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1 Introduction

In this paper, we point out that a convexity inequality holds on martingale Morrey

spaces. To do this, we introduce a modification of the notion of Banach function

spaces. We show that martingale Morrey spaces are not necessarily Banach function

spaces, but the modified notion can be applied to martingale Morrey spaces. This

paper is an announcement of the author’s recent results [10].

2 \mathcal{B}‐Banach function space

In this section, we introduce the notion of  \mathcal{B}‐Banach function spaces. It is a modifi‐

cation of the notion of Banach function spaces in the sense of Bennett and Sharpley

[1].

Let  (\Omega, \mathcal{F}, \mu) be a  \sigma‐finite measure space. Let  \mathcal{M}^{+} be the set of all  [0, \infty] ‐
valued measurable functions on  \Omega . We denote by  L_{0} the set of all complex valued
measurable functions on  \Omega.

Let  \mathcal{B}=\{B_{n}\} be a countable family of mutually disjoint measurable sets in  \Omega.

We say  \mathcal{B}=\{B_{n}\} is a measurable partition if  \mu(B_{n})<\infty for all  n and   \bigcup_{n}B_{n}=\Omega.

Definition 2.1. Let  \rho :  \mathcal{M}^{+}arrow[0, \infty] . Let  \mathcal{B}=\{B_{n}\} be a measurable partition.
We say  \rho is a  \mathcal{B}‐function norm if
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(B.1) For each  a\geq 0,  f,  g\in \mathcal{M}^{+},  \rho(af)=a\rho(f),  \rho(f+g)\leq\rho(f)+\rho(g) . Moreover,
 \rho(f)=0 if and only if  f=0\mu-a.e.

(B.2) If  g\leq f , then  \rho(g)\leq\rho(f) .

(B.3) If  f_{n}\uparrow f , then  \rho(f_{n})\uparrow\rho(f) .

(B.4) For each  B\in \mathcal{B},  \rho(\chi_{B})<\infty.

(B.5) For each  B\in \mathcal{B} , there exists  C_{B}\in(0, \infty) such that

  \int_{B}f(\omega)d\mu(\omega)\leq C_{B}\rho(f) (f\in \mathcal{M}^{+}) .

For a  \mathcal{B}‐function norm  \rho , define

 X=\{f\in L_{0};\rho(|f|)<\infty\}

and

 \Vert f\Vert_{X}=\rho(|f|) (f\in L_{0}) .

By the same way as in [1], we see that  \Vert  \Vert_{X} is a norm on  X and  (X, \Vert . \Vert_{X}) is a

Banach space. We call such  Xa\mathcal{B}‐Banach function space.

Remark 2.1. On  \mathbb{R}^{d} , Hakim and Sawano introduced the notion of Ball Banach

function spaces in [2]. Our definition is a measure theoretic version of it.

Below, we see that  \mathcal{B}‐Banach function spaces satisfy the same fundamental

properties of Banach function spaces. We first introduce the norm associate to  \rho.

Proposition 2.1. Let  \mathcal{B}=\{B_{n}\} be a measurable partition. Let  \rho be a  \mathcal{B} ‐function

norm. For  \rho , we define  \rho' :  \mathcal{M}^{+}arrow[0, \infty] by

  \rho'(g)=\sup_{\rho(f)\leq 1}\int_{\Omega}f(\omega)g(\omega)d\mu(\omega) .

Then,  \rho is also a  \mathcal{B} ‐function norm.

The proof of Proposition 2.1 is obtained by a modification of the one in [1,
Theorem 2.2].

We say  \rho' defined above the associate norm of  \rho . Further, let   X'=\{f\in
 L_{0};\rho'(|f|)<\infty\} and let  \Vert f\Vert_{X'}=\rho'(|f|) . We call  X' the associate space of  X.
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Proposition 2.2. Let  \mathcal{B}=\{B_{n}\} be a measurable partition. Let  X be a  \mathcal{B} ‐Banach

function space and let  X' be the associate space of X. Then,  X^{\prime f}=X.

The proof of Proposition 2.2 is also obtained by a modification of the one in [1,

Theorem 2.7].

For a Banach space  X , we denote by  X^{*} the dual space of  X . The following

proposition is proved by a similar way in [1, Theorem 3.12]

Proposition 2.3. Let  \mathcal{B}=\{B_{n}\} be a measurable partition. Let  X be a  \mathcal{B} ‐Banach

function space. Let  X_{b} be the closure of the set of all bounded functions in  X

supported on finitely many  B in  \mathcal{B} . Then,  X_{b} is a norm fundamental subspace of

(X’)
 *

, that is,

  \Vert f\Vert_{X'}=\sup_{g\in X_{b},\Vert g\Vert x\leq 1}|\int_{\Omega}
f(\omega)g(\omega)d\mu(\omega)|.
We apply this framework to obtain a convexity inequality for martingales. To

explain this application, we introduce some notation.

Let  (\Omega, \mathcal{F}, P) be a probability space and let  \{\mathcal{F}_{n}\}_{n\geq 0} be a nondecreasing se‐

quence of  sub-\sigma‐algebras of  \mathcal{F} such that   \mathcal{F}=\sigma(\bigcup_{n}\mathcal{F}_{n}) . We suppose that every
 a‐algebra  \mathcal{F}_{n} is generated by countable atoms, where  B\in \mathcal{F}_{n} is called an atom

(more precisely  a(\mathcal{F}_{n}, P) ‐atom), if any  A\subset B with  A\in \mathcal{F}_{n} satisfies  P(A)=P(B)
or  P(A)=0 . Denote by  A(\mathcal{F}_{n}) the set of all atoms in  \mathcal{F}_{n} . We also suppose that

 (\Omega, \mathcal{F}, P) is non‐atomic.

The expectation operator is denoted by  E . Let  L_{p,1oc} be the set of all measur‐

able functions such that  |f|^{p}\chi_{B} is integrable for all  B\in A(\mathcal{F}_{0}) . If  \mathcal{F}_{0}=\{\Omega, \emptyset\},
then  L_{p,1oc}=L_{p} . An  \mathcal{F}_{n}‐measurable function  g\in L_{1,1oc} is called the conditional

expectation of  f\in L_{1,{\imath} oc} relative to  \mathcal{F}_{n} if

 E[g\chi_{B}\chi_{G}]=E[f\chi_{B}\chi_{G}] for all  B\in A(\mathcal{F}_{0}) and  G\in \mathcal{F}_{n}.

We denote by  E_{n}f the conditional expectation of  f relative to  \mathcal{F}_{n} . We say a

sequence  (f_{n})_{n\geq 0} in  L_{1,{\imath} oc} is a martingale relative to  \{\mathcal{F}_{n}\}_{n\geq 0} if it is adapted to

 \{\mathcal{F}_{n}\}_{n\geq 0} and satisfies  E_{n}[f_{m}]=f_{n} for every  n\leq m.

For a martingale  f=(f_{n})_{n\geq 0} , define maximal functions by

 M_{n}f= \sup_{0\leq m\leq n}|f_{m}|, Mf=\sup_{n\geq 0}|f_{n}|.
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For  f\in L_{1,loc} , define sharp functions by

 M^{\#}f= \sup_{n\geq 0}E_{n}[|f-f_{n-1}|] (f\in L_{1,1oc}, f_{-1}=0) .

Let  X be a  A(\mathcal{F}_{0}) ‐Banach function space. Then, it is easy to see that   X\subset

 L_{1,{\imath} oc} . Hence, by considering  f\in X as a martingale by  (E_{n}f)_{n\geq 0} , we define  Mf=

  \sup_{n\geq 0}|E_{n}f|.
We now state our main result.

Theorem 2.4. Let  X be a  A(\mathcal{F}_{0}) ‐Banach function space. Suppose that there exists
 C>0 such that

 \Vert Mf\Vert_{X}\leq C\Vert f\Vert_{X} for all  f\in X

and that

 \Vert f\Vert_{X}\leq C\Vert AI^{\#}f\Vert_{X} for all  f\in X.

Then, there exists  C'>0 such that

  \Vert\sum_{n\geq 0}E_{n}h_{n}\Vert_{X}\leq C'\Vert\sum_{n\geq 0}h_{n}\Vert_{X}
for all sequence  (h_{n})_{n\geq 0} of non‐negative measurable functions.

The proof of Theorem 2.4 will be given in [10].

3 Application to martingale Morrey spaces.

In this section, we see that the notion of  \mathcal{B}‐Banach function spaces can be applied

to martingale Morrey spaces. First, we explain notations.

We now recall the definition of martingale Morrey spaces.

Definition 3.1. Let   p\in[1, \infty ) and  \lambda\in(-\infty\grave{\tau}\infty) . For  f\in L_{1,1oc} , let

  \Vert\int^{-}\Vert_{L_{p,\lambda}}=\sup_{n\geq 0}\sup_{B\in A(\mathcal{F}_{n})
}\frac{1}{P(B)^{\lambda}}(^{\frac{1}{P(B)}}[\int_{B}|f|^{\overline{P}}
dP^{\backslash })^{1/p}
and define

 L_{p,\lambda}=\{f\in L_{p,1oc}:\Vert f\Vert_{L_{p,\lambda}}<\infty\}.
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It is easy to see that  L_{p,\lambda} are  A(\mathcal{F}_{0}) ‐Banach function spaces. However, mar‐

tingale Morrey spaces are not necessarily Banach function spaces in the sense of

Bennett‐Sharpley. We show this fact by giving an example.

Proposition 3.1. Let  (\Omega, \mathcal{F}, \mu)=((0,1 ],  \mathcal{L},  m ) be the Lebesgue space. Let  A(\mathcal{F}_{0})=

  \{(\frac{1}{k+1}, \frac{1}{k}] : k\geq 1\} and let  A( \mathcal{F}_{n})=\{(\frac{l}{2^{n}(k+1)}, \frac{l+1}{2^{n}k}] : k\geq 1,
1\leq l\leq 2^{n}\} . Let  f=

  \sum_{k=1}^{\infty}k\chi_{(\frac{1}{k+1},\frac{1}{k}]} . Then,  f belongs to  L_{1,-1} but does not belong to  L_{1} . In particular,

 L_{1,-1} is not a Banach function space in the sense of Bennett‐Sharpley.

To state our application, we recall two theorems. One is the boundedness of  \lambda l

on martingale Morrey spaces.

Theorem 3.2 ([6, 7]). Let   1<p<\infty and  \lambda<0 . Then  M is bounded from  L_{p,\lambda}
to itself.

The other is an inequality on sharp maximal functions. We say  \{\mathcal{F}_{n}\}_{n\geq 0} is
regular if there exists a constant  R\geq 2 such that

(3.1)  f_{n}\leq Rf_{n-1}

holds for all nonnegative martingales  (f_{n})_{n\geq 0}.

Theorem 3.3 ([8]). Assume that  \{\mathcal{F}_{n}\}_{n\geq 0} is regular. Let  f\in L_{p,{\imath} oc} . Let   1\leq p<\infty

and  \lambda<0 . If  M\# f\in L_{p,\lambda} , then  f\in L_{p,\lambda} and

(3.2)  \Vert f\Vert_{L_{p,\lambda}}\leq C\Vert M^{\#}f\Vert_{L_{p\lambda}},

where the constant  C is vndependent of  f.

Now we state our application of Theorem 2.4 to martingale Morrey spaces.

Theorem 3.4. Assume that  \{\mathcal{F}_{n}\}_{n\geq 0} is regular and that  n arrow\infty_{B\in A(\mathcal{F}_{n})}1\dot{{\imath}}m\sup P(B)=0.
Let  p\in(1, \infty)  and-1/p\leq\lambda<0 . Then, there exists  C>0 such that

  \Vert\sum_{n\geq 0}E_{n}h_{n}\Vert_{L_{p,\lambda}}\leq C\Vert\sum_{n\geq 0}
h_{n}\Vert_{L_{p,\lambda}}
for all sequence  (h_{n})_{n\geq 0} of non‐negative measurable functions.

68



69

References

[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied
Mathematics Vol. 129, Academic Press, Boston, MA, 1988.

[2] D. I. Hakim and Y. Sawano, Interpolation of generalized Morrey spaces. Rev.
Mat. Complut. 29 (2016), no. 2, 295‐340.

[3] R. L. Long, Martingale spaces and inequalities, Peking University Press, Bei‐
jing, 1993. ISBN: 7‐301‐02069‐4

[4] T. Miyamoto, E. Nakai and G. Sadasue, Martingale Orlicz‐Hardy spaces, Math.
Nachr. 285 (2012), no. 5‐6, 670‐686.

[5] E. Nakai, G. Sadasue and Y. Sawano, Martingale Morrey‐Hardy and
Campanato‐Hardy Spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID
690258, 14 pages.  DOI:10.1155/2013/690258

[6] E. Nakai and G. Sadasue, Martingale Morrey‐Campanato spaces and fractional
integrals, J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages.
 DOI:10.1155/2012/673929

[7] E. Nakai and G. Sadasue, Characterizations of boundedness for generalized
fractional integrals on martingale Morrey spaces, Math. Inequalities Appl. 20

(2017), No 4, 929‐947. doi:10.7153/mia‐2017‐20‐58

[8] E. Nakai and G. Sadasue, Commutators of fractional integrals on martingale
Morrey spaces, submitted.

[9] J. Neveu, Discrete‐parameter martingales, North‐Holland, Amsterdam, 1975.
ISBN 0720428106

[10] G. Sadasue, An inequality on martingale Morrey spaces, in preparation.

[11] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis,
Lecture Notes in Mathematics, 1568, Springer‐Verlag, Berlin, 1994.
ISBN: 3‐540‐57623‐1

69


