} is the remaining term.

The term  (\kappa_{SS})_{i} is extracted from (6.2). Note that the difference operator (6.1) is
meaningful, since  (t_{\hat{S}})_{i}=-\kappa_{i}n_{i} holds, which is a discrete version of the Frenét formula
 T_{s}=-\kappa lV . Of course, this argument is not the only way to obtain  \kappa_{ss} , for example,  x_{ssss}

based method is also valid [10].
To solve ODEs (3.2), we use the classical fourth order Runge‐Kutta method. A precise

argument and several numerical experiments can be found in [3].

7 Conclusion

We showed a simple and fast numerical method for a general moving boundary prob‐
lems, and especially for the classical Hele‐Shaw problem, the area‐preserving crystalline
curvature flow equation, and the closed curve version of Kuramoto‐Sivashiılsky equation.
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