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Non-smooth decomposition of homogeneous
Triebel-Lizorkin spaces with applications to the
Marcinkiewicz integral

Keisuke Asami(Tokyo Metropolitan Univ.)

Abstract

The aim of this paper is to develop a theory of non-smooth decompo-
sition in homogencous Tricbel-Lizorkin spaces. As a byproduct, we can
rccover the decomposition results for Hardy spaces as a special case The
result extends what Frazier and Jawerth obtained in 1990. The result by
Frazier and Jawerth covers only the limited range of the parameters but
the result in this paper is valid for all admissible parameters for Tricbel-
Lizorkin spaces. As an application of the main results, we prove that
the Marcinkiewicz operator is bounded. What is new in this paper is to
reconstruct sequence spaces other than classical ¢P spaccs.

1 Preparation and Main result

Definition 1. Let 0 <p < o0, 0< g <ocoand s € R. Let ¢ € CF(R") satisfy
xXBanB2 < ¢ < XBE)\B1). The homogencous Triebel-Lizorkin space Fy (R") is
defined to be the set of all f € S'(R")/P(R™) for which the quantity

11y, = 1{2705(D) ez

Lp(ia)

is finite, where ¢;(z) = ¢(277z), P(R") denotes the set of all polynomials on
R", and

U(D)f(z) = F 'Y= f(z) (z€R")
for v € S(R") and f € S'(R") and ||{f;};ez|lLr@a) stands for the vector-norm of
a scquence { f;}52_ o of mesurable functions: For 0 < p,q < oo

j=—o0

P

Lr(le) = /Rn (Z \fj(x)|ll> dzx

j=—c0

[1{fi}jezl




Remark 2. The space F;,q(R”) realizes many function spaces. Indeced,
FI?Q(R”) =I[PR"ifl<p< oo,FIBQ(R”) =H'R")if0<p<1
with equivalence of quasi-norms, where H?(R™) stands for the Hardy Space. Sce

[3, Theorem 6.1.2] for the first equivalence and [4, Theorem 2.2.9] for the second
cquivalence.

Definition 3. For v € Z and m = (my,ma,...,m,) € Z", we define
=TIz 252

Denote by D = D(R™) the sct of such cubes. The elements in D(R™) are called
dyadic cubes.
We adopt the definition by Grafakos; see [4, Definition 2.3.5].

Definition 4. Let 0 < p < 00,0 < ¢ < oo and s € R. We consider the set of
sequences {rg}gep C C such that the function

1

9o({rotqen;z) = (Z(IQI_%ITQ!XQ(JC))"> (z € R")

QeD
is in LP(R™). For such sequences r = {rq}qep set (|7]lg = 11g(r)||r- A sequence
. P.q
r = {rqg}qep is said to belong to 5 (R") if [|r|lz, < oo.
' P.q

Definition 5. Let 0 < p < 00, 0 < g < oo and s € R. A sequence 7 = {rg}gep
is called an co-atom for £ (R") with cube @y if there exists a dyadic cube Qg
such that

go({rotaen;) = (Z(!QV%

:
TQlXQ)") < XQo-
QeD

Our first theorem is as follows:

Theorem 6. Suppose that we are given parameters p,q, s, u satisfying

O<p<oo, 0<g<oo, seR, 0<u<min(l,q).

1. Foranyte f;’q(R”), there exists a decomposition

0
t= Z /\J'T‘j7
j=1



where each r; is an co-atom for f;’q(R") with cube Q; and {\;}52, satisfies

(Z '/\j|uXQ]> <Ol
j=1

Lr

AS
£

2. If a sequence {Q;}32, of cubes and a sequence {\;}32, of complexr numbers
satisfy

1
(zww) <
Jj=1

L

o0
then for any oo-atoms r; for f;"q(R”) with cube @, the series t = Z AT
=1

belongs to fj,q(R”).

The casc of s € R,0<p=wu<1and p < q < oo is proved in [2, Theorem
7.2]. In this case there is no condition on the position of the cubes since

(Z R¥ih XQ,) “ “ = <Z A7 |Qj|> N

Definition 7. Let 0 < p < 00,0 < g <00, s € Rand 0 < v < oo. One says
that a sequence r = {rg}gep is called a v-atom for £ (R") with cube Qo if there
exists a dyadic cube )y such that

1
v,

v < |Qo

supp(g;({rqtqen;-)) € Qo llg;({rqtqen; )|

We can refine the latter half of Theorem 6 as follows:

Theorem 8. In addition to the assumption in Theorem 6, let v € (max(1,p), 00).
If a sequence {QJ}JO‘;l of cubes and a sequence {\;}32, of complexr numbers satisfy
(77), then for any v-atoms r; with cube Q;, the series t given by (1) belongs to
fs (Rn).

P

The above results cover the ones in [2, Section 7). What is new about this
paper is the case where p > min(g, 1). The case when p > 1 and ¢ = 2 is especially
interesting because this yields the decomposition for LP(R™) = FJ),(R").

Definition 9. Let 0 < p < 00,0 < ¢ < 00,8 € R. Let v € Z and m € Z".
Suppose that the integers K, L € Z satisfy K > 0 and L > —1. A function
a € CK(R") is said to be a smooth (K, L)-atom centered at Qo for £ (R"),



if it is supported on 3 Q)y,, and if it satisfies the differential inequality and the
moment condition:

l0%al| L~ < ovlal la| < K,

/n 2Pa(z)dz =0, |B| < L. (1)

The case L = —1 is excluded in (1).

Definition 10. Let 0 < p < 00,0 < ¢ < 00,5 € R. We say that A is a
non-smooth atom for F; (R") with cube @ if there exists a cube @ such that

A= Z rQaqg
QcQ

where r = {rq}qgep is an oo-atom for {5 and cach aq is a smooth (K, L)—atom
centered at Q.

The following theorem extends [4, Corollary 2.3.9].
Theorem 11. Let 0 < p< 00, 0 < ¢ <00, s € R, 0 < u <min(l,q), and let

Z > L >max(—1,[o,4 — s])

where [-] denotes the Gauss sign, o, = n (m - 1) and o, , = max(o,,0y).

Then we have the following.

1. Let f € F;q(R”). Then we can write

Jj=1

in §'(R")/P(R"), where {A;}52, is a sequence of non-smooth atoms and
N1y and {Q;}32, satisfy the following condition:

The estimate <Z ')\j'UXQ]> < C|fl
j=1

Lp

i, holds and suppA; C 3Q);.

2. Suppose that each A; is a non-smooth atom with cube Q; and the complex
sequence {\;}52, satisfies

<Z |)‘j|uXQj> < 0.
j=1

Lp



Then by letting f = Z)\jAj, the sum converges in S'(R™)/P(R") and

j=1
1
(z IM“X@-)
j=1

In Theorem 11 the casc of s € R,0 < p=u < 1land p < g < o0 is [2,
Theorem 7.4(ii)].

satisfies

Lp

2 Application

Definition 12. Let 0 < p < n, 1 < g < co. The Marcinkiewicz operator is

defined by
Q(y/Jy)) "dt>%
NIV gl 22
,U/quf( (A tp/ f ’ |,L P y t

where we write B(r) = {|z| < r} C R" for r > 0 here and below.

We suppose
Qw)do(w) =0, Qe CH(S"),

Sn—1
where S"7! = {|z| = 1}. According to [9, Theorem 1], we have

Hapaflin < Cllfllsg,
itl<p<oo.

The following is an application of Theorem 11, and extends [9, Theorem 1].
Theorem 13. The estimate ||papqf|lr < C’HfHF}% for all f € ng if

ng
ng+1

<p<oo,l<g<oo.
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