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Abstract

We present a siunple nulnerical lnethod for the Stefan probleın with the Gibbs‐
Tlloınson law based on a coupling of a total variation lninimizatioıt algoritlnn alld
the fimite eleınent lnethod for the heat equation, and discuss a few numerical results.

1 Introduction

In this note we present a simple numerical method for solving a Stefan‐type problem with
the Gibbs‐Thomson law to model a growth of small crybtals. Our goal is to explore the
feasibility of coupling the algorithm due to Oberman, Osher, Takei and Tsai [OOTT]
to solve the crystalline mean curvature flow problem without any regularization with
a finite element method for the heat equation. Our main motivation are the recent
advances in the theory of the crystalline mean curvature flow in an arbitrary dimension
[ C\rfloor\backslash IP , CXINP, GP1, GP2].

In a dimension  n\in \mathbb{N} , the problem is to find a relatively open set   E\subset \mathbb{R}^{n}\cross[0, \infty )
and a function   u:\mathbb{R}^{n}\cross[0, \infty )  arrow \mathbb{R} that satisfy

 \begin{array}{ll}
u_{t}=div(k\nabla u)   in \mathbb{R}^{n}\cross(0, \infty)\backslash \partial E,
LV=(-k\nabla v)^{out}\cdot\nu-(-k\nabla u)^{in}\cdot\nu   on \partial E,
V=\beta(\nu)(\alpha\kappa_{\sigma}-u)   on \partial E_{\backslash }
\end{array} (1.1)

with appropriate initial data  u_{0} and  E_{0} . The set  E_{t}  :=\{x : (x, t)\in E\} represents the
shape of an evolving crystal at the time  t\geq 0 , and  V and  \nu are respectively the outer
normal velocity and the spatial outer unit normal vector of its boundary  \partial E_{t}.  u represents
the temperature, and the heat conductivity  k is a given function that can depend on  u as
well.  (\cdot)^{out} and  (\cdot)^{in} denote the limits from the outside and thc inside of  E respectively.
Note that a negative temperature on the crystal surface will force the crystal to grow,
which will in turn release the latent heat of phase transition. The crystalline mean curva‐
ture  \kappa_{\sigma} of the surface  \partial E_{t} will be explained below. The function  \beta :  \mathcal{S}^{n-1}arrow(0, \infty) is a
given mobility on the unit sphere, and  \alpha,  L>0 are fixed constants.

Problem (1.1) is a modeı of a phase transition with the so‐called kinetic undercooling
represented by the Gibbs‐Thomson law in the third equation. The second equation states
the conservation of energy during the phase tiansition, where the amount of energy needed
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to change the phase per unit volume is given by the specific latent heat of phase transition
 L , and this energy is delivered by the heat flux  -k\nabla u . This problem appears in models
of dendritic growth and solidification. For a more detailed discussion, see [  C_{-}\backslash IOS , BGN]
and the survey article [Ga] and the references therein.

2 Crystalline mean curvature

Following [AG,  T], the crystalline mean curvature can be introduced as the first variation
of the anisotropic surface energy functional defined for any sufficiently smooth set  U\subset \mathbb{R}^{n}

as

  \mathcal{F}(U):=\int_{\partial U}\sigma(\nu)dS,
where  \sigma :  \mathcal{S}^{n-1}arrow(0, \infty) is a given anisotropy. For the detailed overview of this topic,
see the survey [B] or [Gu, GG, GP1,  C_{\perp}\backslash IP ]. In what follows we extend  \sigma positively one‐
homogeneously to whole  \mathbb{R}^{n} as

 \sigma(p)=\{\begin{array}{ll}
|p|\sigma(\frac{p}{|p|}) ,   p\neq 0,
0,   p=0.
\end{array}
We will assume that the extended  \sigma is convex.

The anisotropy  \sigma determines the optimal crystal shape (Wulff shape), that is, the
shape that minimizes the anisotropic surface energy among shapes with the same volume
as

 \mathcal{W}:=\{x:x\cdot p\leq\sigma(p), p\in \mathbb{R}^{n}\} , (2.1)

see [T].
If  \sigma is smooth on  \mathbb{R}^{n}\backslash \{0\} and  \{p:\sigma(p)\leq 1\} is a strictly convex bet, and  \partial U is smooth,

the first variation of  \mathcal{F} with respect to a change of volume is  div_{\partial U}(\nabla\sigma(\nu)) , where  div_{\partial U}

is the surface divergence, see [I3]. We define

 \kappa_{\sigma}:=-div_{\partial U}(\nabla\sigma(y)) . (2.2)

We are, however, specifically interested in anisotropies that are not smooth, in particu‐
lar whose level set  \{\sigma\leq 1\} is a convex polytope and  \mathcal{W} above is the dual convex polytope
[R]. In other words, when  \sigma  \mathbb{R}^{\eta}arrow[0, \infty ) is a convex, piece‐wise linear function. We
call such anisotropies crystalline. In this case, the definition of  \kappa_{\sigma} becomes much more
involved since  \nabla\sigma(\nu) is no longer defined pointwise and might be discontinuous even on
a smooth surface. A natural generalization of (2.2), consistent with the general abstract
theory of monotone operators due to Kōmura and Brézis  [K, B_{1}] , is to replace the first
variation of  \mathcal{F} with a subdifferential on an appropriate Hilbert space. This leads to the
definition [I3, ChIP, GP1]

 \kappa_{\sigma}:=-div_{\partial U}z_{\min},

where  z_{\min} is the element of the set

 \{z\in L^{\infty}(\partial U) : z\in\partial\sigma(\nu), divz\in L^{2}(\partial
U)\} (2.3)
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that minimizes  \Vert divz\Vert_{L^{2}(\partial U)} , if the set is nonempty. Here  \partial\sigma is the subdifferential of  \sigma,

 \partial\sigma(p):=\{\xi\in \mathbb{R}^{n}:\sigma(p+h)-\sigma(p)\geq\xi\cdot h,
h\in \mathbb{R}^{n}\}.

While  z_{\min} might not be unique,  divz_{\min} is. Unfortunately, even for smooth  \partial U the above
set (23) might be empty, in which case  \kappa_{\sigma} is not defined.

We call such  \kappa_{\sigma} the crystalline mean curvature of  \partial U . This quantity enjoys a number
of interesting properties, including the comparison principle. Furthermore, it is a singular,
nonlocal quantity on the surface  \partial U . In particular, if  \partial U has a flat part, called a facet,
with normal  \nu such that  \sigma is not differentiable at  \nu,  \kappa_{\sigma} then depends on the shape of the
facet. For example, in dimension  n=2 , facets of  U are line segments, and on each of
them  \kappa_{\sigma} is a constant that is inversely proportional to their length.

The well‐posedness of (1.1) with a crystalline  \sigma seems to be open. A general theory
of solutions for the crystalline mean curvature flow (3. ı) has been available only recently
[CMP, CAINP, GP1,  GI^{\supset}2].

3 Numerical algorithm

There have been many very successful algorithms developed to solve (1.1) with a smooth
 \sigma numerically and listing them all is beyond the scope of this note. One of the difficulties
is the unstable nature of the dendritic growth and an extra care must be taken to avoid
the discretization and the choice of a mesh to produce unwanted artifacts. See  [C_{-}^{1}\backslash 1OS,
BGN, Ga] and the references therein. In this work to treat the crystalline mean curvature
directly without any regularization, we instead use the algorithm proposed by [O()TT]
that relies on the split Bregman iteration scheme introduced in  [G()] to efficiently find
minimizers of anisotropic total variation functionals. This approach builds on the level set
formulation due to Chambolle [C] of the minimizing movements time semidiscretization
of the anisotropic mean curvature flow

 V=\beta(\nu)(\kappa_{\sigma}+f) on  \partial E (3.1)

by Almgren, Taylor and Wang [ATW].
In this algorithm, we fix a computational domain  \Omega\subset \mathbb{R}^{n}. sufficiently large so that

  E_{t}\subset\Omega for all  t\in[0, T] for some fixed  T>0 , and choose a time step  h>0 . Then
we approxilnate  E_{t_{\gamma\eta}},  t_{m}=mh,  m=1,2,  \cdots , by a sequence of sets   E_{m}\subset\Omega , where
 E_{m}  :=\{x : v_{m}(x)<0\} , and  v_{m}\in L^{2}(\Omega)\cap BV(\Omega) is the minimizer of thc functional

 J_{m}(v) := \frac{1}{2h}\Vert v-w_{m}1\Vert_{L^{2}}^{2}+\int_{\Omega}
\sigma(\nabla v)dx-\{v, f_{m}\rangle_{L^{2}}.
Here  w_{m-1} is the signed distance function to the set  E_{m-1} with respect to the anisotropy
 \beta,

 w_{m-1}(x)=signdist_{\beta}E_{m-1}(x):=\dot{{\imath}}nf\beta^{\circ}(x-y)-\dot{
{\imath}}n_{c}f\beta^{\circ}(y-x)y\in E_{n1-1}y\in E_{m-1} ’

where  \beta^{\circ} is the polar of  \beta[R],

  \beta^{\circ}(x):=\sup\{\frac{x\cdot\nu}{\beta(\nu)}:\nu\in S^{n-1}\}.
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The minimizer of  J_{m} can be found efficiently by the split Bregman minimization
method of [GO] as observed in [OOTT]. We proceed by introducing a new variable  d :
 \mathbb{R}^{n}arrow \mathbb{R}^{n} and add a constraint  d=\nabla v that is then relaxed by a  L^{2} ‐penalization term.
In other words, we choose  \lambda>0 and in place of  J_{m} we minimize

  \tilde{J}_{m}(v, d) :=\frac{1}{2h}\Vert v-w_{m-1}\Vert_{L^{2}}^{2}+
\int_{\Omega}\sigma(\nabla v)dx-\{v, f_{m}\}_{L^{2}}+\frac{\lambda}{2}\Vert d-
\nabla v\Vert_{L^{2}}^{2}
Since alı the terms are convex, we can attempt to find the minimizer by alternatively
minimizing with respect to  v and  d . This produces a sequence converging to the unique
minimizer of  \tilde{J}. . However, this minimiLer does not generally satisfy  d=\nabla v and therefore
is not a minimizer of  J_{m}.

This is addressed by introducing a third variable  b :  \mathbb{R}^{r\iota}arrow \mathbb{R}^{n} that accumulates the
‘error

 \cdot,

 \nabla v-d during the iteration. The full algorithm can be stated as follows: Set
 b_{m,0}=d_{m,0}=0 and for  k=0,1 , . . . iterate

 v_{m,k+1} arrow\arg\min_{v}\frac{1}{2h}\Vert v-w_{m-1}\Vert^{2}-\{v, f_{m}\}+
\frac{\lambda}{2}\Vert d_{m,L}-\nabla v-b_{m,k}\Vert^{2} (3.2a)

 d_{m,k+1}arrow\arg_{d}nlin   \int_{\Omega}\sigma(d)dx+\frac{\lambda}{2}\Vert d-\nabla v_{m_{\dot{r}}k}-
b_{m,k}\Vert^{2} (3.2b)

 b_{m,k+1}arrow b_{m,k}+\nabla v_{m,k+1}-d_{m,k+1} , (3.2c)

until convergence is achieved, for instance, until  \Vert v_{m.k+1}-v_{m,k}\Vert is sufficiently small.
This algorithm converges to a stationary point, see  [G()] . When that happens, we

deduce from the third step  (3.2c\cdot) that the limit  (v_{m}, d_{m}, b_{m}) satisfies  \nabla v_{m}=d_{m} and
therefore  v_{m} is the unique minimizer of  J_{m} . In particular, it does not depend on the
choice of  \lambda . However,  \lambda influences the difficulty to solve the minimization problem  (3.2_{c})
and the overall speed of convergence.

Note that solving (3.2a) is equivalent to solving a linear elliptic partial differential
equation for  v , while solving (3.2b) after discretization yields a completely decoupled
minimization problem at each node, which only requires evaluating the projection on the
optimal shape  \mathcal{W} in (2.1). See [GO, OOTT] for more details.

To couple this scheme with the heat equation in (1.1), we interpret the second equation
in (] 1) as an energy source concentrated on the surface  \partial E and add it to the heat equation:

 u_{t}=div(k\nabla u)+LV\mathcal{H}^{n-1}\lfloor\partial E_{f}.

After tiıne discretization, for each  m=1,2 , we

1. solve for  E_{m} using the above algorithm with  f_{m}=-\alpha^{-1}u_{7n-1} (in the TV minimiza‐
tion, we take  \overline{\beta}=aE with  \beta from (1.1)), and then

2. solve for the solution  u_{7\eta} of

 u_{m}-hdiv(k\nabla u_{m})=u_{m-1}+hLV_{m}\mathcal{H}^{n-1}\lfloor\partial E_{m} , (3.3)

where the nonnal velocity  V_{m} is estimated using the value of the signed distance
function signdist  E_{m-1} with respect to the usual Euclidean metric on the set  \partial E_{m}
as

 hV_{m}= signdist  E_{m-1}.
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We discretize both (3.2) and (33) by the standard piece‐wise linear finite elements
on a regular triangular grid in two dimensions or a regular tetrahedral grid in three
dimensions [P]. The discrete signed distance function is computed using the fast sweeping
algorithm [Z] with the initialization scheme proposed in [P]

Recomputing the signed distance function necessarily moves the level set and intro‐
duces an error. However, we observe that  v_{m} is still very close to a distance function of
 E_{m} near its boundary and therefore we usually set  w_{m}=v_{m} . We recompute the actual
signed distance function using the fast sweeping algorithm only after a prescribed number
of steps.

It would be more appropriate to set the value of  f_{m} using the extension of the value

 of-2L_{m-1}|_{\partial E_{m-1}} via a transport equation as in [AS] to increase the accuracy and reduce
the need to reinitialize the distance function. This will be explored in the future.

It is natural to consider an adaptive mesh or perform the computation only near the
boundary of the evolving domain. This is a subject of ongoing work.

4 Numerical results

In this section we present results of a few simple numerical experiments using the above
algorithm, see Figures 1‐4.

We fix the domain  \Omega=  (- \frac{1}{2}, \frac{1}{2})^{2} for the total variation minimization and the fast

sweeping method, and the domain   \Omega_{heat}=\{x\in \mathbb{R}^{2} |x|<\frac{1}{2}\} for the heat equation. The
boundary data for the hcat equation is set to  -10^{-3} . For the mobility, we always use
 \beta(p)=100|p|_{2} . The conductivity is taken to be 1 outside the crystal and  0 inside.

We discretize the domain by subdividing it uniformly into  256^{2} squares and split each
of those in half to produce the triangular mesh. The time step is fixed at  \tau=2.5\cross 10^{-4}.

Larger time steps lead to instability, most likely due to the explicit nature of the coupling
of the heat equation with the anisotropic mean curvature flow.

The optimal choice of the parameter  \lambda is an interesting problem. In the original paper
[GO] for total variation denoising applications, the value   \lambda=\frac{2}{h} was used. However, in the
current computations the value   \lambda=\frac{1}{10h} was found using numerical experiments to provide
a significant speed‐up of the convergence. With this choice, only about 3‐5 iterations of
the aıgorithm (3.2) per time step are needed, and each of the presented results takes 15−30
minutes to compute on an Intel Core i7‐4770K processor.

The simple nuınerical results show that the method can reproduce facet breaking due
to the uneven cooling of the facets, and that neighboring crystals do not merge because
the diffusion is limited inside the crystal. Due to the technical limitations of the current
implementation, thc fixed boundary for the heat equation is relatively close to the growing
crystaı, and this leads to a strong forcing at thc exposed vertices. The facets there are
therefore short and the crystal surface is not fully faceted. On the other hand, this
illustrates that the method is capable of handling not fully faceted crystals, which is
observed in practice in such strongly forced situations.

In summary, the initial implementation produces promising results, but more work is
needed to make it competitive with other available algorithms. Adaptive meshes, a more
accurate treatment of the boundary forcing term in the level set method and various other
improvenlents are being consideied. In particular, a tılree dimensional simulation is in
preparation.
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Figure 1: The evolution of a single square crystal of initial side length 0.05 growing with
 \alpha=5\cross 10^{-7} , plotted at 2 second intervals aligned with the mesh (left) and rotated by
0.2 radians (right).

Figure 2: The evolution of a single square ciystal of initial side length 0.05 growing with
 \alpha=10^{-8} , plotted at 2 second intcrvals aligned with the mesh (left) and rotated by 0.2
radians (right). Since the curvature effect is significantly weaker than in Figure 1, only
short facets appear in regions with a relatively weak forcing. The effect of the mesh is
more pronounced: the dendrites splitting in half along the diagonal directions are almost
certainly mesh artifacts.
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Figure 3: The evolution of a single hexagonal crystal of initial side length 0.05 growing
with  \alpha=2.5\cross 10^{-7} (left) and  \alpha=10^{-8} (right), plotted at 2 second intervals. The
horizontal dendrites grow faster, indicating an anisotropy caused by the mesh.

Figure 4: The evolution of three initially hexagonal or square crystals growing with a  =

 5\cross 10^{-7} , plotted at 2 second intervals. Note that the crystals do not merge.
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