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1 Introduction

We consider the stationary Navier‐Stokes equations in \mathbb{R}^{n},  n\geq 3 ;

 \begin{array}{ll}
-\triangle u+u\cdot\nabla u+\nabla\pi=f   in x\in \mathbb{R}^{n},
\nabla\cdot u=0 in x\in \mathbb{R}^{n},   
\end{array} (SNS)

where  u=u(x)=(u_{1}(x), u_{2}(x), \ldots, u_{n}(x)) and  \pi=\pi(x) denote the unknown velocity
vector and the unknown pressure of the fluid at the point  x\in \mathbb{R}^{n} , respectively, while  f=
 f(x)=(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)) is the given external force. Here  u \cdot\nabla u\equiv\sum_{m=1}^{n}u_{m}\frac{\partial u}{\partial x_{m}}.
Until now, there have been various studies on existence, uniqueness, and regularity of
strong solutions to (SNS). For instance, Leray[8] and Ladyzhenskaya[7] showed the exis‐
tence of solutions to (SNS), and later on, Heywood[3] constructed the solution of (SNS)
as a limit of solutions of the non‐stationary Navier‐Stokes equations. Moreover, Chen[2]
proved that for every smooth external force which is small in  \dot{H}^{-1,\frac{n}{2}} . there exists a unique
solution of (SNS) in  L^{n}\cap\dot{H}^{1,\frac{n}{2}} which is small in  \dot{H}^{1,\frac{n}{2}} . Here  \dot{H}^{s,r} denotes the homoge‐
neous Sobolev space with the norm  \Vert f\Vert_{H^{sr}}\equiv\Vert(-\triangle)^{\frac{s}{2}}f\Vert_{L^{r}} . In this way, it seems to be
important to find more general spaces such that every small external force in these spaces
yields a unique solution of (SNS), and to find more regularity of solutions.

Recently, the above existence, uniqueness, and regularity problems in the homogeneous
Besov spaces were well studied by Kaneko‐Kozono‐Shimizu[5]. They proved that for every
small external force in  \dot{B}_{p,q}^{-3+\frac{n}{p}} with  1\leq p<n and   1\leq q\leq\infty , there exists a unique
small solution of (SNS) in  \dot{B}_{p,q}^{-1+\frac{n}{p}} We should note here that  \dot{B}_{p,q}^{-3+\frac{n}{p}} and  \dot{B}_{p,q}^{-1+\frac{n}{p}} are scaling
invariant for external forces and velocities in (SNS), respectively. Indeed, since the scaling
transform is  \{u, \pi, f\}\{u_{\lambda}, \pi_{\lambda}, f_{\lambda}\} with  u_{\lambda}(x)\equiv\lambda u(\lambda x),  \pi_{\lambda}(x)\equiv\lambda^{2}\pi(\lambda x),  f_{\lambda}(x)\equiv\lambda^{3}(\lambda x) ,

we see that  \Vert f_{\lambda}\Vert_{B_{pq}^{3+\frac{n}{p}}}=\Vert f\Vert_{B_{q}^{-3+
\frac{n}{p}}}. and  \Vert u_{\lambda}\Vert_{B_{pq}^{-1+\frac{n}{p}}}=\Vert u||_{B_{pq}^{-{\imath}+
\frac{n}{p}}} for all  \lambda>0 . Moreover,
.  -3+^{\underline{n}}

they showed that if the small external force  f in  B_{p,q}p has more regularity, so does
the above solution  u . More precisely, if such an external force  f belongs to  H^{s-2,r} with
  1<r<\infty and  s\geq 0 satisfying

 q \leq r, (n/r)-n+1<s<\min\{n/p, n/r\} , (1.1)
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then the solution  u belongs to  \dot{H}^{s,r} . Using the embedding  \dot{H}^{-1})^{\frac{n}{2}}\simeq+\dot{B}_{p,\frac{n}{2}}^{-3+\frac{\tau\iota}
{p}} for  n/2<
 p<n , we can see that their result includes that of Chen[2], by taking  n/2<p<n,
 q=r=n/2 , and  s=1.

We first discuss similar problems on (SNS) in homogeneous Triebel‐Lizorkin spaces. We
show that as for existence and uniqueness, the similar result to Kaneko‐Kozono‐Shimizu[5]

.  -3+^{\underline{n}}
can be obtained. More precisely, we prove that for every small external force in  F_{p_{)}q}  p,

there exists a unique small solution in  \dot{F}_{p,q}^{-1+\frac{n}{p}} , provided  1<p<n and  1\leq q\leq\infty,

and provided  p=n and  1\leq q\leq 2 . They are of course scaling invariant spaces for
external forces and velocities. We can prove these existence and uniqueness by similar

methods to Kaneko‐Kozono‐Shimizu[5]. Indeed, we make use of the boundedness of the
Riesz transform, the para‐product formula, and the embedding theorem in homogeneous
Triebel‐Lizorkin spaces. For the additional regularity of solutions, we prove that if a
small external force in the above scaling invariant Triebel‐Lizorkin spaces with  p<n also
belongs to  \dot{H}^{s-2,r} with  s>0 and   1<r<\infty , or with  s=0 and  n/(n-1)<r<\infty,
then the solution belongs to  \dot{H}^{s,r} . Although Kaneko‐Kozono‐Shimizu[5] showed a similar
result, some additional restrictions for  s,  r are required in the case of Besov spaces as
mentioned above. Such difference seems to stem from the fact that Sobolev spaces are
closely related to Triebel‐Lizorkin spaces rather than Besov spaces.

Secondly, we also focus on the well‐posedness problem of (SNS). In fact, by the bound‐
edness of the Riesz transform and the bilinear form  (u, v)\mapsto(-\triangle)^{-1}P(u\cdot\nabla v) , Kaneko‐

Kozono‐Shimizu[5] and our result as above guarantee the uniquely existence of solutions
in  \dot{B}_{p,q}^{-1+\frac{n}{p}}(\dot{F}_{pq}^{-1+\frac{n}{p}}) dependent continuously on given external forces  \dot{B}_{p,q}^{-3+\frac{n}{p}}(\dot{F}_{p,q}^{-3+\frac{n}{p}}) when
 n\geq 3,  p<n,   1\leq q\leq\infty . However, we can see that once we take   p=\infty , then this

continuity is broken. More precisely, we can find a sequence of external forces which
converges to zero in  \dot{B}_{\infty:^{q}}^{-3}(\dot{F}_{\infty,.q}^{-3}) and yields a sequence of solutions of (SNS) which does
not converge to zero in  B_{\infty,q}^{-1}(F_{\infty,q}^{-1}) . For the proof of our theorem, we apply the sequence

of initial data proposed by Bourgain[l] and Sawada[9], which studied the ill‐posedness
problem on non‐stationary Navier‐Stokes equations, to (SNS) as the external force with
some modifications.

2 Main Results

First of all, let us define some spaces of functions and distributions. We denote by  S the
space of rapidly decreasing functions, and  S' denotes the dual space of  S , which is called
the space of tempered distributions.

For  f\in S and  s\in \mathbb{R} , we define the Riesz potential  (-\triangle)^{\frac{s}{2}} by

 (-\triangle)^{\frac{s}{2}}f\equiv \mathcal{F}^{-1}|\xi|^{s}\mathcal{F}f,

where  \mathcal{F} denotes the Fourier transform. Then we define the homogeneous Sobolev space
 \dot{H}^{s,r} for  s\in \mathbb{R} and   1\leq r\leq\infty as

 \dot{H}^{s,r}\equiv\{f\in S'/\mathcal{P};\Vert f\Vert_{H^{sr}}\equiv\Vert(-
\triangle)^{\frac{s}{2}}f\Vert_{L^{\Gamma}}<\infty\},
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where  S'/\mathcal{P} denotes the quotient space with the polynomials space  \mathcal{P}.

We next introduce the Littlewood‐Paley decomposition. First, we take  \phi\in S such
that

supp   \phi\subset\{\xi\in \mathbb{R}^{n};\frac{1}{2}\leq|\xi|\leq 2\},   \sum_{j\in Z}\phi(2^{-j}\xi)=1(\xi\neq 0) . (2.1)

Then, we define a family  \{\varphi_{j}\}_{j\in \mathbb{Z}}\subset \mathcal{S} of functions as

 \mathcal{F}\varphi_{j}(\xi)=\phi(2^{-j}\xi) , j\in \mathbb{Z} . (2.2)

By (2.1), (2.2), and boundedness of  \mathcal{F} and  \mathcal{F}^{-1} in  S' , we see that every  f\in S' can be
decomposed as  f= \sum_{j\in Z}\varphi_{j}*f.

Associated with  \{\varphi_{j}\}_{j\in Z} above, we define the homogeneous Besov spaces  B_{p,q}^{s} and
Triebel‐Lizorkin spaces  F_{p,q}^{s} by

 \dot{B}_{p,q}^{s}\equiv\{f\in S'/\mathcal{P};\Vert f\Vert_{B_{pq}^{s}}<\infty\}
, s\in \mathbb{R}, 1\leq p\leq\infty, 1\leq q\leq\infty,
 \dot{F}_{p,q}^{s}\equiv\{f\in S'/\mathcal{P};\Vert f\Vert_{F_{p,q}^{s}}
<\infty\}, s\in \mathbb{R}, 1\leq p<\infty, 1\leq q\leq\infty

with the norms

 \Vert f\Vert_{B_{pq}^{s}}\equiv\{\begin{array}{ll}
(\sum_{j\in \mathbb{Z}}(2^{js}\Vert\varphi_{j}*f\Vert_{Lp})^{q})^{\frac{{\imath}
}{q}}   q<\infty,
\sup_{j\in Z}(2^{j\prime}\Vert\varphi_{j}*f\Vert_{L^{p}}) ,   q=\infty,
\end{array}
 \Vert f\Vert_{F_{p,q}^{s}}\equiv\{\begin{array}{ll}
\Vert\{\sum_{j=1}^{\infty}(2^{sj}|\varphi_{j}*f(\cdot)|)^{q}\}^{\frac{1}{q}}
\Vert_{L^{p}}   q<\infty,
\Vert\sup_{j\in \mathbb{Z}}2^{js}|\varphi, *f(\cdot)|\Vert_{L^{p}},   q=\infty.
\end{array}

Although  \dot{F}_{\infty_{)}q}^{s} is defined in a different way for   1\leq q<\infty , we do not treat such a space
in this paper. It is known that this definition is independent of choice of a function  \phi

satisfying (2. 1).
Let us rewrite (SNS) to the generalized form so that we can apply successive approxi‐

mation. First, we note that since  \nabla\cdot u=0 , there holds

 u \cdot\nabla u=\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}(u_{i}u)=
\nabla\cdot(u\otimes u) ,

where  u\otimes v denotes the tensor product with  (u\otimes v)_{ij}\equiv u_{i}v_{j},  1\leq i,  j\leq n . We next

introduce the projection  P:L^{p}arrow L_{\sigma}^{p}\equiv\overline{\{f\in C_{0}^{\infty};\nabla\cdot f=
0\}}^{\Vert\cdot\Vert_{Lp}} In  \mathbb{R}^{n},  P is defined as

a matrix‐valued operator  P=(P_{jk})_{1\leq j,k\leq n} with  P_{jk}\equiv\delta_{jk}+R_{j}R_{k} , where  R_{j}= \frac{\partial}{\partial x_{j}}(-\triangle)^{-\frac{1}{2}},
 j=1,2 , . . . ,  n , denotes the Riesz transform. Applying  P to (SNS), we obtain

 -\triangle u+P\nabla\cdot(u\otimes u)=Pf,

implied by  P(\nabla\pi)=0 and  Pu=u , since  \nabla\cdot u=0 . Hence, the solution  u of (SNS) can
be expressed as

 u=(-\triangle)^{-1}Pf-(-\triangle)^{-1}P\nabla\cdot(u\otimes u)  (rSNS)

 \equiv Lf+K(u\otimes u) ,
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where  Lf\equiv(-\triangle)^{-1}Pf and  Kg\equiv-(-\triangle)^{-1}P\nabla\cdot g (  g is a matrix function).
Our main theorems now read as follows. First, we state existence and uniqueness of

solutions of  ( rSNS) for small external forces.

Theorem 2.1. Let  n\geq 3 , and suppose that the exponents  p and  q satisfy the following
either (i) or (ii);

(i)  1<p<n,  1\leq q\leq\infty,

(ii)  p=n,  1\leq q\leq 2.

Then there is a constant  \delta=\delta(n,p, q) such that if  f\in F_{p,q}^{-3+\frac{n}{p}} satisfies  \Vert f\Vert_{F_{pq}^{-3+\frac{n}{p}}}<\delta,
then there exists a solution  u\in P\dot{F}_{p_{)}q}^{-1+\frac{n}{p}} of  ( rSNS) . Moreover, there exists a constant
 \eta=\eta(n, p, q)>0 such that the above solution  u is unique provided  \Vert u\Vert_{F_{pq}^{-1+\frac{n}{p}}}<\eta.

Next, we show more regularity of solutions under some additional assumption on ex‐
ternal forces as follows.

Theorem 2.2. Let  n\geq 3 , and suppose that the exponents  p,  q,  r , and  s satisfy the
following either (i), (ii), or (iii);

(i)  s>0,1<r<\infty,  p and  q satisfy either (i) or (ii) of Theorem 2.1,

(ii)  s=0,  n/(n-1)<r<\infty,  p and  q satisfy (i) of Theorem 2.1,

(iii)  s=0,  r=n,  p and  q satisfy (ii) of Theorem 2.1.

Then there exists a constant  \delta'=\delta'(n, s, p, q, r) such that if  f\in\dot{F}_{p,q}^{-3+\frac{n}{p}}\cap\dot{H}^{s-2,r} satisfies

 \Vert f\Vert_{F_{p,q}^{-3+\frac{n}{p}}}<\delta' , then the solution  u of  (rSNS) given by Theorem 2.1 belongs to  \dot{H}^{s,r}

Remark 2.1. (i) In Theorems 2.1 and 2.2, the spaces  \dot{F}_{pq}^{-1+\frac{\mathfrak{n}}{p}} for solutions  u and  \dot{F}_{p,q}^{-3+\frac{n}{p}}
for external forces  f are both scaling invariant with respect to (SNS).
(ii) Theorem 2.2 means that a smooth external force whose scaling invariant Triebel‐
Lizorkin norm is small enough yields a smooth solution of (E). We here note that the
 \dot{H}^{s-2,r} norm of an external force do not have to be small. Moreover, in Theorem 2.2, we
can take  s\geq 0 arbitrary large (compare with the case of Besov spaces, (1.1)).
(iii) If we let  p>n/2 and   1\leq q\leq\infty , then we have  \dot{H}^{-1,\frac{n}{2}}\mapsto\dot{F}_{p,q}^{-3+\frac{n}{p}} Therefore,
Theorems 2.1 and 2.2 include that of Chen[2], provided  p>n/2,1\leq q\leq\infty,  s=1 , and
 r=n/2.
(iv) It is seen from Theorem 2.1 with  p=n,  q=2 that a small external force  f in
 \dot{H}^{-2,n}\cong\dot{F}_{n,2}^{-2} yields an unique solution  u\in L^{n}\cong\dot{F}_{n,2}^{0} of (E). Moreover, if this  f also
belongs to  L^{n} , then it holds from Theorem 2.2 with  s=2 and  r=n that  u also belongs
to  \dot{H}^{2,n} Hence  u belongs to the inhomogeneous Sobolev space  H^{2,n}=L^{n}\cap\dot{H}^{2,n} , which
implies that  u satisfies the original equation (SNS) almost everywhere in  \mathbb{R}^{n}.
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Now let us discuss the well‐posedness problem on (SNS). Suppose that  E and  S are
spaces such that either  (E, S)=(\dot{B}_{p,q}^{-3+\frac{n}{p}}, P\dot{B}_{p,q}^{-1+\frac{n}{p}}) with  1\leq p<n and  1\leq q\leq\infty,

or  (E, S)=(\dot{F}_{p,q}^{-3+\frac{n}{p}}, P\dot{F}_{p,q}^{-1+\frac{n}{p}}) under the condition of Theorem 2.1. In addition, let

 B_{E}(\delta)\equiv\{f\in E;\Vert f\Vert_{E}<\overline{\delta}\} and  B_{S}(\eta)\equiv\{u\in S;\Vert u\Vert_{S}<\eta\} with small  \delta,  \eta>0.

Then by Kaneko‐Kozono‐Shimizu[5] and Theorem 2.1, we can define the solution map
  f\in  (B_{E}(\delta), \Vert . \Vert_{E})\mapsto u\in(B_{S}(\eta), \Vert \Vert_{S}) , which is actually continuous. However, the
following claim holds.

Theorem 2.3. Let  n\geq 3 , and let  E\equiv\dot{B}_{\infty,1}^{-3} ,  S\equiv P\dot{B}_{\infty,1}^{-1} . Then for any  \delta>0 and
 \eta>0 , there exists a constant  \varepsilon>0 and a sequence  \{f_{N}\}_{N=1}^{\infty}\subset BUC^{2}\cap B_{E}(\delta) of external
forces satisfying both (i) and (ii) as follows:

(i)  \Vert f_{N}\Vert_{S}arrow 0 , as  Narrow\infty,

(ii) For each  f_{N} , there exists a solution   u_{N}\in BUC2  \cap B_{S}(\eta) of  ( rSNS) , which also
satisfies the original equation (SNS) pointwise with a constant pressure  \pi , i. e., there
holds

 \{\begin{array}{ll}
-Au_{N}(x)+(u_{N}\cdot\nabla u_{N})(x)=f_{N}(x)   \forall x\in \mathbb{R}^{n},
(\nabla\cdot u)(x)=0 \forall x\in \mathbb{R}^{n}.   
\end{array}
Moreover, it holds that  \Vert u_{N}\Vert_{B_{\infty,\propto}^{-1}}>\in for every  N\in \mathbb{N}.

Remark 2.2. (i) Theorem 2.3 shows the ill‐posedness of (SNS) from  \dot{B}_{\infty,q}^{-3} to  \dot{B}_{\infty,q}^{-1} for
all   1\leq q\leq\infty in the sense that the solution map  f\in\dot{B}_{\infty,q}^{-3}\mapsto u\in\dot{B}_{\infty,q}^{-1} is, even if it is
well‐defined, not continuous in each norm. We should note here that the solution  u above

is not necessarily unique one.

(ii) Since  \dot{B}_{\infty,1}^{-3}\mapsto\dot{F}_{\infty,1}^{-3} and  \dot{B}_{\infty,\infty}^{-1}\cong\dot{F}_{\infty,\infty}^{-1} , Theorem 2.3 also holds for Triebel‐Lizorkin
spaces with the same indices.

(iii) Combining this result with that of  Kaneko-Kozono-Shimizu[51 , we can find that an

open problem is whether or not (SNS) is well‐posed from  B_{p,q}^{-3+\frac{n}{p}} to  \dot{B}_{p.q}^{-1+\frac{n}{p}} for  n\leq p<\infty.

3 Outline of the proof of Theorem 2.1‐2.2

For the proof of Theorem 2.1‐2.2, it suffices to show four lemmata as follows.

Lemma 3.1. Let  n\geq 2,  s\in \mathbb{R} and let  1\leq p,   q\leq\infty . Then the operator  L\equiv(-\triangle)^{-1}P
is bounded from  \dot{F}_{p,q}^{s-2} onto  P\dot{F}_{p,q}^{s} with the estimate

 \Vert Lf\Vert_{F_{pq}^{s}}\leq C\Vert f\Vert_{F_{pq}^{s-2}},
where  C=C(n, s,p, q) is a constant.
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Lemma 3.2. Let  n\geq 2,  s\in \mathbb{R} , and let  1\leq p,   q\leq\infty . Then the operator   K\equiv

 -(-\triangle)^{-1}P\nabla . is bounded from  \dot{F}_{p,q}^{s-1} onto  P\dot{F}_{p_{\grave{\tau}}q}^{s} with the estimate

 \Vert Kg\Vert_{F_{pq}^{s}}\leq C\Vert g\Vert_{F_{pq}^{s-1}},
where  C=C(n, s,p, q) is a constant.

Lemma 3.3. Let  n\geq 3 . Suppose that there holds either  1<p<n,   1\leq q\leq\infty , or
 p=n,  1\leq q\leq 2 . Then for  u,  v\in\dot{F}_{p,q}^{-1+\frac{n}{p}} , we have  u\otimes v\in\dot{F}_{p,q}^{-2+\frac{n}{p}} with the estimate

 \Vert u\otimes v\Vert_{F_{pq}^{-2+\frac{n}{p}}}\leq C\Vert u\Vert_{F_{pq}^{-1+
\frac{n}{p}}}\Vert v\Vert_{F_{p,q}^{-1+\frac{n}{p}}},
where  C=C(n,p, q) is a constant.

Lemma 4.4. Let  n\geq 2 , and suppose that  p,  q,  r , and  s satisfy either (i), (ii), or (iii) of
Theorem 2.2. Then for  u,  v\in\dot{F}_{p,q}^{-1+\frac{n}{p}}\cap\dot{H}^{s,r} , we have  u\otimes v\in\dot{H}^{s-1,r} with the estimate

 \Vert u\otimes v\Vert_{H^{s}}1,r\leq C(\Vert u\Vert_{F_{pq}^{-1+\frac{n}{p}}}
\Vert v\Vert_{H^{s,r}}+\Vert u\Vert_{H^{sr}}\Vert v\Vert_{F_{pq}^{1+\frac{n}{p}}
}) ,

where  C=C(n, s,p, q, r) is a constant.

We can show Lemma 3.1‐3.2 by the isomorphism  (-\triangle)^{\frac{s}{2}}  \dot{F}_{p,q}^{s_{0}}arrow\dot{F}_{pq}^{s0-s} , and by the
boundedness of the Riesz transform  R_{j}= \frac{\partial}{\partial x_{j}}(-\triangle)^{-\frac{1}{2}}(j=1,2, 
\ldots, n) from  \dot{F}_{p,q}^{s} onto

itself for any  s\in \mathbb{R} and  1\leq p<\infty,   1\leq q\leq\infty . Indeed, since

 \varphi_{j}*f=(\varphi_{j-1}+\varphi_{j}+\varphi_{j+1})*\varphi_{j}*f, \forall_
{J}\in \mathbb{Z},

and since  R_{k}\varphi_{j}(x)=2^{n}JR_{k}\varphi_{0}(2^{j}x) is in  S , we can see the boundedness of  R_{k} on  \dot{F}_{p,q}^{s} by
the theory of vector‐valued maximal functions. On the other hand, we can prove Lemma
3.3‐3.4 by the following propositions.

Proposition 3.1. (Jawerth[4]) (1) Let  s_{1}>s_{2} , and let  1\leq p_{1}<p_{2}<\infty,  1\leq q,  r\leq\infty.

If  s_{1}-n/p_{1}=s_{2}-n/p_{2} , then there holds

 \dot{F}_{p_{1}q}^{s_{1}}arrow\dot{F}_{p_{2},r}^{s_{2}}.
(2) Let  s\in \mathbb{R} , and let   1<p<\infty . Then there holds  \dot{F}_{p,2}^{s}\cong\dot{H}^{s_{:}p}.

Proposition 3.2. (Kozono‐Shimada[6]) Let  s,  \alpha>0,1<p<\infty_{f} and let us take
 1<p_{1},   p_{2}<\infty so that  1/p=1/p_{1}+1/p_{2} . Then there is a constant  C=C(s, \alpha, p, p_{1}, p_{2})
such that for every  f,  g\in\dot{F}_{p_{1},\infty}^{s+\alpha}\cap\dot{F}_{p_{2},\infty}^{-\alpha} , there holds  f\cdot g\in\dot{F}_{p,\infty}^{s} with the estimate

 \Vert f\cdot g\Vert_{F_{p\infty}^{s}}\leq C(\Vert f\Vert_{F_{p_{1}\propto}^{s+
\alpha}}\Vert g\Vert_{F_{p_{2}\infty}^{-\alpha}}+\Vert f\Vert_{F_{p_{2}\infty}^{
-\alpha}}\Vert g\Vert_{F_{p_{1}\propto}^{s+\alpha}})
Using Lemma 3.1‐3.4, we can show Theorem 2.1‐2.2 by a similar method to that of

 Kaneko-Kozono-Shimizu[51 . We should note here that in Besov spaces, Proposition 3.1
(1) holds only if  q\leq r , and (2) does not hold. This difference seems to cause that of
assumptions for the results of additional regularity, (1.1) and  (i)-(iii) of Theorem 2.2.
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4 Outline of the proof of Theorem 2.3

We take a parametrized external force as

 f_{Q,r}(x)\equiv Qr^{2}\{e_{2}\cos(rx_{1})+e_{3}\cos(rx_{1}-x_{2})\} , x=(x_{1}
, x_{2}, \ldots.x_{n})\in \mathbb{R}^{n},

where  e_{2}\equiv(0,1,0,0, \ldots, 0) and  e_{3}\equiv(0,0,1,0, \ldots, 0) are unit vectors in  \mathbb{R}^{n} , while  Q>0

and  r\in \mathbb{N} are parameters. This function is similar to the parameterized initial data
proposed by Bourgain[l] and Sawada[9] on the topic of ill‐posedness of non‐stationary
Navier‐Stokes equations. Following the classical methods, we define the approximative
sequence  \{u_{j}\}_{j\in N} to the solution  u of  (rSNS) as

 \{
Moreover, we rewrite these  u_{j} as forms of series in accordance with Sawada[9]. Let

 u_{1}\equiv Lf_{Q,r},

 u_{j}\equiv u_{1}+K(u_{j-1}\otimes u_{j-1}) , j\geq 2.

 \{\begin{array}{l}
v_{1}\equiv u_{1},
v_{2}\equiv K(u_{1}\otimes u_{1})=K(v_{1}\otimes v_{1}) ,
v_{k}\equiv K(u_{k-1}\otimes u_{k-1})-K(u_{k-2}\otimes u_{k-2}) , k\geq 3.
\end{array} (4.1)

Obviously, it holds

 u_{j}= \sum_{k=1}^{j}v_{k}, J\geq 1 . (4.2)

As for  f_{Q,r} and  \{v_{k}\}_{k\in \mathbb{N}} , we can obtain the following estimates by easy calculation.

Proposition 3.3. There exists a constant  C=C(n)>0 such that

(i)  v_{k}\in BUC^{2}\cap\dot{B}_{\infty,1}^{-1},  \nabla\cdot v_{k}=0,  \forall k\geq 1,

(ii)  \Vert f_{Q_{7}},\cdot\Vert_{B_{\infty 1}^{-3}},   \Vert v_{1}\Vert_{B_{\propto 1}^{-1}}\leq C\frac{Q}{r},
(iii)  C^{-1}Q^{2}\leq\Vert v_{2}\Vert_{B_{\infty\infty}^{-i}}\leq\Vert v_{2}\Vert_{B_
{\infty 1}^{-{\imath}}}\leq CQ^{2} if r  \gg Q,

(iv)  \Vert v_{k}\Vert_{L}\infty ,   \Vert v_{k}\Vert_{B_{\infty{\imath}}^{-1}}\leq CQ^{2}(\frac{Q}{r})^{k-2}  \forall k\geq 3 , if  r\gg Q.

Hence, it holds  f_{Q,r}arrow 0 in  \dot{B}_{\infty_{)}1}^{-3} as   rarrow\infty for each fixed  Q>0 . Moreover, by fixing
the parameters as  r\gg Q , we can see that there exists a limit function  u_{Q,r}= \lim_{jarrow\infty}u_{j}=
  \sum_{k=1}^{\infty}v_{k} in  BUC^{2}\cap\dot{B}_{\infty,1}^{-1} . Actually, this  u_{Q,r} satisfies (ii) of Theorem 2.3 provided   Q\ll\eta
and  N=r\gg Q . Indeed, we can see from Proposition 3.3 that there exists a constant
 \in>0 such that  \Vert u_{Q,r}\Vert_{B_{\infty,\propto}^{-1}}>\varepsilon for every  r\gg Q . Furthermore, there holds

 jarrow\infty 1\dot{{\imath}}mK(u_{j}\otimes u_{j})=K(u_{Q,r}\otimes u_{Q,r}) in  L^{\infty} and  \dot{B}_{\infty,1}^{-3}

by the theorem of termwise differentiation .
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