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Abstracts. A simple and fast nuerical methods for the classical Hele-
Shaw problemn, the area-preserving crystalline curvature flow equation, and
the closed curve version of Kuramoto-Sivashiusky equation are presented.

1 Introduction

Let C(t) be a smooth Jordan curve at time ¢ in the plane R?. In the physical context,
C(t) is a model of interface between a viscous liquid and the air, boundary of crystal, a
flame/smoldering front, and so on. The curve C(t) is parameterized by @ (u, t) for u € [0, 1]
and moves by

z(u,t) = V(u, t)N(u,t) + Wi(u, )T (u,t), (1.1)
where F = 9F /0.

In this paper we follow the so-called direct approach in which the evolution of the
position vector © = x(u,t) is governed by equation (1.1), especially in the case where
the normal IN velocity V is given by the following equations: one phase Hele-Shaw flow
equation, crystalline curvature flow equation, and Kuramoto-Sivashinsky equation, while
the tangent T velocity W controls the grid-point spacing to be uniform. Note that the
tangential velocity W has no effect on the shape of evolving curve, which is determined by
the value of the normal velocity V' only. Therefore, one can take W = 0 when analyzing
analytical properties of the geometric flow driven by (1.1). On the other hand, the impact
of a suitable choice of W on the construction of robust and stable numerical schemes has
been pointed out by many authors (see e.g., [9, 14] and references therein).

2 Moving Jordan curve and eight examples

Time evolution of a Jordan curve C(t) is parameterized by x : [0,1] x [0,T) — R? s.t.
C(t) = {x(u,t);u € [0,1]} and |&'| > 0. Here &' = dx/du and g(u,t) = |a'| is the
local length. We denote |a| = y/a - a where a - b is the inner product between a and
b € R?. The unit tangent vector is T' = x'/g = @, where s is the arc-length parameter
ds = gdu and Fy = F'/g, i.e., 3/0s = g~'0/0u is the formal definition, since the arc-
length s depends on u and t. The unit outward normal vector is N = —T* where
(a,b)* = (=b,a). The tangential angle 6 is defined s.t. T = (cos#,sin#)T. The curvature
k is obtained from T = x,; and the Frenét formula T, = —xIN, from which it follows that
K = 05 or k = det(x,, xss) where Fgs = (F'/g)’'/g (sign convention is the way that k = 1
if C is a unit circle). See Figure 2.1.

DManuscript for BRI O SRTHR « 25 - H7 - I8, November 8-10, 2017 at RIMS, Kyoto
University. This work was partially supported by KAKENHI No.16H03953.
2)1-1-1 Higashi-Mita, Tama-ku, Kanagawa 214-8571, Japan. E-mail: syazaki@meiji.ac.jp



positive direction
Figure 2.1: Moving Jordan curve
A geometric evolution problem can be formulated as follows: For a given initial Jordan
curve CY, find a family of curves {C(t) }o<i<r, starting from C(0) = C° and evolving by the

normal velocity V.
In what follows, we show eight examples of various kinds of the normal velocity V.

Example 2.1 A simple example of V' is the Eikonal equation V' = —1, which is the

1
L2-gradient flow of the enclosed area A(t) = 3 fcu) x - N ds, since

A(t) = /cm Vds. (2.1)

Example 2.2 Another typical example is the classical curvature flow equation V =
—r, which is the L?-gradient flow of the total length £(t) = fc(t) ds, since

L(t) :/ KV ds. (2.2)
c(t)
Then we have the curve-shortening property (CS-property in short) £(t) < 0, and then
V = —k is also called the curve-shortening equation.

Example 2.3 The area-preserving curvature flow equation V = (k) — x is also
classical, where (F) = L(t)7! fcu) Fds is the average of F along the curve C(t). The
enclosed area A(t) is preserved in time (AP-property in short), since from (2.1) we have

A@y—Lm«@—HﬁkzQﬁlmds~lmﬁﬁ~0.

By means of CBS inequality, we also have the CS-property £ < 0 which is the same as
the classical curvature flow equation V' = —x in Example 2.2. Indeed, V' = (k) — & is the
L?-gradient flow of £ subject to area-preserving.

Example 2.4 The fourth example is the Willmore flow equation V = kg, + x%/2,
which is the L?-gradient flow of the elastic energy £(t) = fcu) k2 ds/2, since

ﬁU:—LQO+%ﬁ)V®. (2.3)
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Example 2.5 The fifth example is the surface diffusion flow equation V' = k,, which
is formally obtained from the Willmore flow equation without the term k3 /2. The solution
of this equation satisfies the AP-property A(t) = fc(t) kssds = 0. We also have the CS-

property E(t) < 0, and in this sense, the surface diffusion flow and the area-preserving
curvature flow are very similar each other.

Example 2.6 As we have seen, the area-preserving curvature flow equation V' = (k) — &
and the surface diffusion flow equation V' = k4 have the AP- and the CS-properties. The
following Hele-Shaw flow equation also has these two properties.

The Hele-Shaw problem is description of a motion of viscous fluid in a quasi two-
dimensional space, which was starting from a short paper [5] in 1898 by Henry Selby Hele-
Shaw (1854-1941). In his experiment, viscous fluid is sandwiched between two parallel
plates with a narrow gap, and the apparatus is called Hele-Shaw cell. He succeeded to
visualize stream lines by means of colored water in the cell. In the mathematical context,
the Hele-Shaw problem is reduced from Navier-Stokes equations via stationary Stokes
approximation, parabolic-shape approximation of the velocity profile, and assumption of
the Laplace relation on the boundary, that is, the problem is stated as follows (see [8, 4]
in detail):

Ap=0 in D(t),
P =K on C(t), (2.4)
V=-Vp-N onC(t),

where D(t) C R? is region occupied by fluid, C(¢) = dD(t) is the boundary, p is the
pressure function, x is the curvature, v > 0 is the surface tension coefficient, IN is the
unit outward normal vector, and V' = @ - IN is the normal velocity. See Figure 2.1.

Thus the Hele-Shaw problem is stated as a kind of moving boundary problems deter-
mining unknown function p and unknown fluid region D. It can be described in another
way such as follows. Let u be the velocity vector of two-dimensional fluid. Then the
harmonicity of the pressure p is an expression of continuation derived from the Darcy’s
law u = —Vp and the incompressible condition of fluid divu = 0, and the normal velocity
V' is derived from mass conservation law & = u.

When the pressure p and the curve C(t¢) are solutions of the Hele-Shaw problem (2.4),
then we have the CS-property in the following sense

. 1 1 1
—L(t) = —/ pVp- Nds = — /‘/ div(pVp) dedy = — // |Vp|* dedy > 0.
T Jew 7 J I v J o

We also have the AP-property

A(t)z—/ Vp-NdS:—// diV(Vp)d;rdy:—// A pdxdy = 0.
c(t) D(t) D(t)

Example 2.7 Let us consider the total interfacial energy L,(t) = fcu) o(0) ds, where
o > 0 is the interfacial energy density per unit arc-length and 6 is the tangential angle as



in Figure 2.1. Then the L2-gradient flow of £, is V = —k,, where k, = (0 + ¢" )k is the
weighted curvature, since we have

Ly(t) = /C( ) KoV ds, (2.5)
¢

which is regarded as the anisotropic version of (2.2). The equation V = —x, is called the
weighted curvature flow equation. The energy density o is specified by so-called the
Waulff shape Wy = Ny 1 € R% - N(0) < 0(0)}, where N (6) = (sin6, —cos )™, I
o is a smooth function of 6 and o + ¢” is positive, then (o + ¢”)~! is the curvature of the
boundary of the Wulff shape W,. When the Wulff shape is a polygon, o is not smooth
and is called crystalline energy density, and the gradient flow of total crystalline energy

derive the so-called crystalline curvature flow equation, which will be discussed in §5.

Example 2.8 The last example is the case where the normal velocity V is a linear combi-
nation of the Eikonal, the classical curvature flow and the surface diffusion flow equations
with the coefficients V() aeg — 1 and ¢ such that

V=v0_4 (et — 1)Kk + OKgs, (2.6)

where V() is a constant speed, and a.g and & are positive parameters. This equation (2.6)
is equivalent to, in a certain scale, the so-called Kuramoto-Sivashinsky equation for
the graph y = f(z,t) of a curved flame front [7, 15] when V(® =1 and 6 = 4:

ft %f’Q + (s — 1) f" +4f" = 0, (2.7)

where f' = 0f/0z, " = 0*f/0x? and f"" = 9*f/0x*. One can find the simple scaling
argument in [3].

If aer > 1, then (aeg — 1)k induces instability, which is similar to the ill-posedness
of backward heat equation f = —f”, and 6k, plays a stabilization role of the unstable
front. An alternative stabilization method is to use the Willmore flow [10].

3 Numerical scheme for (1.1)

In the direct approach, a moving Jordan curve is approximated by a moving Jordan
polygonal curve, say I'(t) at time ¢, with N vertices labeled ®1, @, -+, Ty in the anti-
clockwise order. Let I'; be the i-th edge I'; = [z; 1, 2] (i = 1,2,--- , N; &g = @y). Then
the moving Jordan polygonal curve at time ¢ is I'(¢) = Uil [;(¢). Our goal here is to
construct a discretization of (1.1) in space, i.e., to derive a system of ordinary differential
equations (ODEs in short) for I'(¢): for i = 1,2,--- | N

@4(t) = Vi(O)Ni(t) + Wi T(0), (3.1)

where V; is the normal IN;-component of the velocity at x;, and W; the tangential T}-
component of the velocity at x;.

The right-hand-side of (3.1) consists of several polygonal quantities on I' at time ¢,
and all of them can be constructed from {x;}¥, through the following steps. In what
follows, these are regarded as functions of time ¢ with N-periodic index, i.e., Fg = Fy,
Fni1 = Fr
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XN=X0

Figure 3.1: Moving Jordan polygonal curve

Step 1 several polygonal quantities (see Figure 3.1)
ri = |x; — @;_1|: the length of T},
L= Z:\il ;o the total length of T,
t; = (x; — x;_1)/r;: the unit tangent vector on I,
n;, = Atil: the outward unit normal vector on I';,
¢; = sgu(det(t;, t;11)) arccos(t; - t;11): the angle between the adjacent edges I'; and Ty, 1,
T, = (t; + t;r1)/(2cos;): the unit tangent vector at x;, where cos; = cos(¢;/2),
N; = —Tii: the unit outward normal vector at x;,
ki = (tan; +tan;_)/r;: the curvature on I';, where sin; = sin(¢;/2), tan; = sin;/cos;;

Step 2 the normal velocity V; = (v; + vi41)/(2cos;) at x;, where
v; Is a given averaged normal velocity on I'; such as v; = —k;, and so on;

Step 3 the tangential velocity W, at x; is defined by one of the followings:

(1) Uniform Distribution Method: W; = (¥; + ¢)/cos; at x;, where
U= Y c=— (Z;Vzl \Il]-/cos]-) /(Z]\;l cosJ-), 1 =0 and

N
1 . . L
’l/’j = N E Ry — Vjsmj — V}',]Slnj,1 + <N — T'j) w

=1

for j =2,3,---, N, and w will be defined later;



(2) Crystalline Method: W, = (v;y1 — v;)/(2sin;) at x;;
(3) Curvature Adjusted Method: an interpolation of (1) and (2);
GOAL (3.1) can be summarized as the following ODEs:
X = F(X), (32)
where X = (1, Tg, -+ ,xy) € RPN and

F = (Flsz,"' ,FN):RQXN _>R2><N;
RN 5 X — Fi(X)€eR? (i=1,2,--- ,N).

The background of the above steps are the followings.
Step 1 Several polygonal quantities r;, L, t;, n; and ¢; are defined naturally as in Step 1.

- To define the tangent and normal vectors at @;, we use the angle ¢; between
the adjacent edges I'; and I';11 (¢; - t;41 = cos ;). As in Figure 3.1, the unit
tangent vector T; at x; are defined by an average of the adjacent corresponding
vectors in the sense as in Step 1.

- To define the curvatures on I'; and at x;, we use (2.2) rather than the Frenét
formulae, i.e., we recall that the curvature can be defined by the first variation
of the total length £ from (2.2). From (3.1), the total length L, and 7; =
Visin; + V;_ysin;_1 + Wjcos; — W;_1cos;_1, we obtain L= vazl k;ViT;, where
7i = (ri + riz1)/2, and /&; = 2sin;/7; is the polygonal curvature at x;. It is
a natural definition since the normal velocity V; at x; is the average of the
adjacent normal averaged velocities in the sense of Step 2. Then it follows that

N
L = Z K; VT, (33)
1=1

which is a discretization of (2.2), where r; in Step 1 is the polygonal curvature
on I';. Note that k; is same as the polygonal curvature or the crystalline
curvature in a prescribed class of polygonal curves [2] and v; is not necessarily
equivalent to @; - n; (see the next step (2)).

Step 3 Let L. be a small perturbation ¢ of L at x; only such as x; + €z. The z-
directional derivative of L. is dL./de|._, = R;N; - zr;. Hence z = —N; is the
gradient direction of L at x;. However, from the enclosed area A = Zf\i] :Bil_l w2,
we have dA./de| _, = N, - z with N; = r;n; + ricinis1, and hence N; is not the
same direction as IN; unless r; = L/N. Therefore, IN; is not the gradient direction
of A, and so an error term (comparing with (2.1)) appears as follows:

N N
A= va +erry, erry = Z (Vl/isini — ““2 v1> r1+12 rl. (3.4)

=1 i=1

There are two ways to vanish err:
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(1) To use W, satisfying r; = L/N:
This method is called the uniform distribution method (UDM in short). Be-
cause of numerical errors, an asymptotic UDM is utilized practically as follows.
To obtain the asymptotic UDM, r; = L/N (t — Tax < 00), we assume that
fori=1,2,---,N

N
L _ .
T T e al ( g n; =0, tvlf%ﬂ u(t) = 00) .
— max

Differentiating the both sides and putting w(t) = p(t), we have 7, = U; for
1=1,2,---, N, where '

L L Tmax
Ui=+ (—]\7 - 7"1-) w(t), /0 w(t) dt = oo,

and w is a large value if T, = 0o as in this paper’s case, and we obtain the
tangential velocity equation Wjcos; — W;_jcos; 1 = U; — Visin; — V;_;sin;_; for
t=1,2,---,N. Since these N equations are linearly dependent, imposing the
zero-average condition Zf\ix W; = 0 yields N linearly independent equations,
which can be solved as in Step 3.
(2) To use W; = (viy1 — v;)/(2sin;):

This method is called crystalline method which is equivalent to the case v; =
;- n;, and in this case, I' is restricted in a prescribed class of polygonal curves
as mentioned in Step 1.

(3) This method is an interpolation of (1) and (2) developed by [1, 13].

To solve ODEs (3.2), one can use the following several methods: the Euler method,
a semi-implicit method, the classical fourth order Runge-Kutta method, and an iteration
method, depending on each problem.

4 The Hele-Shaw flow equation in Example 2.6

The averaged normal velocity v; in Step 2 will be approximated from the normal veloc-
ity of the Hele-Shaw flow equation (2.4) in Example 2.6, by means of the Method of
Fundamental Solutions (MFS in short) as follows.

For each fixed ¢ > 0 we solve the following Dirichlet problem:

Ap=0 1in Q(t),
p=7k; onl;(t) (i=1,2,---,N).

We seek the approximate solution P of the form

N

P(w) = Qo+ D QsF (@), FBi(w) = Bz —y;) - Ble—2) (2€0(t), (1)

P(m;):’yﬁi (i=1,2,---,N), (4.2)
v =—VP) n; (i=12--,N), (4.3)



where E(x) = log|x|/(27) is the fundamental solution of the Laplace operator A, x} =
(z;+x;_1)/2 is the mid point on T';, {Q;}} are unknown coefficients which will be solved
below, y;’s are the singular points defined by

where d > 0 is a parameter controlling accuracy of MFS, and z;’s are “dummy” points
located in R?\Q(¢) which are not equal to the singular points {y;}),

Note that P satisfies A P = 0 in 2 and is invariant under the trivial affine transfor-
mation and the origin shift of the boundary data as well as the original invariant scheme
of MFS or so-called the Charge Simulation Method (see [12] and references therein). One
can add one more condition which is required for the invariance of the original invariant
scheme of MFS. We select the condition such a way that the weighted average of Q;’s is
equal to 0, that is, coefficients {Qj}j.v,o are determined by (4.2) and

N
> QiH; =0, H ZVE gy, j=1,2,---,N. (4.4)
j=1

One can solve this system of N + 1 linear equations (4.2) and (4.4) by a standard elimi-
nation method.

As mentioned in Example 2.6, AP-property and CS-property hold for Hele-Shaw prob-
lem. When the averaged normal velocity v; on I'; is defined by (4.3), if err4 = 0 by UDM,
then we have

N
A - va = ZQjHj - 0, (45)
i=1 j=1

where H,’s are in (4.4). Thus AP-property holds in a discrete sense.
We also have the approximated CS-property as follows.

N N N
. 1
i=1 i=1 i=1
N
1
—= Z/P(w:)VP(:c:) -m;ds
1
““Z/ )-n;ds = ~—/P(a:)VP( )-nds

—= // div(PVP)dzdy = —— // |V P|*dxdy < 0.

Note that, instead of (4.2) and (4.3), if we use
[P); = yri, 1=1,2,--- N, (4.6)
—(VP)i-mi, i=1,2--,N, (4.7)
where (F); :.7'L-‘1 Jr, Fds is the average of F on T';, and [Fl; = (FVF); - n;/(VF); - n,
then we have I, < 0 without an approximation. However, in this case we have to solve
nonlinear NV + 1 equations of {Q]-}y:o, and that computational cost is not cheap.

To solve ODEs (3.2), we use the classical fourth order Runge-Kutta method. A precise
argument and several numerical experiments can be found in [11].

I

I
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5 The area-preserving crystalline curvature flow equa-
tion in Example 2.7

In the crystalline setting, we use the following additional polygonal quantities (cf. §3):

Step 1 (addition)

h; = x; -n; = x;_1 - n;: the hight function for T';,

0;: the tangent angle satisfying t; = (cos 6;,sin ;). See Figure 3.1. All tangent angles
{6; f\:gl can be derived as in the following procedure: Firstly, from t; = (¢11, tlg)T,
we have 6, = —arccos(ty1) if t12 < 0; 6; = arccos(t11) if t12 > 0. Secondly, for
i=1,2,--- N, we successively compute ;1 from 60; as 6,11 = 0; + ¢;. Finally, we
obtain 6y = 01 — (41 — On), since Oy = 6y + 27 and Oy = 67 + 27 hold.

Note that all the polygonal quantities above and in Step 1 except {Hi}ﬁigl satisfy the

periodic boundary conditions: Fo = Fy, Fyy1 = Fy.

Construction (h,v = z,t,n,r). The set of vertices {x;}", can be constructed
from the sets {h; )40 (hyer = hi) and {0,320 (On 1 = 601 + 27) as follows. Let t(6) =
(cosf,sin )T and n(f) = (sinf, —cos#)T, and then we have t; = t(6;) and n; = n(6,).
Since h; = x;-n(6;) and b1 = x;-n(0;,1), from the sets {h;} X+ and {6,121 we obtain
i = (hiy1ti — hiti1)/sing; for i = 1,2, --- | N. From this the length of the i-th edge can
be described as

hi—l

sin ¢i_1 ’

h;
T, = LI — h,i(COt ¢1 + cot ¢i~1) +
sin ¢;

For N-tuples h = (hy, ha, -+ ,hy) and ¢ = (¢1, ¢a, - -+, ¢n) with the periodic boundary
conditions Fg = Fy,Fyi1 = Fi, we denote the right hand side of r; as D;(h, @), ie.,
ri = D;(h, ) holds for i = 1,2,--- | N.

The Wulff polygon and admissibility. Now let us restrict the polygonal curve I'
in an admissible class associated with the N,-sided convex polygon, say the Wulff polygon
W, for an appropriate positive function o: W, = ﬂf\i’l{w € R% z-n(n) < o)},
where 7; is the tangent angle of the i-th edge of W, (i = 1,2,---,N,). Such o is
called crystalline interfacial energy density. The length of the i-th edge is described as
(m) = Dila(n), ), where o) = (o(m), o(m), - olnw,)), ¥ = (i, U, . ),
and ¥; =m0 —m; € (0,7) for i = 1,2, | N, (Yo = ¥n,, ¥n,+1 = t1). Note that o > 0
should be satisfied [,(n;) > 0 fori =1,2,--- ,N,. Let N = {n;}Y; and NV, = {n(n;) ;y:"l
be the set of normal vectors on I' and OW,, respectively. The polygonal curve I is called
W,-admissible if the following two conditions are satisfied.

(1 — /\)’I’h + A

(HNCN,; (2) [(1 = N)n; + A

¢Ng (2212,,NTLN+1:TL17/\€(0,1))

Let T'(¢) be the W,-admissible, N-sided and time ¢-dependent polygonal curve. The
curve I'(t) = Uf\il Ti(t), Ty(t) = [x;_1(t), 2;(t)] evolves by prescribed normal velocities:

1’1:.’131’!7,(91):]11 (121,2,,N)‘



which will be defined later. Note that for any ¢; there is a j € {1,2,--- , N, } such that

The energy and the crystalline curvature. The total interfacial crystalline en-
ergy is defined by L, = valo(G )ri. Since the time differential of r; = D;(h, ¢) is
= D; (h @) = D;(v, ¢), where v = (v1,--- ,vn), the time differential of L, is

N N
ZU (v,¢) = Z 0),¢) = Z KeiViTi,
i=1 i=1 i=1

where ry; = Di(o(0), @)/ri, Di(a(0), ) = xilo(0:), xi = (sgn(¢i-1) +sgn(¢:))/2, o(0) =
(0(0y),0(0:),--- ,0(0x)). The K,; is called the i-th crystalline curvature, and the x; is
called the i-th transition number.

The gradient flow subject to area-preserving. The time differential of enclosed
area A = Zfil hiri/2 is A= Zfil v;1; without the error term err4, since the tangential
velocity is given by (2) Crystalline Method in Step 2. As the area-preserving gradient
flow of L,, we obtain the area-preserving crystalline curvature flow equations

v = (k) — Ko (F>:%Zm (i=1,2,---,N). (5.1)

Now we are ready to set up the problem. Let PY be a set of all W,-admissible, N-
sided polygonal Jordan curve in the plane. For a given I'® € P find a family of curves
{T(t) € PNYocior satistying h; = v; (i = 1,2,---, N), starting from ['(0) = I'°.

An iteration. Instead of solving ODEs (3.2), we solve the equivalent ODEs h; = v
by the following discretization

h;n+l/2 - hin _ F_(hm+1/2) . Z;V 1 k;"]Jfl/ZT;”Jfl/Z _ km+l/2
- 1

Tm/2 - Z;V:I T,;fl+l/2 ol 5

where Am+1/2 = Di(a(v™),¢™)/r 2, ZHH/Q = D;(h™+1/2 ¢™) and solve this by the
iteration as in the following steps.

(1) 1=0; y® = b

(2) y“Y =h™ + F(yY)r,/2;
(3) If [lyD) — g /rm < 601, then GOTO (5);
(4) 1:=1+1; GOTO (2);

(5) RmHl — R(z+1)§(z+1) y (I41) _ =2y 1) _ pm o RUAD — /AO/A(H»I).

Here 0,y > 0 is a tolerance, A° is the en(’losed area of I'Y, AD is the enclosed area
of a polygon constructed from the heights { N oyW o= (ygj), e ,y%)), F(yW) =
(Fiy"), - Fn(y?), g = (W%~w#%|w“ﬂ—ywu=mwggww””—¢%
and Fyax = maxi<;<ny Fi. )

The iteration succeeds in showing the convergence lim; . yy) = h"*! the AP-
property Al = A™ and the energy-decaying property L™+ < L™. See [2, 6].
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6 The closed curve version of the Kuramoto-Sivashinsky
equation in Example 2.8

To approximate (2.6), ks is discretized as follows.

Step 1 (addition) (ks); = ((ks)iz1 — (ks)i—1)/(2r;), where

F; Fi Fi+Fi
(Fs)i = E ( it h Rt 1) on I';. (6.1)

r; \| 2cos? 2cos?

Then the averaged normal velocity on I'; can be defined as v; = v + (aeg — 1) ki + 6 (Kss )i,
00 = 1/(0)

To compute (kgs);, we calculate the gradient flow of £ = Zf\il k2r;/2, which is a
discrete analogue for obtaining the Willmore flow equation from (2.3). Under a direct
calculation, we have

N

E=- Z ((Kss)i + %<H3>i> VT + errp, (6.2)

i=1

where (k*); = (k] K2, + 2k3 + k] k2 1) /4 is an average of k; cubed on I'; (k] = 2tan;/r;,
k; = 2tan;_1/r;, n.b. k; = (k7 + k7 )/2), and errg is the remaining term.

The term (kys); is extracted from (6.2). Note that the difference operator (6.1) is
meaningful, since (t:); = —x;n; holds, which is a discrete version of the Frenét formula
T, = —xIN. Of course, this argument is not the only way to obtain ks, for example, @5
based method is also valid [10].

To solve ODEs (3.2), we use the classical fourth order Runge-Kutta method. A precise
argument and several numerical experiments can be found in [3].

7 Conclusion

We showed a simple and fast numerical method for a general moving boundary prob-
lems, and especially for the classical Hele-Shaw problem, the area-preserving crystalline
curvature flow equation, and the closed curve version of Kuramoto-Sivashinsky equation.
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