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ABSTRACT. In this papet, by virtue of the Cauchy‐Schwarz operator inequality due to
J.I. Fujii., we show the covariance‐variance operator inequality via the geometric operator
mean which differs from Bhatia‐Davis’s one and estimate the upper bounds. By our for‐
mulation: we bhow a Robertson type inequality associated to the conditionaı expectation
on a finite von Nuemann algebra.

1. INTRODUCTION

Let  B(\mathcal{H}) be the algebra of all bounded linear operators on a Hilbert space  \mathcal{H} . An
operator  A in  B(\mathcal{H}) is said to be positive (in symbol:  A\geq 0 ) if {Ax,  x\rangle\geq 0 for all  x\in H.

In particular,  A>0 means that  A is positive and invertible. For selfadjoint operators  A

and  B , the order relation  A\geq B means that  A-B is positive and we denote the absolute
value of  A\in B(\mathcal{H}) by  |A|=(A^{*}A)^{\frac{1}{2}} . A map  \Phi on  B(\mathcal{H}) is called 2‐positive if

 \begin{array}{ll}
A   B
C   D
\end{array}\geq 0 implies  \begin{array}{ll}
\Phi(A)   \Phi(B)
\Phi(C)   \Phi(D)
\end{array}  \geq 0.

The Cauchy‐Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis. Regarding a sesquilinear map {X,  Y\rangle_{\Phi}=\Phi(Y^{*}X) for  X,  Y\in B(\mathcal{H})
as an operator‐valued inner product with a positive linear map on  B(\mathcal{H}) , several operator
versions for the Schwarz inequality are discussed by many researchers. In [3], Bhatia and
Davis showed some new operator versions of the Schwarz inequality for a positive linear
map: If  \Phi is a 2‐positive linear map on  B(\mathcal{H}) , then  \langle Y,  X\rangle_{\Phi}\{Y_{\dot{}}Y\}_{\Phi}^{-1}\langle X,  Y\}_{\Phi}\in B(\mathcal{H}) and

(1.1)  \{Y, X\}_{\Phi}\{Y, Y\rangle_{\Phi}^{-1}\{X, Y\rangle_{\Phi}\leq\{X, X\rangle_{
\Phi}
for every  X,  Y\in B(\mathcal{H}) . In fact, for every  X,  Y\in B(\mathcal{H})

 \begin{array}{ll}
X^{*}X   X^{*}Y
Y^{*}X   Y^{*}Y
\end{array}=\begin{array}{ll}
X^{*}   0
Y^{*}   0
\end{array}\begin{array}{ll}
X   Y
0   0
\end{array} \geq 0
and by 2‐positivity of  \Phi

 \begin{array}{ll}
\Phi(X^{*}X)   \Phi(X^{*}Y)
\Phi(Y^{*}X)   \Phi(Y^{*}Y)
\end{array}\geq 0.
Hence for any  \varepsilon>0 we have

 \begin{array}{ll}
\Phi(X^{*}X)   \Phi(X^{*}Y)
\Phi(Y^{*}X)   \Phi(Y^{*}Y)+\varepsilon I
\end{array}\geq 0
and so

 \Phi(X^{*}X)(\Phi(Y^{*}Y)+\varepsilon I)^{-1}\Phi(Y^{*}X)\leq\Phi(X^{*}X) .
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Since  \Phi(X^{*}X)(\Phi(Y^{*}Y)+\varepsilon I)^{-1}\Phi(Y^{*}X) are monotone increasing and bounded below for
any  \in>0 , there exists a strong‐operator limit of  \Phi(X^{*}X)(\Phi(Y^{*}Y)+eI)^{-1}\Phi(Y^{*}X) as
 \varepsilonarrow 0 and we write

  \Phi(X^{*}X)\Phi(Y^{*}Y)^{-1}\Phi(Y^{*}X)=s-\lim_{\varepsilon-\cdot\cdot,0}
\Phi(X^{*}X)(\Phi(Y^{*}Y)+\varepsilon I)^{-1}\Phi(Y^{*}X)\in B(\mathcal{H})
and then we have the desired inequality (1.1).

In the framework of an operator‐valued inner product, the formulation of the Schwarz
operator inequality is very important, but the left‐hand sides of the Schwarz inequalities
(1.1) are expressed as the strong‐operator limits unless  \{Y,  Y\rangle_{\Phi} is invertible. This fact
is a cause of difficulty in application. Thus, we consider another version of the Schwarz
operator inequality in terms of the geometric operator mean due to J.I. Fujii in [5]. For
this, we recall the geometric operator mean, also see [7, Chap. 5]. Let  A and  B be two
positive operators in  B(\mathcal{H}) . The geometric operator mean  A\# B of  A and  B is defined
by

 A\# B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{{\imath}}{2}})^{\frac{1}{2}}A^
{\frac{1}{2}}
if  A is invertible. In [2], Ando showed the following characterizaion:

(1.2)  A \# B=\max\{X\geq 0 : (\begin{array}{ll}
A   X
X   B
\end{array}) \geq 0\}.
The geometric operator mean has the monotonicity:

 0\leq A\leq C and  0\leq B\leq D implies  A\# B\leq C\# D

and the subadditivity:

 A\# B+C\# D\leq(A+C)\#(B+D) .

By monotonicity, we can umiquely extend the definition of  A\# B for all positive oper‐
ators  A and  B by setting

 A \# B=s-\lim_{\inarrow 0}(A+EI)\#(B+\varepsilon I) .

In this case, the geometric operator mean  A\# B for positive operators  A and  B always
exists in  B(\mathcal{H}) and it has all the desirable properties as geometric mean such as mono‐
tonicity, continuity from above, transeformer inequality, subadditivity and self‐duality so
on.

In [5], Fujii showed the following Cauchy‐Schwarz operator inequality in terms of the
geometric operator mean:

Theorem A. Let  \Phi be a 2‐positive map on  B(\mathcal{H}) . Then

(1.3)  |\{X, Y\rangle_{\Phi}|\leq\{X, X\}_{\Phi}\# U^{*}\{Y, Y\}_{\Phi}U

for every  X,  Y\in B(\mathcal{H}) , where  U is a partial isometry in the polar decomposition of
 \langle X,  Y\}_{\Phi}=U|\{X,  Y\rangle_{\Phi}|.

The purpose of this paper is to present applications of the operator Cauchy‐Schwarz
inequality (1.3) due to J.I. Fujii. We firstly show the covariance‐variance operator inequal‐
ity via the geometric operator mean which differs from Bhatia‐Davis’s one and estimate
the upper bounds. By our formulation, we show a Robertson type inequality associated
to the conditional expectation on a finite von Nuemann algebra.
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2. VARIANCE‐COVARIANCE INEQUALITY

We recall the notion of the covariance and the variance of operators defined by Fujii,
Furuta, Nakamoto and Takahasi [6]. In 1954, the noncommutative probability theory is
founded by H. Umegaki as an application of the theory of von Neumann algebra in [8].
An operator  A\in B(\mathcal{H}) plays the role of a random variable, that is, for every unit vector
 x\in \mathcal{H} , the functional {Ax,   x\rangle on the operatyor algebra may be thought as an expectation
at a state  x (with  \Vert x\Vert=1 ). The covariance of operators  A and  B at a state  x is introduced
by

(2.1)  cov_{x}(A, B)=\{A^{*}Bx,  x\rangle-\{A^{*}x,   x\rangle  \langle Bx ,  x\rangle,

and the variance of  A at a state  x by

 var_{x}(A)=\langle A^{*}Ax, x\}-|\{Ax, x\}|^{2}.

The following variance‐covariance inequality is an application of the Cauchy‐Schwarz in‐
equality:

(2.2)  |cov_{x}(A, B)|\leq\sqrt{var_{x}(A)var_{x}(B)}.
In [3], Bhatia and Davis studied a noncommutative analogue of variance and covariance

in statistics, which is a generalization of the covariance (2.1) at a state: Let  \Phi be a
unital completely positive linear map on  B(\mathcal{H}) . The convariance  cov(A, B) between two
operators  A and  B is defined by

 cov(A, B)=\Phi(A^{*}B)-\Phi(A)^{*}\Phi(B) .

The variance of  A is defined by

 var(A)=cov(A, A)=\Phi(A^{*}A)-\Phi(A)^{*}\Phi(A) .

Since  \Phi is completely positive, then the variance of  A is positive, i.e.,  var(A)\geq 0 . Bha‐
tia and Davis showed the following counterpart of the variance‐covariance inequality in
the context of noncommutative probability, which is a generalization of the variance‐
covariance inequality (2.2): For all  A,  B\in B(\mathcal{H}) ,

 cov(A, B)var(B)^{-1}cov(A, B)^{*}\in B(\mathcal{H})
and

 cov(A, B)var(B)^{-1}cov(A, B)^{*}\leq var (A) .

By virtue of the geometric operator mean, we show the following variance‐covariance
inequality:

Theorem 2.1. Let  \Phi be a unital completely positive linear map on  B(\mathcal{H}) and  A,  B two
operators in  B(\mathcal{H}) . Then

(2.3)  |cov(A, B)|\leq U^{*}var(A)U\# var (B) ,

where  cov(A, B)=U|cov(A, B)| is the polar decomposition of  cov(A, B) .

Proof. It follows from [3, Theorem 1] that the  2\cross 2 operator matrix

 (\begin{array}{ll}
var(A)   cov(A,B)
cov(A_{\gamma},B)^{*}   var(B)
\end{array})
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is positive. Then we have

 0\leq(\begin{array}{ll}
U^{*}   0
0   1
\end{array})  (\begin{array}{ll}
var(A)   cov(A,B)
cov(A,B)^{*}   var(B)
\end{array})  (\begin{array}{ll}
U   0
0   1
\end{array})
 = (\begin{array}{ll}
U^{*}var(A)U   U^{*}U|cov(A,B)|
|cov(A,B)|U^{*}U   
\end{array})=(\begin{array}{ll}
U^{*}var(A)U   |cov(A,B)|
|cov(A,B)|   var(B)
\end{array})var(B)

and so by (1.2) we have the desired inequality (2.3). ロ

If  A is a selfadjoint operator with  mI\leq A\leq MI for some scalars  m\leq M , then
it follows from [6] that the variance of  A at a state  x is not greater than  (M-m)^{2}/4 :
  var_{x}(A)\leq\frac{1}{4}(M-m)^{2} . To estimate the variance and the covariance of general operators,
we need the notion of the accretivity. An operator  A\in B(\mathcal{H}) is said to be accretive if
 {\rm Re} {Ax,  x }  \geq 0 for all  x\in \mathcal{H} . The symbol  C_{a,b}(A) stands for  C_{a,b}(A)=(A-aI)^{*}(bI-A)
for some  a,  b\in \mathbb{C} . We give the estimates of the variance and covariance by virtue of
Theorem 2.1.

Theorem 2.2. Let  A be an operator in  B(\mathcal{H}) and  a,  b\in \mathbb{C} . If the operator  C_{a,b}(A) is
accretive, then

var(A)   \leq\frac{1}{4}|a-b|^{2}-|\Phi(A)-\frac{a+b}{2}|^{2}
Theorem 2.3. Let  A and  B be two operators in  B(\mathcal{H}) and  a,  b,  c,  d\in \mathbb{C} such that  C_{a,b}(A)
and  C_{c,d}(B) are accretive. Then

 | cov(A, B)|\leq\frac{1}{4}|a-b||c-d|-[U^{*}|\Phi(A)-\frac{a+b}{2}|^{2}U]
\#[|\Phi(B)-\frac{c+d}{2}|^{2}]
 ( \leq\frac{1}{4}|a-b||c-d|, )

where cov  (A, B)=U|cov(A, B)| is the polar decomposition of  cov(A, B) .

As an application of Theorem 2.3, we have the following noncommutative Kantorovich
inequality:

Corollary 2.4. Let  A be a positive operator such that  mI\leq A\leq MI for some scalars
 0<m<M. If  \Phi is a unital completely positive linear map on  B(\mathcal{H}) , then

 |I- \Phi(A)\Phi(A^{-1})|\leq\frac{(M-m)^{2}}{4j1,\prime Im}I.
Remark 2.5. If the range of  \Phi is abelian in Corollary  2.4_{f} then  I\leq\Phi(A)\Phi(A^{-1}) and

  \Phi(A)\Phi(A^{-1})\leq\frac{l1\cdot I+m)^{2}}{4\lambda\cdot\prime Im}I.
3. COMUTATION RELATION AND COVARIANCE

In this section, we discuss the near relation of the variance‐covariance inequality with
the Heisenberg uncertainty principle in quantum physics. In [4], Enomoto pointed out that
the variance‐covariance inequality (2.2) is exactly the generalized Schrödinger inequality:
Let  A and  B be (not necessarily bounded) selfadjoint operators on a Hilbert space  \mathcal{H} . Let
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 D(AB) and  D(BA) be the domain of  AB and  BA , respectively. Let  \{A, B\} and  [A, B]
be the Jordan product  AB+BA and the commutator AB—BA, respectively. Then

 | cov_{x}(A, B)|^{2}=(\frac{1}{2}\{\{A, B\}x_{i}x\}- \langle Ax, x\rangle \{Bx,
x\})^{2}+(\frac{1}{2_{\dot{i}}}\{[A, B]x, x\rangle)^{2}
for every unit vector  x\in D(AB)\cap D(BA) . In particular, the following Robertson type
inequality holds:

  \sqrt{var_{x}(A)var_{x}(B)}\geq\frac{1}{2}|\{[A, B]x, x\rangle|
and the following Schrödinger type inequality holds:

  var_{x}(A)var_{x}(B)\geq|\frac{1}{2}\{A ,
 Bx

,  x\rangle-  \langle Ax ,   x\rangle  \{Bx ,  x \rangle|^{2}+\frac{1}{4}|\{[A, B]x,  x\rangle|^{2}

We consider a Robertson type uncertainty relation associated to the conditional extecta‐
tion on a finite von Nuemann algebra. Let  \mathcal{A} be a finite von Neumann algebra and  \mathcal{B}\subset \mathcal{A}

a von Neumann subalgebra. Let  \Phi :  \mathcal{A}\mapsto \mathcal{B} be a conditional expectation, that is,  \mathcal{B}‐linear
projection and positive linear map. For  A,  B\in \mathcal{A} , we define the standard deviation of  A

and  B by the formula

 AA=A-\Phi(A) and  \triangle B=B-\Phi(B) ,

respectively. Then it follows from  \mathcal{B}‐linearlity of  \Phi that

 \langle\triangle B, \triangle A\}_{\Phi}=\Phi((\triangle A)^{*}\triangle B)
 =\Phi((A^{*}-\Phi(A)^{*})(B-\Phi(B))
 =\Phi(A^{*}B-\Phi(A)^{*}B-A^{*}\Phi(B)+\Phi(A)^{*}\Phi(B))
 =\Phi(A^{*}B)-\Phi(A)^{*}\Phi(B)-\Phi(A^{*})\Phi(B)+\Phi(A)^{*}\Phi(B)
 =\Phi(A^{*}B)-\Phi(A)^{*}\Phi(B)

and thus we have

 cov(A, B)=\Phi(A^{*}B)-\Phi(A)^{*}\Phi(B)=\{\triangle B, AA\}_{\Phi}

and

var  (A)=\{\triangle A,  \triangle A\rangle_{\Phi}.

Hence we have the following variance‐covariance inequality:

Theorem 3.1. Let  \Phi :  \mathcal{A}\mapsto \mathcal{B} be a conditional expectation. Then

 |\langle\triangle B, \triangle A\rangle_{\Phi}|\leq U^{*}\{\triangle A, 
\triangle A\rangle_{\Phi}U\#\{\triangle B, \triangle B\rangle_{\Phi}

for every  A,  B\in \mathcal{A} , where {AB,  \triangle A\rangle_{\Phi}=U|\{\triangle B_{\dot{\ovalbox{\tt\small REJECT}}}
\triangle A\rangle_{\Phi}| is the polar decomposition of
(AB,  \triangle A\rangle_{\Phi}.

In [1, Proposition 2.1], Akemann, Anderson and Pedersen showed that if  \mathcal{A} is finite
and  x\in \mathcal{A} is selfadjoint, then there exists a unitary  v\in \mathcal{A} such that  v({\rm Re} x)_{+}v^{*}\leq|x|.
By using the result, we show a Robertson type inequality associated to the conditional
expectation on a finite von Nuemann alegebra:
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Theorem 3.2. Let  \Phi :  \mathcal{A}\mapsto \mathcal{B} be a conditional expectation. Then for every selfadjoint
 A,  B\in \mathcal{A} , there exists a unitary  v\in \mathcal{B} such that

 U^{*} \{\triangle A, \triangle A\}_{\Phi}U\#\{\triangle B, \triangle B\}_{\Phi}
\geq v(\frac{\Phi([A,B])-[\Phi(A),\Phi(B)]}{2_{\dot{i}}})_{+}v^{*},
where  \langle AB,  \triangle A\}_{\Phi}=U|\{AB,  \triangle A\rangle_{\Phi}| is the polar decomposition of {AB,  \triangle A\rangle_{\Phi} and  X_{+} is
the positive part of a selfadjoint element  X\in \mathcal{B}.

Under the restricted condition, we have a Schrödinger type inequality associated to the
conditional expectation on a finite von Nuemann algebra:

Corollary 3.3. Let  \Phi :  \mathcal{A}\mapsto \mathcal{B} be a conditional expectation and  A,  B\in \mathcal{A} two selfadjoint
elements. If  \Phi(AB)-\Phi(A)\Phi(B) is normal, then

 U^{*}\{\triangle A, AA\rangle_{\Phi}U\#\{AB\rangle AB\}_{\Phi}

  \geq(\frac{1}{4}(\Phi(\{A, B\})-\{\Phi(A), \Phi(B)\})^{2}+(\frac{\Phi([A,B])-[
\Phi(A),\Phi(B)]}{2_{\dot{i}}})^{2})^{\frac{{\imath}}{2}}
  \geq\frac{1}{2}|\Phi([A, B])-[\Phi(A), \Phi(B)]|,

where  \Phi((\triangle A)^{*}\triangle B)=U|\Phi((\triangle A)^{*}\triangle B)| is the polar decomposition of  \Phi((\triangle A)^{*}\triangle B) .
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