MONOTONICITY ESTIMATE AND GLOBAL EXISTENCE FOR THE P-HARMONIC FLOW

(p 調和写像流に対する単調性評価と大域存在)

Masashi Misawa (三沢 正史)^(*) mmisawa@kumamoto-u.ac.jp Department of Mathematics, Faculty of Sciences, Kumamoto University, 2,30,1 Kumamoto shi Kumamoto 260,8555, Japan

2-39-1 Kurokami, Kumamoto-shi, Kumamoto 860-8555, Japan

1 Introduction

Let \mathcal{N} be a *n*-dimensional smooth compact Riemannian manifold without boundary and isometrically embedded in \mathbb{R}^l (l > n). For a map *u* from $\mathbb{R}^m_{\infty} := (0, \infty) \times \mathbb{R}^m$ to \mathbb{R}^l we consider the *p*-harmonic flow

$$\begin{cases} \partial_t u - \operatorname{div} \left(|Du|^{p-2} Du \right) + |Du|^{p-2} A(u) (Du, Du) = 0\\ u \in \mathcal{N} \end{cases}$$

where $p \geq 2$, $u(t, x) = (u^i(t, x))$, $i = 1, \ldots, l$, is a vector-valued function, defined for $(t, x) \in \mathbb{R}_{\infty}^m$ with values into \mathbb{R}^l . $D_{\alpha} = \partial/\partial x_{\alpha}$, $\alpha = 1, \ldots, m$, $Du = (D_{\alpha}u^i)$ is the spatial gradient of a map u, $|Du|^2 = \sum_{\alpha=1}^m \sum_{i=1}^l (D_{\alpha}u^i)^2$ and $\partial_t u$ is the derivative on time t. The second fundamental form A(u)(Du, Du) of $\mathcal{N} \subset \mathbb{R}^l$ is on the orthogonal complement of the tangent space $\mathcal{T}_u \mathcal{N}$ (if necessary, the manifold \mathcal{N} is assumed to be orientable). Since u = u(t, x), $(t, x) \in \mathbb{R}_{\infty}^m$, moves on the manifold \mathcal{N} , $\partial_t u \in \mathcal{T}_u \mathcal{N}$, and thus, $\partial_t u \cdot A(u)(Du, Du) = 0$ and, by multiplying the equation by $\partial_t u$ and the divergence theorem

$$\begin{aligned} |\partial_t u|^2 - \operatorname{div}(|Du|^{p-2}Du \cdot \partial_t u) + \partial_t \frac{1}{p}|Du|^p &= 0, \\ E(u) &:= \int_{\mathbb{R}^m} \frac{1}{p}|Du|^p \, dx, \quad \frac{d}{dt}E(u(t)) &= -\|\partial_t u(t)\|_2^2 \end{aligned}$$

and thus, $E(u(t)) \searrow 0$ and u(t) may converge to a constant map as $t \nearrow \infty$.

Theorem 1 (A global existence and regularity for the *p*-harmonic flow) Let p > 2 and let u_0 be a smooth map defined on \mathbb{R}^m with values to \mathcal{N} , satisfying $E(u_0) < \infty$. Then, there exists a global weak solution u of the Cauchy problem for the *p*-harmonic flow with initial data u_0 , satisfying the energy inequality

$$\|\partial_t u\|_{\mathrm{L}^2(\mathbb{R}^m_\infty)}^2 + \sup_{0 < t < \infty} E(u(t)) \le E(u_0).$$

Moreover, the solution u is partial regular in the following sense : For any positive number γ_0 , $2 < \gamma_0 < p$, there exists a relatively closed set S in \mathbb{R}^m_{∞} such that u and its gradient Du are locally in time-space continuous in the complement $\mathbb{R}^m_{\infty} \setminus S$, and the size of S is also estimated by the Hausdorff measure : The set S is of at most locally zero m-dimensional Hausdorff measure with respect to the time-space metric $|t|^{1/\gamma_0} + |x|$, and, furthermore, for any positive time $\tau < \infty$, the $(m - \gamma_0)$ -dimensional Hausdorff measure of $\{\tau\} \times S$ with respect to the usual Euclidean metric is locally zero.

Remark. The exponent γ_0 can be as close to p as possible.

In this note we report on the global existence of a partial regular weak solution of the Cauchy problem for p-harmonic flow. We use the so-called penalty approximating equation for the p-harmonic flow, and devise new monotonicity type formulas of a local scaled

 $^{^{(\}ast)}$ The work is partially supported by JSPS KAKENHI Grant number 15K04962.

energy and establish a uniform local regularity estimate for regular solutions of those equation. The regularity criterion obtained is almost optimal, comparing with that of the corresponding stationary case.

2 Penalty approximation

In this section we explain the approximation scheme for the p-harmonic flow. We will approximate the p-harmonic flow by the solutions of the gradient flow for the so-called penalized functional, introduced in [3] for the harmonic flow case p = 2.

Since the manifold \mathcal{N} is smooth and compact, there exists a tubular neighborhood $\mathcal{O}_{2\delta_{\mathcal{N}}}$ with width $2\delta_{\mathcal{N}}$ of \mathcal{N} in \mathbb{R}^{l} such that any point $u \in \mathcal{O}_{2\delta_{\mathcal{N}}}$ has a unique nearest point $\pi_{\mathcal{N}}(u) \in \mathcal{N}$ satisfying dist $(u, \mathcal{N}) = |u - \pi_{\mathcal{N}}(u)|$ for the Euclidean distance $|\cdot|$ in \mathbb{R}^{l} , where the projection $\pi_{\mathcal{N}} : \mathcal{O}_{2\delta_{\mathcal{N}}} \to \mathcal{N}$ is smooth, since the manifold \mathcal{N} is smooth. The distance function dist (u, \mathcal{N}) is Lipschitz continuous on $u \in \mathcal{O}_{2\delta_{\mathcal{N}}}$.

Let χ be a smooth, non-decreasing real-valued function defined on $[0, \infty)$ such that $\chi(s) = s$ for $s \leq (\delta_N)^2$ and $\chi(s) = 2(\delta_N)^2$ for $s \geq 4(\delta_N)^2$. Then, the function $\chi\left(\operatorname{dist}^2(u, \mathcal{N})\right)$ is smooth on $u \in \mathbb{R}^l$ (for the proof we refer to the recent study of the squared distance function to manifold, due to Ambrosio et al. [1, Theorem 2.1]). Its gradient at $u \in \mathcal{O}_{2\delta_N}$ is computed as

$$D_u \chi \left(\operatorname{dist}^2(u, \mathcal{N}) \right) = 2\chi' \left(\operatorname{dist}^2(u, \mathcal{N}) \right) \operatorname{dist}(u, \mathcal{N}) D_u \operatorname{dist}(u, \mathcal{N}) \quad ;$$
$$D_u \operatorname{dist}(u, \mathcal{N}) = \frac{u - \pi_{\mathcal{N}}(u)}{|u - \pi_{\mathcal{N}}(u)|}$$

parallel to the vector field $u - \pi_{\mathcal{N}}(u)$ and orthogonal to $\mathcal{T}_{\pi_{\mathcal{N}}(u)}\mathcal{N}$. We also have that, for any $u \in \mathcal{N}$ and any tangent vector $\tau \in \mathcal{T}_u \mathcal{N}$,

$$\left| \tau^{i} \tau^{j} D_{u^{i}} D_{u^{j}} \operatorname{dist}(u, \mathcal{N}) \right| \leq C(\mathcal{N}) |\tau|^{2}$$

(See [1, Theorem 2.2]).

For positive parameters $1 \leq K \nearrow \infty$ and $1 > \epsilon \searrow 0$, we consider the Cauchy problem in \mathbb{R}_{∞}^{m} with initial data u_0 for the gradient flow, called the *penalized equation*,

(2.1)
$$\begin{cases} \partial_t u - \Delta_{p,\epsilon} u + C_0 K \chi' \left(\operatorname{dist}^2(u, \mathcal{N}) \right) \operatorname{dist}(u, \mathcal{N}) D_u \operatorname{dist}(u, \mathcal{N}) = 0 \\ u(0) = u_0 \end{cases}$$

associated with the *penalized functional*, defined by

(2.2)
$$F_{K,\epsilon}(u) := E_{\epsilon}(u) + C_0 \frac{K}{2} \int_{\mathbb{R}^m} \chi\left(\operatorname{dist}^2(u, \mathcal{N})\right) \, dx,$$

where the positive constant C_0 will be stipulated later, depending only on p, m and \mathcal{N} (See Lemma 8). The partial differential operator $\Delta_{p,\epsilon}$ and its corresponding energy, called the regularized p-Laplace operator and the regularized p-energy, respectively, are defined as

$$\Delta_{p,\epsilon} u := \operatorname{div} \left(\left(\epsilon + |Du|^2 \right)^{\frac{p-2}{2}} Du \right) \quad ; \quad E_{\epsilon}(u) := \int_{\mathbb{R}^m} \frac{1}{p} \left(\epsilon + |Du|^2 \right)^{\frac{p}{2}} \, dx.$$

We have the global existence for (2.1), by the usual Galerkin method and monotonicity of the p-Laplace operator (refer to [2]). The regularity of solutions are obtained from Hölder regularity estimates for the evolutionary p-Laplace operator, with a boundedness of the derivative of the penalty term, the last term in (2.1). **Lemma 2** (Existence for the penalty approximation) Let p > 2 and let u_0 be a smooth map defoned on \mathbb{R}^m with values to \mathcal{N} , satisfying $E(u_0) < \infty$. For each positive numbers K and ϵ , there exists a weak solution $u = u_{K,\epsilon}$ of the Cauchy problem for the penalized equation (2.1) such that $u = u_{K,\epsilon}$ satisfies the energy inequality

(2.4)
$$\|\partial_t u\|_{\mathrm{L}^2(\mathbb{R}^m_\infty)}^2 + \sup_{0 < t < \infty} F_{K,\epsilon}(u) \le E_{\epsilon}(u_0)$$

and, that u, Du, $\partial_t u$ and $D^2 u$ are locally (Hölder) continuous on time and space (with some Hölder exponent) in \mathbb{R}^m_{∞} and u satisfies the penalized equation everywhere in \mathbb{R}^m_{∞} .

We will call a solution having the regularity properties as in Lemma 2, a regular solution.

3 Uniform regularity estimate

In this section we show some regularity estimates for solutions $u = u_{K,\epsilon}$ of the penalized equations (2.1).

Lemma 3 (Energy inequality) Let u_0 be a smooth map on \mathbb{R}^m with values to \mathcal{N} , satisfying $E(u_0) < \infty$, and $u = u_{K,\epsilon}$ be a regular solution of (2.1). Then, (2.4) holds.

Proof. The energy inequality (2.4) is shown to be valid in the proof of Lemma 2. However, as a priori estimates for regular solutions of (2.1), we naturally multiply (2.1) by $\partial_t u$ and integrate by parts on space variable in \mathbb{R}^m_T for any T > 0.

Lemma 4 (Boundedness) Let $u = u_{K,\epsilon}$ be a regular solution of (2.1). Then it holds that $\sup_{\mathbb{R}^m_{\infty}} |u| \leq H$, where the positive number H is so large that $B(H) \supset \mathcal{O}_{2\delta_{\mathcal{N}}}(\mathcal{N})$ in \mathbb{R}^l , where B(H) = B(H,0) is a ball in \mathbb{R}^l of radius H with center of origin 0.

Proof. We multiply (2.1) by $u(|u|^2 - H^2)_+$ and integrate in \mathbb{R}^m_{∞} , where $(f)_+$ is the positive part of a function f. Since the support of χ' is in $\mathcal{O}_{2\delta_{\mathcal{N}}}(\mathcal{N}) \subset B(H)$, $\chi'(\text{dist}^2(u, \mathcal{N}))$ is zero in $\mathbb{R}^l \setminus B(H)$. Also $u_0 \in \mathcal{N} \subset B(H)$. Hence, we have

$$\begin{split} \frac{1}{4} \int_{\mathbb{R}^m} \left(|u(t)|^2 - H^2 \right)_+ dx \\ &+ \int_{\mathbb{R}^m_t} \left(\epsilon + |Du|^2 \right)^{\frac{p-2}{2}} \left(\frac{1}{2} |D(|u|^2 - H^2)_+|_g^2 + |Du|^2 (|u|^2 - H^2)_+ \right) dz = 0 \quad ; \\ \frac{1}{4} \int_{\mathbb{R}^m} \left(|u(t)|^2 - H^2 \right)_+^2 dx \le 0 \end{split}$$

and thus, $|u(t)| \leq H$ in \mathbb{R}^m and any $t \geq 0$.

The partial regularity is based on the so-called *small energy regularity estimate* (refer to [9, Theorems 5.1, 5.3, 5.4; their proofs, pp. 491-494]). The small energy regularity estimate for the p-harmonic flow in the case p > 2 has been recently established in [7, 8]. Our main assertion here is that the small energy regularity estimate holds uniformly for solutions of the penalized equations.

Let us denote the penalized energy density for a map u by

(3.1)
$$e_{K,\epsilon}(u) := \frac{1}{p} \left(\epsilon + |Du|^2\right)^{\frac{p}{2}} + \frac{K}{2} \chi \left(\operatorname{dist}^2(u, \mathcal{N})\right).$$

Theorem 5 (Small energy regularity estimate) Let p > 2. Let λ_0 , B_0 and a_0 be positive numbers satisfying the conditions

(3.2)
$$\frac{6p-4}{p+2} < \lambda_0 = B_0 < p \quad ; \quad \frac{\lambda_0 - 2}{p-2} < a_0 \le 1.$$

Let $u = u_{K,\epsilon}$ be a regular solution of (2.1) on $\mathbb{R}^m_T = (0, T) \times \mathbb{R}^m$ for a positive $T < \infty$, satisfying the energy bound

(3.3)
$$\|\partial_t u\|_{L^2(\mathbb{R}^m_T)}^2 + \sup_{0 < t < T} F_{K,\epsilon}(u) \le C$$

for a positive number C depending only on m, p and N. Then, there exists a small positive number $R_0 < 1$, depending only on m, N, p, B_0 and a_0 , and the following holds true : Let γ_0 be any positive number satisfying

$$2 < \gamma_0 < \frac{B_0(p+2) - 4p}{p-2}$$

If, for some small positive $R < \min\{R_0, T^{1/\lambda_0}\},\$

(3.4)
$$\limsup_{r \searrow 0} r^{\gamma_0 - m} \int_{\{t = T - R^{\lambda_0}\} \times B(r, 0)} e_{K, \epsilon}(u(t, x)) \, dx \le 1$$

then, there holds

(3.5)
$$\sup_{\substack{(T-(R/4)^{\lambda_0}, T) \times B(R/4, 0)}} e_{K, \epsilon}(u(t, x)) \le C R^{-a_0 p},$$

where the positive constant C depends only on γ_0 , λ_0 , B_0 , a_0 , p, m and N.

Remark. The positive number γ_0 can be as close to p as possible, if B_0 is close to p.

The novelty here is a new monotonicity type estimate of a localized scaled energy, which may be of its own interest. Let us define our localized scaled energy in the following way: Let $T \ge 0$ and $X \in \mathbb{R}^m$ be given, and (t_0, x_0) in the parabolic like envelope

$$\left\{(t, x) \in {\rm I\!R}^m_\infty \, : \, t-T \geq |x-X|^{\lambda_0}
ight\} \quad ; \quad \lambda_0 > 2.$$

Hereafter the notation of double sign correspondence is used. The localized scaled energy is defined by

(3.6)
$$E_{\pm}(r) = \frac{1}{\Lambda^{p}} \int_{\{t=t_{0} \pm \Lambda^{2-p}r^{2}\} \times \mathbb{R}^{m}} \bar{e}_{K,\epsilon}(u(t,x)) \mathcal{B}_{\pm}(t_{0},x_{0};t,x) \mathcal{C}^{q}(t,x) dx \quad ;$$
$$\bar{e}_{K,\epsilon}(u) := \frac{1}{p} \left(\epsilon + |Du|^{2}\right)^{\frac{p}{2}} + C_{0} \frac{K}{2} \chi \left(\text{dist}^{2}(u,\mathcal{N})\right)$$

and $\Lambda = \Lambda(r)$ is a function of a scale radius r, defined as

(3.7)
$$\Lambda = \Lambda(r) = r^{\frac{B_0 - 2}{2 - p}} \quad ; \quad B_0 > \frac{6p - 4}{p + 2}$$

for any r > 0. The *forward* or *backward* in time Barenblatt like function, denoted by \mathcal{B}_+ and \mathcal{B}_- , respectively, are defined by

(3.8)
$$\mathcal{B}_{\pm}(t_0, x_0; t, x) = \frac{1}{(\mp t_0 \pm t)^{\frac{m}{B_0}}} \left(1 - \left(\frac{|x - x_0|}{2(\mp t_0 \pm t)^{\frac{1}{B_0}}} \right)^{\frac{p}{p-1}} \right)_+^{\frac{p-1}{p-2}}, \quad \mp t < \mp t_0.$$

The localized function C is defined and used as

(3.9)
$$C(t, x) := \left((t - T)^{1/\lambda_0} - |x - X| \right)_+ \quad ; \quad q > 2.$$

We call $E_{+}(r)$ and $E_{-}(r)$ the forward and backward localized scaled *p*-energy, respectively.

Our main ingredient is the following monotonicity type estimate of a scaled energy.

Lemma 6 (Monotonicity estimate for the backward localized scaled p-energy) Let p > 2 and q > 2. Suppose that $t_0 - T \le 1$. For any regular solution to (2.1) the following estimate holds for all positive numbers $r, \rho, r^{B_0} = \Lambda(r)^{2-p}r^2 < \rho^{B_0} = \Lambda(\rho)^{2-p}\rho^2 \le \min\{1, (t_0 - T)/2\},$

(3.10)
$$E_{-}(r) \leq E_{-}(\rho) + C (\rho^{\mu} - r^{\mu})$$

$$+ C \int_{t_{0} - \rho^{B_{0}}}^{t_{0} - r^{B_{0}}} \|C^{\tilde{q}}(t) \bar{e}_{K, \epsilon}(u(t))^{2}\|_{L^{\infty}\left(B((t_{0} - t)^{1/B_{0}}, x_{0})\right)} dt,$$

where $\tilde{q} = \min\{q - 2, q(p - 1)/p\}$, B_0 as in (3.7), and the positive exponent μ depends only on \mathcal{N} , m, p and B_0 , and the positive constant C depends only on the same ones as μ and q.

Lemma 7 (Monotonicity estimate for the forward localized scaled p-energy) Let p > 2and q > 2. Suppose that $t_0 - T \le 1$. For any regular solution to (2.1) the following estimate holds for all positive numbers $r, \rho, r^{B_0} = \Lambda(r)^{2-p}r^2 < \rho^{B_0} = \Lambda(\rho)^{2-p}\rho^2 \le 1$

(3.11)
$$E_{+}(\rho) \leq (1+r^{-c_{0}B_{0}}) E_{+}(r) + C (\rho^{\mu} - r^{\mu}) + C \int_{t_{0}+r^{B_{0}}}^{t_{0}+\rho^{B_{0}}} \|C^{\tilde{q}}(t) \bar{e}_{K.\epsilon}(u(t))^{2}\|_{L^{\infty}(B((t-t_{0})^{1/B_{0}}, x_{0}))} dt,$$

where c_0 is a positive number satisfying $c_0 > 2(p - B_0)/B_0(p - 2)$, which can be as close to $2(p - B_0)/B_0(p - 2)$ as possible, $\tilde{q} = \min\{q - 2, q(p - 1)/p\}$, B_0 as in (3.7), and the positive constants μ and C have the same dependence as those in Lemma 6.

Remark. In Lemma 7, the positive number c_0 can be as close to 0 as possible, if B_0 is close to p.

We need the so-called Bochner type estimate for the penalized energy density. Here the positive constant C_0 in (2.1) is appropriately chosen.

Lemma 8 (Bochner type estimate) Let p > 2 and $u = u_{K,\epsilon}$ be a regular solution to (2.1). For brevity, put $e(u) = e_{K,\epsilon}(u)$. Then, it holds in \mathbb{R}^m_{∞} that

(3.12)

$$\partial_{t}e(u) - \sum_{\alpha,\beta=1}^{m} D_{\alpha} \left(\left(\epsilon + |Du|^{2}\right)^{\frac{p-2}{2}} \mathcal{A}^{\alpha\beta} D_{\beta}e(u) \right) \\
+ C_{1} \left(\epsilon + |Du|^{2}\right)^{\frac{p-2}{2}} |D^{2}u|^{2} + C_{2} |2^{-1} K D_{u}\chi \left(\operatorname{dist}^{2}(u, \mathcal{N})\right)|^{2} \\
\leq C_{3} \left(1 + e(u)^{\frac{2}{p}} \right) e(u)^{2(1-\frac{1}{p})},$$

where

$$\mathcal{A}^{\alpha\beta} := \delta^{\alpha\beta} + (p-2)\frac{D_{\alpha}u \cdot D_{\beta}u}{\epsilon + |Du|^2},$$

the positive constants C_i (i = 1, 2, 3) depend on m, p and N.

4 Passing to the limit

In this section we present the proof of Theorem 1, based on Theorem 5.

Let $\{\epsilon_k\}$ and $\{K_k\}$ be sequences such that $\epsilon_k \searrow 0$ and $K_k \nearrow \infty$ as $k \to \infty$. Let u_{K_k, ϵ_k} , $k = 1, 2, \ldots$, be a sequence of solutions of the Cauchy problem with initial data u_0 for the penalized equations (2.1) with approximating numbers $\epsilon = \epsilon_k$ and $K = K_k$, obtained in Lemma 2. Hereafter we put $u_k = u_{K_k, \epsilon_k} e_k(u_k) = e_{K_k, \epsilon_k}(u_{K_k, \epsilon_k})$, for brevity.

By the energy inequality (2.4), there exist a subsequence of $\{u_k\}$, denoted by the same notation, and the limit map u such that, as $k \to \infty$,

(4.1)
$$u_k \longrightarrow u \quad \text{weakly} * \text{in } L^{\infty} \left(0, \infty; W^{1,p}(\mathbb{R}^m, \mathbb{R}^l) \right),$$

(4.2)
$$\partial_t u_k \longrightarrow \partial_t u \quad \text{weakly in } L^2\left(\mathbb{R}^m_{\infty}, \mathbb{R}^l\right),$$

(4.3) $Du_k \longrightarrow Du$ weakly in $L^p_{\text{loc}}\left(\mathbb{R}^m_{\infty}, \mathbb{R}^{ml}\right)$,

(4.4)
$$\chi(\operatorname{dist}^2(u_k, \mathcal{N})) \longrightarrow 0 \quad \text{strongly in } L^2_{\operatorname{loc}}\left(\mathbb{R}^m_{\infty}, \mathbb{R}^l\right),$$

(4.5)
$$u_k \longrightarrow u$$
 strongly in $L^q_{\text{loc}}\left(\mathbb{R}^m_{\infty}, \mathbb{R}^l\right)$ for any $q, 1 \le q < \frac{mp}{(m-p)_+}$,

where the strong convergence in (4.5) follows from (4.1) and (4.2) (see [2, Lemma 1.4, p. 28]). Thus, furthermore, for a subsequence $\{u_k\}$ denoted by the same notation,

(4.6)
$$u_k \longrightarrow u, \quad \text{dist}(u_k, \mathcal{N}) \longrightarrow 0 \quad \text{almost everywhere in } \mathbb{R}^m_{\infty}$$

We demonstrate that the limit map u is a *partial regular* weak solution of the p-harmonic flow, as in the statement of Theorem 1. The proof is divided to several steps and proceeded.

Size estimate of the singular set Let R_0 be a sufficient small positive number, determined in Theorem 5. For τ , $0 < \tau < \infty$, and R, $0 < R < \min\{R_0, \tau^{1/\lambda_0}\}$, we put two subsets in \mathbb{R}^m as

$$S(\tau, R) := \left\{ x_0 \in \mathbb{R}^m : \limsup_{k \to \infty} \left(\limsup_{r \searrow 0} r^{\gamma_0 - m} \int_{\{t = \tau - R^{\lambda_0}\} \times B(r, x_0)} e_k(u_k(t, x)) \, dx \right) \ge 1 \right\} ;$$

$$\mathcal{T}(\tau, R) := \bigcap_{l=1}^{\infty} \bigcup_{k=l}^{\infty} \left\{ x_0 \in \mathbb{R}^m : \limsup_{r \searrow 0} r^{\gamma_0 - m} \int_{\{t = \tau - R^{\lambda_0}\} \times B(r, x_0)} e_k(u_k(t, x)) \, dx > 1/2 \right\}.$$

(4.7)

From the definition of limit supremum on k and (4.7), we see that, for every τ , $0 < \tau < \infty$, and R, $0 < R < \min\{R_0, \tau^{1/\lambda_0}\},$

(4.8)
$$S(\tau, R) \subset \mathcal{T}(\tau, R).$$

Here we have the estimation of size (see [5, Theorem 2.2; its proof, pp. 101-103] for the proof): It holds that, for every τ , $0 < \tau < \infty$, and R, $0 < R < \min\{R_0, \tau^{1/\lambda_0}\}$,

$$\mathcal{H}^{m-\gamma_0}(\mathcal{T}(\tau, R)) = 0$$

and so, by (4.8),

$$\mathcal{H}^{m-\gamma_0}(\mathcal{S}(\tau, R)) = 0 \quad ; \quad \mathcal{H}^{m-\gamma_0}\Big(\bigcap_{0 < R < \min\{R_0, \tau^{1/\lambda_0}\}} \mathcal{S}(\tau, R)\Big) = 0$$

Let us define the *singular set* as

(4.9)
$$S = \bigotimes_{0 < \tau < \infty} \bigcap_{0 < R < \min\{R_0, \tau^{1/\lambda_0}\}} S(\tau, R),$$

where $\bigotimes_{0<\tau<\infty}$ means the direct product of sets on positive time $\tau < \infty$. Then, for any positive $T < \infty$ and any open set K compactly contained in \mathbb{R}^m , letting $K_T = (0, T) \times K$, with respect to the time-space metric $|t|^{1/\gamma_0} + |x|$,

$$\mathcal{H}^m\Big(\mathcal{S}\bigcap K_T\Big) = \int_0^T \mathcal{H}^{m-\gamma_0}\Big(\bigcap_{0< R< R_0} \mathcal{S}(\tau, R)\bigcap K\Big)\,d\tau = 0.$$

Regularity of the limit map We now show the regularity of limit map u in the complement of S. Let (t_0, x_0) be in the complement of S. Thus, there exist a positive $R < \min\{R_0, (t_0)^{1/\lambda_0}\}$ and an infinite family $\{u_k\}$ of regular solutions such that

$$\limsup_{r\searrow 0}r^{\gamma_0-m}\int\limits_{\{t=t_0-R^{\lambda_0}\}\times B(r,\,x_0)}e_k(u_k(t,\,x))\,dx<1.$$

Then we can apply Theorem 5 for each u_k above to obtain

(4.10)
$$\sup_{\substack{(t_0 - (R/4)^{\lambda_0}, t_0) \times B(R/4, x_0)}} e(u_k) \le C R^{-a_0 p},$$

where the positive constant C depends only on λ_0 , B_0 , m, p and \mathcal{N} .

Now we will show the uniform continuity of $\{u_k\}$ in $Q := (t_0 - (R/8)^{\lambda_0}, t_0) \times B(R/8, x_0)$. For this purpose we will have a local L^2 estimate of derivative of the penalty term. For any smooth function ϕ of compact support in Q, we multiply the Bochner type estimate (3.12) by ϕ^2 and integrate by parts in Q to have, letting $K = K_k$, $u = u_k$ and $e(u) = e_k(u_k)$,

(4.11)

$$\begin{split} &\int_{Q} \phi^{2} \left(\frac{C_{1}}{2} \left(\epsilon + |Du|^{2} \right)^{\frac{p-2}{2}} \left| D^{2}u \right|^{2} + \frac{C_{2}}{2} \left| \frac{K}{2} D_{u} \chi \left(\text{dist}^{2}(u, \mathcal{N}) \right|^{2} \right) dz \\ &\leq \int_{Q} \left(\phi \left| \partial_{t} \phi \right| e(u) + |D\phi|^{2} \left(\frac{2p}{C_{1}} e(u) + \frac{2}{C_{2}} e(u)^{\frac{2}{p}} \right) + C_{3} \phi \ 2 \left(1 + e(u)^{\frac{2}{p}} \right) e(u)^{2\left(1 - \frac{1}{p}\right)} \right) dz, \end{split}$$

where we use the Cauchy inequality in the first inequality.

Let $(t_0, x_0) \subset Q$ be any point and $r \leq R/8$ be any positive number, and $Q(r) = (t_0 - r^q, t_0) \times B(r, x_0)$ with q > 1. In (4.11) we choose a smooth function ϕ such that $0 \leq \phi \leq 1, \phi = 1$ in $Q(r), \phi = 0$ outside Q(2r), and $|D\phi| \leq C/r$ and $|\partial_t \phi| \leq C/r^q$. Thus we have, by (4.10),

(4.12)
$$\int_{Q(r)} \left(\frac{C_1}{2} \left(\epsilon + |Du|^2 \right)^{\frac{p-2}{2}} \left| D^2 u \right|^2 + \frac{C_2}{2} \left| \frac{K}{2} D_u \chi \left(\text{dist}^2(u, \mathcal{N}) \right|^2 \right) dz$$
$$\leq C \left(r^m + r^{m+q-2} + r^{m+q} \right) \leq C r^m.$$

We also need the Poincaré inequality of parabolic type (refer to [6]): Let $u = u_k$. There exists a positive constant C, depending only on m and p, such that, for any $Q(r) \subset Q$,

$$(4.13) \|u - \bar{u}_{Q(r)}\|_{L^{2}(Q(r))}^{2} \leq C \left(r^{2} \|Du\|_{L^{2}(Q(r))}^{2} + r^{-m+q-2} \|\left(\epsilon + |Du|^{2}\right)^{1/2}\|_{L^{p-1}(Q(r))}^{2(p-1)} + r^{2q} \|2^{-1}KD_{u}\chi(^{2}(u, \mathcal{N}))\|_{L^{2}(Q(r))}^{2}\right),$$

where $\bar{u}_{Q(r)}$ is the integral mean of u in Q(r).

Substituting (4.10) and (4.12) into (4.13), we have, for any $(t_0, x_0) \subset Q$, any positive $r \leq R/8$, and $Q(r) = (t_0 - r^q, t_0) \times B(r, x_0)$,

(4.14)
$$\|u - \bar{u}_{Q(r)}\|_{L^2(Q(r))}^2 \le C \left(r^{m+q+2} + r^{m+3q-2} + r^{m+2q}\right)$$

and thus, choosing q > 1 in (4.14), we obtain from Campanato's isomorphism theorem (refer to [5]) that $\{u_k\}$ is uniformly Hölder continuous in Q with exponent min $\{1, q-1, \frac{q}{2}\}$, uniformly on u_k . Thus, we see that $\{u_k\}$ is equicontinuous, and uniformly bounded in Q by Lemma 4. Therefore, by Arzela-Ascoli theorem we find for a subsequence denoted by the same notation $\{u_k\}$ and the limit map u that, as $k \to \infty$,

$$(4.15) u_k \longrightarrow u uniformly in Q$$

and that the limit map u is uniformly continuous in Q. From (4.10) and (4.15), we obtain that, as $k \to \infty$,

$$(4.16) \qquad \chi(\operatorname{dist}^2(u_k, \mathcal{N})) \le C/K_k \longrightarrow 0 \quad \text{uniformly in } Q \implies u \in \mathcal{N} \quad \text{in } Q$$

Now we will show that the limit map u satisfies the p-harmonic flow equation in Q. From (4.10) and (4.11) we also see that $\{(K_k/2) D_u \chi(\operatorname{dist}^2(u, \mathcal{N})|_{u=u_k}\}$ is bounded in $L^2(Q, \mathbb{R}^l)$ and thus, there exists a vector-valued function $\nu \in L^2(Q, \mathbb{R}^l)$ such that, as $k \to \infty$,

(4.17)
$$(K_k/2)D_u\chi(\operatorname{dist}^2(u,\mathcal{N})\big|_{u=u_k} \longrightarrow \nu \quad \text{weakly in } L^2(Q).$$

By the continuity of u in Q the image u(Q) of Q is an open subset of \mathcal{N} . Let $\mathcal{P}_{\mathcal{N}}(u(Q))$ be a neighborhood of u(Q) in \mathcal{N} . Let $\tau(v)$ be any smooth tangent vector field of \mathcal{N} on $\mathcal{P}_{\mathcal{N}}(u(Q)), \tau(v) \in \mathcal{T}_{v}\mathcal{N}$ for any $v \in \mathcal{P}_{\mathcal{N}}(u(Q))$. By (4.15), we can choose a sufficiently large k_0 such that, for any $k \geq k_0$, $u_k \in \mathcal{O}_{\delta_{\mathcal{N}}}$ in Q, and $\pi_{\mathcal{N}}(u_k) \in \mathcal{P}_{\mathcal{N}}(u(Q)) \subset \mathcal{N}$ and $\tau(\pi_{\mathcal{N}}(u_k)) \in \mathcal{T}_{\pi_{\mathcal{N}}(u_k)}\mathcal{N}$ in Q, where $\mathcal{O}_{\delta_{\mathcal{N}}}$ is a tubular neighborhood of \mathcal{N} with width $\delta_{\mathcal{N}}$, and $\pi_{\mathcal{N}}$ is the nearest point projection to \mathcal{N} from the tubular neighborhood of \mathcal{N} . Thus, we have that

$$D_u \chi (\operatorname{dist}^2(u, \mathcal{N})) \big|_{u=u_k} \cdot \tau(\pi_{\mathcal{N}}(u_k)) = 2\chi' \operatorname{dist}(u_k, \mathcal{N}) D_u \operatorname{dist}(u, \mathcal{N}) \big|_{u=u_k} \cdot \tau(\pi_{\mathcal{N}}(u_k)) = 0 \quad \text{in } Q,$$

because $D_u \operatorname{dist}(u, \mathcal{N})|_{u=u_k}$ is orthogonal to $\mathcal{T}_{\pi_{\mathcal{N}}(u_k)}\mathcal{N}$ for any $z \in Q$, and thus,

(4.18)
$$\int_{Q} \frac{K_{k}}{2} D_{u}\chi \left(\operatorname{dist}^{2}(u, \mathcal{N})\right)\Big|_{u=u_{k}} \cdot \tau(\pi_{\mathcal{N}}(u_{k})) \, dz = 0.$$

By (4.15) and (4.17), we can take the limit as $k \to \infty$ in (4.18) to have, for any smooth tangent vector field $\tau(v)$ of \mathcal{N} on $\mathcal{P}_{\mathcal{N}}(u(Q)) \subset \mathcal{N}$, as $k \to \infty$,

$$0 = \int_{Q} \frac{K_{k}}{2} D_{u} \chi \left(\operatorname{dist}^{2}(u, \mathcal{N}) \right) \Big|_{u=u_{k}} \cdot \tau(\pi_{\mathcal{N}}(u_{k})) \, dz \longrightarrow \int_{Q} \nu \cdot \tau(u) \, dz$$

$$\implies \int_{Q} \nu \cdot \tau(u) \, dz = 0$$

(4.19)
$$\iff \nu(z) \perp \mathcal{T}_{u(z)} \mathcal{N} \quad \text{for any } z \in Q.$$

and, thus, $\nu(z)$ is a normal vector field along u(z) for any $z \in Q$. In the weak form of (2.1), for any smooth map ϕ with compact support in Q,

$$\int_{Q} \left(\partial_{t} u_{k} \cdot \phi + \left(\epsilon_{k} + |Du_{k}|^{2} \right)^{\frac{p-2}{2}} Du_{k} \cdot D\phi + \frac{K_{k}}{2} \left| D_{u} \chi \left(\operatorname{dist}^{2}(u, \mathcal{N}) \right) \right|_{u=u_{k}} \cdot \phi \right) \, dz = 0,$$

we pass to the limit as $k \to \infty$ to find that the limit map u satisfies

(4.20)
$$\int_{Q} \left(\partial_{t} u \cdot \phi + |Du|^{p-2} Du \cdot D\phi + \nu \cdot \phi \right) \, dz = 0,$$

where we use the convergence in the 1st line of (4.19) and, the strong convergence of gradients $\{Du_k\}$, obtained from (2.1) with the convergence (4.1), (4.2) and (4.17) (see [2, Theorem 2.1, pp. 31-33]). Therefore, we have that

(4.21)
$$\partial_t u - \Delta_p u + \nu = 0$$
 almost everywhere in Q as $L^2(Q)$ -map.

We now observe that

(4.22)

$$|\nu(z)| = -|Du(z)|^{p-2}Du(z) \cdot (Du(z) \cdot D_u \gamma(u)|_{u=u(z)}) \quad \text{almost every } z \in Q.$$

Let $\bar{z} = (\bar{t}, \bar{x}) \in Q$ be arbitrarily taken and fixed. Let $\gamma(v)$ be a smooth unit normal vector field of \mathcal{N} in $u(Q) \subset \mathcal{N}$ such that $\gamma(v) \in (\mathcal{T}_v \mathcal{N})^{\perp}$, $|\gamma(v)| = 1$ for any $v \in u(Q)$ and $\gamma(u(\bar{z})) = \nu(\bar{z})/|\nu(\bar{z})|$. We take the composite map $\gamma(u)$ of $\gamma(\cdot)$ and the limit map u, and use a test function $\gamma(u) \eta$ for any smooth real-valued function η with compact support in Q to have

$$\begin{split} &\int_{Q} \left(\partial_{t} u \cdot \gamma(u) \eta + |Du|^{p-2} Du \cdot \left(D\gamma(u) \eta + \gamma(u) D\eta \right) + \nu \cdot \gamma(u) \eta \right) \, dz = 0 \quad ; \\ &\int_{Q} \left(|Du|^{p-2} Du \cdot D\gamma(u) + \nu \cdot \gamma(u) \right) \, \eta \, dz = 0, \\ &\implies \nu \cdot \gamma(u) = -|Du|^{p-2} Du \cdot D\gamma(u) \quad \text{almost everywhere in } Q, \end{split}$$

where, in the 2nd line, we use that $\partial_t u, D_\alpha u \in \mathcal{T}_u \mathcal{N}, \ \alpha = 1, \ldots, m$, and $\gamma(u) \in (\mathcal{T}_u \mathcal{N})^{\perp}$ in Q. The last line yields, at $z = \overline{z}$,

$$|\nu(\bar{z})| = -|Du(\bar{z})|^{p-2}Du(\bar{z}) \cdot \left(\left. Du(\bar{z}) \cdot D_u \gamma(u) \right|_{u=u(\bar{z})} \right)$$

Furthermore. we find that, for a positive constant C depending only on bounds of curvature of \mathcal{N} ,

(4.23)
$$|\nu| \le C |Du|^p$$
 almost everywhere in Q .

In fact, from (4.22) we obtain

$$|
u(z)| \leq C \max_{v \in u(Q)} |D_v \gamma(v)| |Du(z)|^p$$
 for almost every $z \in Q$.

Finally, we have by (4.23) and (4.10) that

(4.24)
$$\begin{aligned} \partial_t u - \Delta_p u &= -\nu \in L^{\infty}(Q) \quad \text{almost everywhere in } Q \\ &\Longrightarrow Du \text{ is locally Hölder continuous in } Q, \end{aligned}$$

where, for the last statement of gradient continuity, we refer to [4, Theorem 1.1, p. 245; Sect 4, p. 291; Sect. 1 -(ii), pp. 217-218]. The use of convergence (4.3) and (4.2) in the energy boundedness (2.4) for u_k also yields

(4.25)
$$\|\partial_t u\|_{L^2(\mathbb{R}^m_\infty)}^2 + \sup_{0 < t < \infty} E(u(t)) \le E(u_0).$$

Closedness of S S is actually closed set in \mathcal{M}_{∞} . For any $z_0 = (t_0, x_0)$ in the complement of S, we can take a positive $R \leq R_0$ and an neighborhood of $z_0, Q' := (t_0 - (R/4)^{\lambda_0}, t_0) \times B(R/4)(x_0)$, and an infinite family $\{u_k\}$ of regular solutions of (2.1), and have the uniform boundedness in Q' of gradients as in (4.10). Thus, we have that, for any solution u_k , and any z' = (t', x') in $Q := (t_0 - (R/8)^{\lambda_0}, t_0) \times B(R/8)(x_0)$ and all small positive r < R/8,

(4.26)
$$r^{\gamma_0 - m} \int_{\{t=t' - (R/8)^{\lambda_0}\} \times B(r, x')} e(u_k(t, x)) \, dx \le C \, R^{-pa_0} \, r^{\gamma_0}$$

and thus, for any z' = (t', x') in Q,

$$\limsup_{k o \infty} \Big(\limsup_{r \searrow 0} r^{\gamma_0 - m} \int_{\{t = t' - R^{\lambda_0}\} imes B(r, x')} e(u_k(t, x)) \, dx \Big) = 0.$$

which implies that Q is a subset of the complement of S. Therefore, we see that the complement of S is open and thus, S is closed.

Weak solution of the p-harmonic flow The proof is based on the size estimate of singular set S above. A covering argument is applied for the singular set S, by use of a family of parabolic cylinders under an intrinsic scaling, depending on a size of gradient of solution. For the details see [8].

Acknowledgments : The authour would like to express his sincere gratitude to Professor Katsuo Matsuoka for supporting and giving him an opportunity to talk at RIMS.

References

- L. Ambrosio, C. Mantegazza, Curvature and distance function from a manifold, J. Geom. Anal. 8, no. 5 (1998), 723-748, Dedicated to the memory of Fred Almgren.
- [2] Y.-M. Chen, M.-C. Hong, N. Hungerbuhler, Heat flow of *p*-harmonic maps with values into spheres, *Math. Z.* 215 (1994) 25-35.
- [3] Y.-M. Chen, M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, *Math. Z.* 201 (1989) 83-103.
- [4] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, New York, NY: Springer-Verlag. xv, 387 (1993).
- [5] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton University Press, Princeton NJ, 1983.
- [6] C. Leone, M. Misawa, A. Verde, The regularity for nonlinear parabolic systems of p-Laplacian type with critical growth, J. Differential Equations 256 (2014), 2807-2845.
- [7] M. Misawa, Regularity for the evolution of p-harmonic maps, J. Differential Equations 264 (2018), 1716-1749.
- [8] M. Misawa, Local regularity and compactness for the p-harmonic map heat flows, Adv. Calc. Var. to appear (accepted at 2017 for publication).
- [9] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Differential Geometry 28, (1988) 485-502.