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1 Introduction

We consider the stationary Navier-Stokes equations in R", n > 3;

—-Au+u-Vu+Vr=f inzeR" (SNS)
V-u=0 inzeR"
where u = u(z) = (w1(x),u2(z),...,un(z)) and 7 = 7(z) denote the unknown velocity

vector and the unknown pressure of the fluid at the point x € R™, respectively, while f =
f(@) = (fi(z), fo(z),. .., fa(z)) is the given external force. Here u-Vu = 3" 1“mai1:n
Until now, there have been various studies on existence, uniqueness, and regularity of
strong solutions to (SNS). For instance, Leray[8] and Ladyzhenskaya[7] showed the exis-
tence of solutions to (SNS), and later on, Heywood[3] constructed the solution of (SNS)
as a limit of solutions of the non-stationary Navier-Stokes equations. Moreover, Chen|2]
proved that for every smooth external force which is small in H~% there exists a unique
solution of (SNS) in L® N H"% which is small in H%. Here H*" denotes the homoge-
neous Sobolev space with the norm ||f|| o = ||(=A)Z f||r-. In this way, it seems to be
important to find more general spaces such that every small external force in these spaces
yields a unique solution of (SNS), and to find more regularity of solutions.

Recently, the above existence, uniqueness, and regularity problems in the homogeneous
Besov spaces were well studied by Kaneko-Kozono-Shimizu[5]. They proved that for every

n

L34
small external force in Bpq * w1th l1<p<nandl <g< oc there exmtb a unique

small solution of (SNS) in Bp q 5 . We should note here that Bp g o and Bp q " are scaling
invariant for external forces and velocities in (SNS), respectively. Indeed, since the scaling
transform is {u, 7, fH{ux, mr, i} with uy(z) = Au(Az), ma(z) = Mr(Az), falz) = X3 (\),

we see that ||f>\|| 813 = |{f|| -3 and ||uy]| . 7Hn—||u|| ~1+z for all A > 0. Moreover,
Pq

they showed that 1f the small external force f in qu v has more regularity, so does
the above solution u. More precisely, if such an external force f belongs to H*™?" with
1 <r < oo and s > 0 satisfying

g<r, (n/r)—n+1<s<min{n/p,n/r}, (1.1)



then the solution u belongs to H*". Using the embedding H~% < B = = for n/2 <
p < n, we can see that their result includes that of Chen[2], by takmg n/2 < p<n,
g=r=n/2,and s = 1.

We first discuss similar problems on (SNS) in homogeneous Triebel-Lizorkin spaces. We
show that as for existence and uniqueness, the similar result to Kaneko-Kozono-Shimizu[5]

n
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can be obtained. More precisely, we prove that for every small external force in Fj, q+”

there exists a unique small solution in qu+ , provided 1 < p < nand 1 < g < oo,
and provided p = n and 1 < ¢ < 2. They are of course scaling invariant spaces for
external forces and velocities. We can prove these existence and uniqueness by similar
methods to Kaneko-Kozono-Shimizu[5]. Indeed, we make use of the boundedness of the
Riesz transform, the para-product formula, and the embedding theorem in homogeneous
Triebel-Lizorkin spaces. For the additional regularity of solutions, we prove that if a
small external force in the above scaling invariant Triebel-Lizorkin spaces with p < n also
belongs to H52" with s > 0 and 1 < 7 < oo, or with s = 0 and n/(n — 1) < r < oo,
then the solution belongs to H*". Although Kaneko-Kozono-Shimizu[5] showed a similar
result, some additional restrictions for s, r are required in the case of Besov spaces as
mentioned above. Such difference seems to stem from the fact that Sobolev spaces are
closely related to Triebel-Lizorkin spaces rather than Besov spaces.

Secondly, we also focus on the well-posedness problem of (SNS). In fact, by the bound-
edness of the Riesz transform and the bilinear form (u,v) = (=A)~'P(u - Vv), Kaneko-
Kozono-Shimizu[5] and our result as above guarantee the uniquely existence of solutions
in By, ;+% (F,;; +%) dependent continuously on given external forces By, 2+% (F,, ; o ?) when
n >3 p<mn,1<q< oo However, we can see that once we take p = oo, then this
continuity is broken. More precisely, we can find a sequence of external forces which
converges to zero in B2, (F3,) and yields a sequence of solutions of (SNS) which does
not converge to zero in B!, (Fl). For the proof of our theorem, we apply the sequence
of initial data proposed by Bourgain[l] and Sawada[9], which studied the ill-posedness
problem on non-stationary Navier-Stokes equations, to (SNS) as the external force with
some modifications.

2 Main Results

First of all, let us define some spaces of functions and distributions. We denote by S the
space of rapidly decreasing functions, and S’ denotes the dual space of S, which is called
the space of tempered distributions.

For f € S and s € R, we define the Riesz potential (—A)? by

(—A)2f = FHEPFS,

where F denotes the Fourier transform. Then we define the homogeneous Sobolev space
H" for se Rand 1 <r < oo as

H ={f €8 /P; |fllgsr = (=A)2f|l1r < o0},
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where §’/P denotes the quotient space with the polynomials space P.
We next introduce the Littlewood-Paley decomposition. First, we take ¢ € S such

that )
supp¢C{€€R” 5 <lel< } > 627 =1(#0). (21)

JEZ
Then, we define a family {¢;},, C S of functions as

Fei(€) = 9(27%€), jei (2.2)
By (2.1), (2.2), and boundedness of F and F~! in &', we see that every f € S’ can be
decomposed as f = ZjeZ i * f.
Associated with {cpj} <z above, we define the homogeneous Besov spaces Blfyq and
Triebel-Lizorkin spaces Fj by

z{feS’/P;

00}, seR, 1<p<oo, 1<g< o0,

Fe = {f e S/P;

with the norms

F-;q<oo}7 seER, 1<p<o0, 1<g< @

i = [ (Ee@les flor) . g<x,

sup;ez (27|05 * fllz»), q= o0,
{Em@e s son}| L a<x,
||f||F; = Lp
|Sup]€Z2] |90]*f()|”Lp7 q=

Although F;o,q is defined in a different way for 1 < ¢ < 0o, we do not treat such a space
in this paper. It is known that this definition is independent of choice of a function ¢
satisfying (2.1).

Let us rewrite (SNS) to the generalized form so that we can apply successive approxi-
mation. First, we note that since V - u = 0, there holds

u-Vu:za%(uiu) =V (u®u),
i=1 "t

where u ® v denotes the tensor product with (u ® v);; = wv;, 1 < 4,7 < n. We next
introduce the projection P: P — L2 ={f € C§°; V- f = O}HLP InR™ P is defined as
amatrix-valued operator P = (Pjk)1<jk<n With Pjx = 8.+ R; Ry, where R; = ( A)"
Jj=1,2,...,n, denotes the Riesz transform. Applying P to (SNS), we obtaln

—Au+ PV - (u®u) = Pf,
implied by P(V7) = 0 and Pu = u, since V - u = 0. Hence, the solution u of (SNS) can

be expressed as
u=(—A)"'Pf— (~A)'PV - (u®u) (rSNS)
=Lf+ Ku®u),



where Lf = (—A)™'Pf and Kg = —(—A)"'PV - g (g is a matrix function).
Our main theorems now read as follows. First, we state existence and uniqueness of
solutions of (rSNS) for small external forces.

Theorem 2.1. Let n > 3, and suppose that the exponents p and q satisfy the following
either (i) or (ii);

(i) 1<p<n,1<g<cx,
(i) p=mn,1<g<2.
. _34n
Then there is a constant § = §(n,p,q) such that if f € Fp,q+" satisfies ]|f||F73+% <6,
pP.q

L _4n
then there exists a solution u € PFp‘qup of (rSNS). Moreover, there exists a constant
n=mn(n,p,q) > 0 such that the above solution u is unique provided ”uHFAH% <.

p.q

Next, we show more regularity of solutions under some additional assumption on ex-
ternal forces as follows.

Theorem 2.2. Let n > 3, and suppose that the exponents p,q,r, and s satisfy the
following either (i), (ii), or (iii);

(1) s>0,1<r <oo,pandq salisfy either (i) or (ii) of Theorem 2.1,
(i) s=0,n/(n—1) <r < oo, pand q satisfy (i) of Theorem 2.1,
(i) s =0, r =n, p and q satisfy (i1) of Theorem 2.1.

Then there ezxists a constant ' = &'(n, s,p,q,r) such that if f € F,:;Jr% N H2" satisfies
||f]|F_3+% < &', then the solution u of (rSNS) given by Theorem 2.1 belongs to H".

pP,q
Remark 2.1. (i) In Theorems 2.1 and 2.2, the spaces F,:ql i for solutions u and Fp_,; i
for external forces f are both scaling invariant with respect to (SNS).
(ii) Theorem 2.2 means that a smooth external force whose scaling invariant Triebel-
Lizorkin norm is small enough yields a smooth solution of (E). We here note that the
H*=2" norm of an external force do not have to be small. Moreover, in Theorem 2.2, we
can take s > 0 arbitrary large (compare with the case of Besov spaces, (1.1)).
(iii) If we let p > n/2 and 1 < ¢ < oo, then we have H 1% < Fp_,;+%. Therefore,
Theorems 2.1 and 2.2 include that of Chen|[2], provided p > n/2, 1 < g < 0o, s = 1, and
r=n/2.
(iv) It is seen from Theorem 2.1 with p = n,q = 2 that a small external force f in
H=2" = F 7 yields an unique solution u € L™ = E?, of (E). Moreover, if this f also
belongs to L™, then it holds from Theorem 2.2 with s = 2 and r = n that u also belongs
to H2™. Hence u belongs to the inhomogeneous Sobolev space H2™ = L N H>", which
implies that u satisfies the original equation (SNS) almost everywhere in R™.
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Now let us discuss the well—posedness problem on (SNS). Suppose that E and S are
spaces such that elther (E S) (Bp Pqu ) with 1 < p <nand 1l < g < oo,
or (E,S) = (Fp,, g Pqu 5) under the condition of Theorem 2.1. In addition, let
BE(5) = {f € E;||fllg < 0} and Bs(n) = {u € S;|lulls < n} with small 6,7 > 0.
Then by Kaneko-Kozono-Shimizu[5] and Theorem 2.1, we can define the solution map

f € (Be(d),]| - lg) = u € (Bs(n),|| - |s), which is actually continuous. However, the
following claim holds.

Theorem 2.3. Letn > 3, and let £ = BOOSI, S = PBo‘Ol,l. Then for any § > 0 and
n > 0, there exists a constant e > 0 and a sequence { fx}%-, C BUC?N Bg(8) of external
forces satisfying both (i) and (ii) as follows:

(1) ||fN||S — 0, as N — o0,

(i) For each fn, there exists a solution uy € BUC? N Bs(n) of (xSNS), which also
satisfies the original equation (SNS) pointwise with a constant pressure w, i.e., there

holds
—Aun(z) + (uny - Vuy)(z) = fy(z) Yz €R™,
(V-u)(z) =0 VreR™

Moreover, it holds that |luy||g-1 > € for every N € N.

Remark 2.2. (i) Theorem 2.3 shows the ill-posedness of (SNS) from B33, to B}, for
all 1 < ¢ < oo in the sense that the solution map f € B;O:j’q U € Bo‘ol,q is, even if it is
well-defined, not continuous in each norm. We should note here that the solution v above
is not necessarily unique one.

(ii) Since B;fl — F;?l and B;)l = Fo“Oc>o7 Theorem 2.3 also holds for Triebel-Lizorkin
spaces with the same indices.

(iii) Combining this result with that of Kaneko—Kozono-Shimizu[S] We can find that an

open problem is whether or not (SNS) is well-posed from Bp_,qu to Bp q 5 forn < p < cc.

3 Outline of the proof of Theorem 2.1-2.2

For the proof of Theorem 2.1-2.2, it suffices to show four lemmata as follows.

Lemma 3.1. Letn>2,s€ R andlet 1 <p,q < oo. Then the operator L = (—A)"P
is bounded from F;);Q onto PF;, with the estimale

ILflle; < CIIf]

s —2
Fpq™

where C = C(n, s,p,q) is a constant.
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Lemma 3.2. Letn > 2, s € R, and let 1 < p,q < oc. Then the operator K =
—(=A)"'PV- is bounded from F5;' onto PF;, with the estimate

|Kallzy, < Cllgll gy,

where C' = C(n, s,p,q) is a constant.

Lemma 3.3. Let n > 3. Suppose that there holds either 1 < p<m, 1< qg< oo, or
p=mn,1<q<2 Then foru,ve qu+5, we have u ® v € qu+z with the estimate

4@ vl sp < Clull-rogllol-1op,

where C = C(n,p, q) is a constant.

Lemma 4.4. Letn > 2, and suppose that p,q,r, and s satisfy either (i), (ii), or (iil) of
Theorem 2.2. Then for u,v € qu g N H*", we have u @ v € H*™V" with the estimate

|UHF‘;;+%> )

We can show Lemma 3.1-3.2 by the isomorphism (—A)? : FSO — F;_?]"S, and by the
boundedness of the Riesz transform R; = 6—2~_(—A)‘l (j = 1,2,...,n) from F;q onto
. :
itself for any s € R and 1 < p < 00, 1 < ¢ < oo. Indeed, since

lu @ vllgro-re < C {lull —1vg [0l or + lul o
Fp,q

where C' = C(n, s,p,q,r) is a constant.

*f=(pj-1+ @i+ win)xp* f, Vj €L,
and since Ryp;(x) = 2™ Rypo(27z) is in S, we can see the boundedness of Ry on F;_q by
the theory of vector-valued maximal functions. On the other hand, we can prove Lemma
3.3-3.4 by the following propositions.

Proposition 3.1. (Jawerth[4]) (1) Let s; > s, and let 1 < p; < py <00, 1 < q,7 < 0.
If s1 —n/p1 = s — n/pa, then there holds

FS] F82

p1, q p2,r°
(2) Let s € R, and let 1 < p < 0o. Then there holds szﬂ > [P

Proposition 3.2. (Kozono-Shimada[6]) Let s,a > 0, 1 < p < oo, and let us take
1 < p1,p2 <00 so that 1/p=1/py + 1/ps. Then there is a constant C = C(s, @, p,p1,p2)
such that for every f,g € F5*® N F-_ there holds f - g € F; «, with the estimate

P1,00 p2,007

1 - glles. < C (I g gl + 1 i Nolligrs )

Using Lemma 3.1-3.4, we can show Theorem 2.1-2.2 by a similar method to that of
Kaneko-Kozono-Shimizu[5]. We should note here that in Besov spaces, Proposition 3.1
(1) holds only if ¢ < r, and (2) does not hold. This difference seems to cause that of
assumptions for the results of additional regularity, (1.1) and (i)-(iii) of Theorem 2.2.
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4 QOutline of the proof of Theorem 2.3

We take a parametrized external force as
for(x) = Qr*{escos(rzy) +ezcos(rzy — x3)}, z = (21,20,...,2,) € R,

where es = (0,1,0,0,...,0) and e3 = (0,0,1,0,...,0) are unit vectors in R™, while Q > 0
and r € N are parameters. This function is similar to the parameterized initial data
proposed by Bourgain[l] and Sawada[9] on the topic of ill-posedness of non-stationary
Navier-Stokes equations. Following the classical methods, we define the approximative
sequence {u;}, \ to the solution u of (rSNS) as

uw = Lfgr,
u; = uy + K(ujo1 @ujq), j>2.

Moreover, we rewrite these u; as forms of series in accordance with Sawada[9]. Let
v = Uy,
vy = K(u ®up) = K(v1 ® 1), (4.1)
v = K(ugp-1 @ ug—1) — K(ug—2 @ ug—2), k> 3.

Obviously, it holds
J
uj =Y v, j=1 (4.2)
k=1
As for fqr and {vg},cy, We can obtain the following estimates by easy calculation.

Proposition 3.3. There exists a constant C = C(n) > 0 such that

(i) v € BUC*NBL,, V- v =0, Vk>1,

@) arlses, Inllaz, < €2,
(i) C7Q < flnll s < loallgms, < CQ% if v Q.

k—2
@) ol ol < 0@ (2) 7, wezs if r>0

Hence, it holds fg, — 0 in B;fl as r — oo for each fixed Q > 0. Moreover, by fixing
the parameters as r > @), we can see that there exists a limit function ug, = lim;_,o u; =
Sore vk in BUC?*N B;}J. Actually, this ug , satisfies (ii) of Theorem 2.3 provided Q < n
and N = r > Q. Indeed, we can see from Proposition 3.3 that there exists a constant
e > 0 such that |ug,||gz1 > e for every r > Q. Furthermore, there holds

lim K (u; ® u;) = K(ug, ® ug,) in L* and B,
j—o0 )

by the theorem of termwise differentiation .
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