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The Schwarz inequality via operator-valued inner product
and the geometric operator mean
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ABSTRACT. In this paper, by virtue of the Cauchy-Schwarz operator inequality due to
J.I. Fujii, we show the covariance-variance operator inequality via the geometric operator
mean which differs from Bhatia-Davis’s one and estimate the upper bounds. By our for-
mulation, we show a Robertson type inequality associated to the conditional expectation
on a finite von Nuemann algebra.

1. INTRODUCTION

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. An
operator A in B(H) is said to be positive (in symbol: A > 0) if (Az,z) > 0forallz € H.
In particular, A > 0 means that A is positive and invertible. For selfadjoint operators A
and B, the order relation A > B means that A — B is positive and we denote the absolute
value of A € B(H) by |A| = (A*A)2. A map ® on B(H) is called 2-positive if

<é g) >0 implies (igé; ggg;) > 0.

The Cauchy-Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis. Regarding a sesquilinear map (X,Y)s = ®(Y*X) for X,Y € B(H)
as an operator-valued inner product with a positive linear map on B(H), several operator
versions for the Schwarz inequality are discussed by many researchers. In [3], Bhatia and
Davis showed some new operator versions of the Schwarz inequality for a positive linear
map: If ® is a 2-positive linear map on B(H), then (Y, X)s(Y,Y)3'(X,Y)s € B(H) and
(1) YV, X)a (YY) X, Ve < (X, X)a

for every X,Y € B(H). In fact, for every X, Y € B(H)

XX XY\ [X* 0\ /X Y >0
Y*X YY) \Y* 0 0 0/~
and by 2-positivity of ®

BX"X) B(XY
(Q((Y*Xg @EY*Y))) =

Hence for any € > 0 we have
(X*X) (X*Y) >0
dY*X) ®(Y*Y)+el) =
and so
(X X) (YY) +el) Td(Y*X) < P(X*X).



Since ®(X*X)(®(Y*Y) +el)'®(Y*X) are monotone increasing and bounded below for
any € > 0, there exists a strong-operator limit of ®(X*X)(®(Y*Y) + el)71®(Y*X) as
€ — 0 and we write

S(X"X)R(Y"Y) (Y X) = s-lim S(X"X)(B(Y*Y) + ) @(Y*X) € B(H)

and then we have the desired inequality (1.1).

In the framework of an operator-valued inner product, the formulation of the Schwarz
operator inequality is very important, but the left-hand sides of the Schwarz inequalities
(1.1) are expressed as the strong-operator limits unless (Y,Y)s is invertible. This fact
is a cause of difficulty in application. Thus, we consider another version of the Schwarz
operator inequality in terms of the geometric operator mean due to J.I. Fujii in [5]. For
this, we recall the geometric operator mean, also see [7, Chap. 5]. Let A and B be two
positive operators in B(H). The geometric operator mean A # B of A and B is defined
by

AgB=A (A“%BA—%)%A%

if A is invertible. In [2], Ando showed the following characterizaion:

(1.2) AﬁBzmax{XZO:(é );)20}.

The geometric operator mean has the monotonicity:
0<A<LC and 0<B<D impliess A B<C4#D
and the subadditivity:
AtB+CtiD<(A+C)t(B+ D).

By monotonicity, we can uniquely extend the definition of A § B for all positive oper-
ators A and B by setting

At B :s—lirgl(A+EI) t (B+el).

In this case, the geometric operator mean A ff B for positive operators A and B always
exists in B(H) and it has all the desirable properties as geometric mean such as mono-
tonicity, continuity from above, transeformer inequality, subadditivity and self-duality so
on.

In [5], Fujii showed the following Cauchy-Schwarz operator inequality in terms of the
geometric operator mean:

Theorem A. Let ® be a 2-positive map on B(H). Then
(1.3) (X, Y)e| < (X, X)s § UN(Y,Y)sU

for every XY € B(H), where U is a partial isometry in the polar decomposition of
(X,Y)e =U|(X,Y)s|.

The purpose of this paper is to present applications of the operator Cauchy-Schwarz
inequality (1.3) due to J.I. Fujii. We firstly show the covariance-variance operator inequal-
ity via the geometric operator mean which differs from Bhatia-Davis’s one and estimate
the upper bounds. By our formulation, we show a Robertson type inequality associated
to the conditional expectation on a finite von Nuemann algebra.
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2. VARIANCE-COVARIANCE INEQUALITY

We recall the notion of the covariance and the variance of operators defined by Fujii,
Furuta, Nakamoto and Takahasi [6]. In 1954, the noncommutative probability theory is
founded by H. Umegaki as an application of the theory of von Neumann algebra in [8].
An operator A € B(H) plays the role of a random variable, that is, for every unit vector
x € 'H, the functional (Az, z) on the operatyor algebra may be thought as an expectation

at a state z (with |z| = 1). The covariance of operators A and B at a state x is introduced
by

(2.1) covy(A, B) = (A*Bz,z) — (A*z,z)(Bz,x),
and the variance of A at a state x by
var,(A) = (A* Az, x) — [(Az, x)|*.
The following variance-covariance inequality is an application of the Cauchy-Schwarz in-
equality:
(2.2) |cov,.(A, B)| < /var,(A)var,(B).

In [3], Bhatia and Davis studied a noncommutative analogue of variance and covariance
in statistics, which is a generalization of the covariance (2.1) at a state: Let ® be a
unital completely positive linear map on B(H). The convariance cov(A, B) between two
operators A and B is defined by

cov(A,B) = ®(A*B) — ®(A)*®(B).
The variance of A is defined by
var(A) = cov(A, A) = P(A*A) — P(A)*D(A).

Since @ is completely positive, then the variance of A is positive, i.e., var(A) > 0. Bha-
tia and Davis showed the following counterpart of the variance-covariance inequality in
the context of noncommutative probability, which is a generalization of the variance-
covariance inequality (2.2): For all A, B € B(H),

cov(A, B)var(B) cov(A, B)* € B(H)

and
cov(A, B)var(B) cov(A, B)* < var(A).

By virtue of the geometric operator mean, we show the following variance-covariance
inequality:

Theorem 2.1. Let & be a unital completely positive linear map on B(H) and A, B two
operators in B(H). Then

(2.3) |cov(A, B)| < U*var(A)U  var(B),
where cov(A, B) = Ulcov(A, B)| is the polar decomposition of cov(A, B).
Proof. 1t follows from [3, Theorem 1] that the 2 x 2 operator matrix

(conth By )



is positive. Then we have
0 < U 0 var(A)  cov(A,B)\ (U 0
=\ 0 1) \cov(A, B)* var(B) 0 1
- U*var(A)U  U*Ulcov(A, B)| U*var(A)U |cov(A, B)|
|cov(A, B)|U*U var(B) |cov(A, B)| var(B)
and so by (1.2) we have the desired inequality (2.3). |

If A is a selfadjoint operator with mI < A < M/ for some scalars m < M, then
it follows from [6] that the variance of A at a state x is not greater than (M — m)?/4:
varg(A) < 2(M —m)?. To estimate the variance and the covariance of general operators,
we need the notion of the accretivity. An operator A € B(H) is said to be accretive if
Re (Az,z) > 0 for all z € H. The symbol C, ,(A) stands for C,,(A) = (A—al)*(bl — A)
for some a,b € C. We give the estimates of the variance and covariance by virtue of
Theorem 2.1.

Theorem 2.2. Let A be an operator in B(H) and a,b € C. If the operator Cqp(A) s
accretive, then

a+b|?

var(A) < i|a _b2—

®(4) -

Theorem 2.3. Let A and B be two operators in B(H) and a,b, c,d € C such that C,;,(A)
and C.q4(B) are accretive. Then

eov(d B)| < gla—lle—d — [0(e(a) - 5 2p0] ¢ [jas) - S0P ]

2
(= glo-tte-al)

where cov(A, B) = Ulcov(A4, B)| is the polar decomposition of cov(A, B).
As an application of Theorem 2.3, we have the following noncommutative Kantorovich

inequality:

Corollary 2.4. Let A be a positive operator such that mI < A < M1 for some scalars
0<m< M. If ® is a unital completely positive linear map on B(H), then

(M — m)QI
4Mm
Remark 2.5. If the range of ® is abelian in Corollary 2.4, then I < ®(A)P(A™') and

_ M +m)?
1y o MM
S(A)2(AT) < 4Mm

[I—o(A)p(A™h)] <

I

3. COMUTATION RELATION AND COVARIANCE

In this section, we discuss the near relation of the variance-covariance inequality with
the Heisenberg uncertainty principle in quantum physics. In [4], Enomoto pointed out that
the variance-covariance inequality (2.2) is exactly the generalized Schrodinger inequality:
Let A and B be (not necessarily bounded) selfadjoint operators on a Hilbert space H. Let
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D(AB) and D(BA) be the domain of AB and BA, respectively. Let {A, B} and [A, B]
be the Jordan product AB + BA and the commutator AB — BA, respectively. Then

lcova(A, B)? = (%({A,B}x,:@ - (Ax,x)(B:c,x)>2 + (%([A,B]x,x))Q

for every unit vector x € D(AB) N D(BA). In particular, the following Robertson type
inequality holds:

var,(A)var,(B) > %|([A,B]x,$>l

and the following Schrédinger type inequality holds:

var, (A)var,(B) > %(A,Ba:,@—(Ax,xsz,:c) +i|([A,B]x,a:)|2.

We consider a Robertson type uncertainty relation associated to the conditional extecta-
tion on a finite von Nuemann algebra. Let A be a finite von Neumann algebra and B C A
a von Neumann subalgebra. Let ® : A — B be a conditional expectation, that is, B-linear
projection and positive linear map. For A, B € A, we define the standard deviation of A
and B by the formula
AA=A—-P(A) and AB=B-9(B),
respectively. Then it follows from B-linearlity of ® that
(AB,AA)e = 2((A ) B)
(A" = ®(A)")(B - ©(B))
A*B —®(A)*B — A*®(B) + ®(A)*®(B))
A™B) — ®(A)*®(B) — ®(A")®(B) + ®(A)"®(B)
B) - ®(A)"®(B)

Il

I

Il

o
&
&
o
o(A”

and thus we have
cov(A, B) = ®(A*B) — ®(A)*®(B) = (AB,AA)s
and
var(A) = (AA, AA)s.
Hence we have the following variance-covariance inequality:
Theorem 3.1. Let ® : A— B be a conditional ezxpectation. Then
[(AB,AA)s| < U*(AA,AA)sU t (AB,AB)s

for every A, B € A, where (AB,AA)s = U|(AB,AA)s| is the polar decomposition of
(AB,AA)s.

In [1, Proposition 2.1], Akemann, Anderson and Pedersen showed that if A is finite
and z € A is selfadjoint, then there exists a unitary v € A such that v(Rez) v* < |z|.
By using the result, we show a Robertson type inequality associated to the conditional
expectation on a finite von Nuemann alegebra:



Theorem 3.2. Let ® : A+ B be a conditional expectation. Then for every selfadjoint
A, B € A, there exists a unitary v € B such that

where (AB,AA)s = U|(AB, AA)s| is the polar decomposition of (AB,AA)s and X, is
the positive part of a selfadjoint element X € B.

Under the restricted condition, we have a Schrodinger type inequality associated to the
conditional expectation on a finite von Nuemann algebra:

Corollary 3.3. Let ® : A — B be a conditional expectation and A, B € A two selfadjoint
elements. If ®(AB) — ®(A)®(B) is normal, then

U*(AA, AA)sU ¢ (AB, AB)s

1

> (i (@((4,5)) - (o), s(mp? + ( HAEL AL 2O )

21

> 21214, B]) ~ [B(4), #(B)]
where ®((AA)*AB) = U|®((AA)*AB)| is the polar decomposition of ®((AA)*AB).
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