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1 Introduction

Let  \mathcal{N} be a  n‐dimensional smooth compact Riemannian manifold without boundary
and isometrically embedded in  \Gamma t^{l}(l>n) . For a map  u from  B_{\infty}^{m}  :=(0, \infty)x\mathbb{R}^{m} to  IR^{l}
we consider the  p‐harmonic flow

 \begin{array}{l}
\partial_{t}u-div(|Du|^{p-2}Du)+|Du|^{p-2}A(u) (Du, Du)=0
u\in \mathcal{N}
\end{array}
where  p\geq 2 ,  u(t, x)=(u^{i}(t, x)) ,  i=1,  l , is a vector‐valued function, defined for
 (t, x)\in B_{\infty}^{m} with values into  \mathbb{R}^{l}.  D_{\alpha}=\partial/\partial x_{\alpha},  \alpha=1,  m,  Du=(D_{\alpha}u^{i}) is the
spatial gradient of a map  u,  |Du|^{2}= \sum_{\alpha=1}^{m}\sum_{i=1}^{l}(D_{\alpha}u^{i})^{2} and  \partial_{t}u is the derivative on
time  t . The second fundamental form  A(u) (Du, Du) of  \mathcal{N}\subset JR^{l} is on the orthogonal
complement of the tangent space  T_{u}\mathcal{N} (if necessary, the manifold  \mathcal{N} is assumed to be
orientable). Since  u=u(t, x),  (t, x)\in B_{\infty}^{m} , moves on the manifold  \mathcal{N},  \partial_{t}u\in T_{u}\mathcal{N} , and
thus,  \partial_{t}u\cdot A(u)(Du, Du)=0 and, by multiplying the equation by  \partial_{t}u and the divergence
theorem

 | \partial_{t}u|^{2}-div(|Du|^{p-2}Du\cdot\partial_{t}u)+\partial_{t}\frac{1}
{p}|Du|^{p}=0,
 E(u):= \int_{1R^{m}}\frac{1}{p}|Du|^{p}dx, \frac{d}{dt}E(u(t))=-
\Vert\partial_{t}u(t)\Vert_{2}^{2}

and thus,  E(u(t))\searrow 0 and  u(t) may converge to a constant map  ab^{\backslash }t\nearrow\infty.

Theorem 1 (A global existence and reguıarity for the  p‐harmonic flow) Let  p>2 and
let  u_{0} be a smooth map defined on  B^{M} with values to  \mathcal{N}_{i} satisfying   E(u_{0})<\infty . Then,
there exists a global weak solution  u of the Cauchy problem for the  p‐harmonic flow with
initial data  u_{0} , satisfying the energy inequality

  \Vert\partial_{t}u\Vert_{L^{2}(1R_{\infty}^{m})}^{2}+\sup_{0<t<\infty}E(u(t))
\leq E(u_{0}) .

Moreover, the solution  u is partial regular in the following sense: For any positive number
 \gamma_{0},2<\gamma_{0}<p , there exists a relatively closed set  S in  B_{\infty}^{m} such that  u and its gradient Du
are locally in time‐space continuous in the complement  B_{\infty}^{m}\backslash S , and the size of  \mathcal{S} is also
estimated by the Hausdorff measure : The set  S is of at most locally  zer\cdot om ‐dimensional
Hausdorff measure with respect to the time‐space metric  |t|^{1/\gamma_{0}}+|x| , and, furthermor  e , for
any positive time  \tau<\infty , the  (m-\gamma_{0}) ‐dimensional Hausdorff measure of  \{\tau\}\cross S with
r.espect to the usual Euclidean metric is locally zero.

Remark. The exponent  \gamma_{0} can be as close to  p as possible.

In this note we report on the global existence of a partial regular weak solution of the
 Cauchy problem for  p-harmonic flow. We use the so‐called penalty approximating equa‐
tion for the  p-harmonic flow, and devise new monotonicity type formulas of a local scaled
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energy and establish a uniform local regularity estimate for regular solutions of those
equation. The regularity criterion obtained is alrnost optimal, comparing with that of the
corresponding stationary case.

2 Penalty approximation

In this section we explain the approximation scheme for the  p‐harmonic flow. We will
approximate the  p‐harmonic flow by the solutions of the gradient flow for the so‐called
penalized functional, introduced in [3] for the harmonic flow case  p=2.

Since the manifold  \mathcal{N} is smooth and compact, there exists a tubular neighborhood
 \mathcal{O}_{2\delta_{N}} with width  2\delta_{\mathcal{N}} of  \mathcal{N} in  B^{\iota} such that any point  u\in \mathcal{O}_{2\delta_{N}} has a unique nearest
point  \pi \mathcal{N}(u)\in \mathcal{N} satisfying dist  (u, \mathcal{N})=|u-\pi \mathcal{N}(u)| for the Euclidean distance  |\cdot| in  B^{l},
where the projection  \pi \mathcal{N} :  \mathcal{O}_{2\delta_{N}}arrow \mathcal{N} is smooth, since the manifold  \mathcal{N} is smooth. The
distance function dist  (u, \mathcal{N}) is Lipschitz continuous on  u\in \mathcal{O}_{2\delta_{N}}.

Let  \chi be a smooth, non‐decreasing real‐valued function defined on  [0, \infty ) such that
 \chi(s)=s for  s\leq(\delta_{\mathcal{N}})^{2} and  \chi(s)=2(\delta_{N})^{2} for  s\geq 4(\delta_{\mathcal{N}})^{2} . Then, the function  \chi(dist^{2}(u, \mathcal{N}))
is smooth on  u\in B^{l} (for the proof we refer to the recent study of the squared distance
function to manifold, due to Ambrosio et al. [1, Theorem 2.1]). Its gradient at  u\in \mathcal{O}_{2\delta_{N}}
is computed as

  D_{u}\chi (dist2  (u, \mathcal{N}) )  =2\chi' (dist2  (u, \mathcal{N}) )  dist(u, \mathcal{N})D_{u}dist(u, \mathcal{N}) ;

 D_{u} dist (鋭,  \mathcal{N} )  = \frac{u-\pi \mathcal{N}(u)}{|u-\pi \mathcal{N}(u)|}
parallel to the vector field  u-\pi \mathcal{N}(u) and orthogonal to  T_{\pi(u)}\mathcal{N}N^{\cdot} We also have that, for
any  u\in \mathcal{N} and any tangent vector  \tau\in T_{u}\mathcal{N},

 |\tau^{i}\tau^{j}D_{u^{1}}\cdot D_{u^{j}}.dist  (u, \mathcal{N})|\leq C(\mathcal{N})|\tau|^{2}

(See [1, Theorem 2.2]).
For positive parameters   1\leq K\nearrow\infty and  1>\epsilon\searrow 0 , we consider the Cauchy problem

in  B_{\infty}^{m} with initial data  u_{0} for the gradient flow, called the penalized equation,

(2.1)  \{\begin{array}{l}
\partial_{t}u-\triangle_{p,\epsilon}u+C_{0}K\chi' (dist2(u, \mathcal{N})) dist 
(u, \mathcal{N})D_{u}dist(u, \mathcal{N})=0
u(0)=u_{0}
\end{array}
associated with the penalized functional, defined by

(2.2)  F_{K,\epsilon}(u)  :=E_{\epsilon}(u)+C_{0} \frac{K}{2}\int_{1R^{m}}.  \chi (dist2  (u, \mathcal{N}) )  dx,

where the positive constant  C_{0} will be stipulated later, depending only on  p,  m and  \mathcal{N} (See
Lemma 8). The partial differential operator  \triangle_{p,\epsilon} and its corresponding energy, called the
regularized  p ‐Laplace operator and the regularized  p‐energy, respectively, are defined as

(2.3)

 \triangle_{p,\epsilon}u:=div((\epsilon+|Du|^{2})^{\frac{p-2}{2}}Du) ;  E_{\epsilon}(u)  := \int_{\Gamma_{\iota}^{m}}\frac{1}{p}(\epsilon+|Du|^{2})^{\frac{p}{2}}dx.
We have the global existence for (2.1), by the usual Galerkin method and monotonicity

of the  p‐Laplace operator (refer to [2]). The regularity of solutions are obtained from
Hölder regularity estimates for the evolutionary  p‐Laplace operator, with a boundedness
of the derivative of the penalty term, the last term in (2.1).
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Lemma 2 (Existence for the penalty approximation) Let  p>2 and let  u_{0} be a smooth
map  def_{07}\iota ed on  IR^{m} with values to  \mathcal{N} , satisfying   E(u_{0})<\infty . For each positive numbers
 K and  \epsilon , there exists a weak solution  u=u_{K,\epsilon} of the Cauchy problem for the penalized
equation (2.1) such that  u=u_{K,\epsilon} satisfies the energy inequality

(2.4)   \Vert\partial_{t}u\Vert_{L^{2}(JR_{\infty\ovalbox{\tt\small REJECT}}^{m})}^{2}
+\sup_{0<t<\infty}F_{K,\epsilon}(u)\leq E_{\epsilon}(u_{0})
and, that  u , Du,  \partial_{t}u and  D^{2}u are locally (Hölder) continuous on time and space (with
some Hölder exponent) in  IR_{\infty}^{m} and  u satisfies the penalized equation everywhere in  \mathbb{R}_{\infty}^{m}.

We will call a solution having the regularity properties as in Lemma 2, a regular solution.

3 Uniform regularity estimate

In this section we show some regularity estimates for solutions  u=u_{K,\epsilon} of the penalized
equations (2.1).

Lemma 3 (Energy inequality) Let  u_{0} be a smooth map on  B^{m} with values to  \mathcal{N},
satisfying   E(u_{0})<\infty , and  u=u_{K,\epsilon} be a regular solution of (2.1). Then, (2.4) holds.

Proof. The energy inequality (2.4) is shown to be valid in the proof of Lemma 2. However,
as a priori estimates for regular solutions of (2.1), we naturally multiply (2.1) by  \partial_{t}u and
integrate by parts on space variable in  B_{T}^{m} for any  T>0.  \square 

Lemma 4 (Boundedness) Let  u=u_{K,\epsilon} be a regular solution of (2.1). Then it holds
that   \sup_{IR_{\infty}^{m}}|u|\leq H , where the positive number  Hi_{b}. so large that  B(H)\supset \mathcal{O}_{2\delta_{N}}(\mathcal{N}) in
 B^{l} , where  B(H)=B(H, 0)i_{6}. a ball in  B^{l} of radius  H with center of origin  0.

Proof. We multiply (2.1) by  u(|u|^{2}-H^{2})_{+} and integrate in  B_{\infty}^{m} , where  (f)_{+} is the positive
part of a function  f . Since the support of  \chi' is in  \mathcal{O}_{2\delta_{N}}(\mathcal{N})\subset B(H),  \chi'(dist^{2}(u, \mathcal{N})) is
zero in  IR^{l}\backslash B(H) . Also  u_{0}\in \mathcal{N}\subset B(H) . Hence, we have

  \frac{1}{4}\int_{1R^{m}} ㈹  |^{2}-H^{2})_{+}dx

㌦.  ( \epsilon+|Du|^{2})^{\frac{p-2}{2}}(\frac{1}{2}|D(|u|^{2}-H^{2})_{+}|_{q}^{2}+
|Du|^{2}(|u|^{2}-H^{2})_{+})dz=0 ;
㌔  (|u(t)|^{2}-H^{2})_{+}^{2}dx\leq 0

and thus,  |u(t)|\leq H in  1R^{m} and any  t\geq 0 . 口

The partial regularity is based on the so‐called small energy regularity estimate (refer
to [9, Theorems 5.1, 0‐.3, 5.4 ; their proofs, pp. 491‐494]). The small energy regularity
estimate for the  p‐harmonic flow in the case  p>2 has been recently established in [7, 8].
Our main assertion here is that the small energy regularity estimate holds uniformly for
solutions of the penalized equations.

Let us denote the penalized energy density for a map  u by

(3.1)  e_{K},  .(u)  := \frac{1}{p}(\epsilon+|Du|^{2})^{\frac{p}{2}}+\frac{K}{2}\chi (dist2  (u, \mathcal{N})
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Theorem 5 (Small energy regularity estimate) Let  p>2 . Let  \lambda_{0},  B_{0} and  a_{0} be
positive numbers satisfying the conditions

(3.2)   \frac{6p-4}{p+2}<\lambda_{0}=B_{0}<p ;   \frac{\lambda_{0}-2}{p-2}<a_{0}\leq 1.
Let  u=u_{K,\epsilon} be a regular solution of (2.1) on  IR_{T}=(0, T)\cross B^{m} for  \cdot a positive  T<\infty,
satisfying the energy bound

(3.3)   \Vert\partial_{t}u\Vert_{L^{2}(1R_{T}^{\mathfrak{m}}\cdot)}^{2}+\sup_{(<t<T}F_
{K,\epsilon}(u)\leq C
for a positive number  C depending only on  m,  p and  \mathcal{N} . Then, there exists a small positive
numeber  R_{0}<1 , depending only on  m,  \mathcal{N},  p,  B_{0} and  a_{0} , and the following holds true :
Let  \gamma_{0} be any positive number satisfying

 2< \gamma_{0}<\frac{B_{0}(p+2)-4p}{p-2}.
If, for some small positive  R< \min\{R_{0}, T^{1/\lambda_{0}}\},

(3.4)  1 iff1\sup_{r\searrow 0}r^{\gamma 0-m}\int_{\{t=T-R^{\lambda_{0}}\}\cross 
B(7_{:^{0)}}}.e_{K,\epsilon}(u(t, x))dx\leq 1
then, ther  e hold6

(3.5)   \sup e_{K,\epsilon}(u(t, x))\leq CR^{-a0p},
 (T-(R/4)^{\lambda_{0_{:}}}T)\cross B(R/4_{:}0)

where the positive constant  C depends only on  \gamma_{0},  \lambda_{0},  B_{0},  a_{0},  p,  m and  \mathcal{N}.

Remark. The positive number  \gamma_{0} can be as close to  p as possible, if  B_{0} is close to  p.

The novelty here is a new monotonicity type estimate of a localized scaled energy, which
may be of its own interest. Let us define our localized scaled energy in the following way:
Let  T\geq 0 and  X\in B^{m} be given, and  (t_{0}, x_{0}) in the parabolic like envelope

 \{(t, x)\in IR_{\infty}^{m} : t-T\geq|x-X|^{\lambda_{0}}\} ;  \lambda_{0}>2.

Hereafter the notation of double sign correspondence is used. The localized scaled energy
is defined by

(3.6)  E_{\pm}(r)= \frac{1}{\Lambda^{p}}\int_{\{t=t_{0}\pm\Lambda^{2-p}r^{2}\}\cross 
1R^{0\eta}}\overline{e}_{K,\epsilon}(u(t, x))\mathcal{B}_{\pm}(t_{(j}, x_{0};t, 
x)C^{q}(t, x)dx ;

 \overline{e}_{K,\epsilon}(u)  := \frac{1}{p}(\epsilon+|Du|^{2})^{\frac{p}{2}}+C_{0}\frac{K}{2}\chi (dist2  (u, \mathcal{N})

and  \Lambda=\Lambda(r) is a function of a scale radius  r , defined as

(3.7)  A=A(r)=r^{\frac{B0-2}{2-p}} ;   B_{0}>\frac{6p-4}{p+2}
for any  r>0 . The forward or backward in time Barenblatt like function, denoted by  \mathcal{B}+
and  \mathcal{B}_{-} , respectively, are defined by

(3.8)   \mathcal{B}_{\pm}(t_{0}, x_{0};t, x)=\frac{1}{(\mp t_{0}\pm t)^{\frac{m}{B_{(}
}}}(1-(\frac{|x-x_{0}|}{2(\mp t_{()}\pm t)^{\frac{1}{I3_{0}}}})^{p-{\imath}
{\imath}}\ovalbox{\tt\small REJECT})_{十}^{\frac{f^{-1}}{p-2}},  \mp t<\mp t_{0}.
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The localized function  \mathcal{C} is defined and used as

(3.9)  C(t, x)  :=((t-T)^{1/\lambda_{0}}-|x-X|)_{十} ;  q>2.

We call  E_{+}(r) and  E_{-}(r) the forward and backward localized scaled  p ‐energy, respec‐
tively.

Our main ingredient is the following monotonicity type estimate of a scaled energy.

Lemma 6 (Monotonicity estimate for the backward localized scaled  p ‐energy) Let
 p>2 and  q>2 . Suppose that  t_{0}-T\leq 1 . For any regular solution to (2.1) the following
estimate holds for all positive numbers  r,  \rho,   r^{B_{0}}=\Lambda(r)^{2-p}r^{2}<\rho^{B_{0}}=\Lambda(\rho)^{2-p}\rho^{2}\leq
 rnin\{1, (t_{0}-T)/2\},

(3.10)  E_{-}(\tau) \leq E_{-}(\rho)+C(\rho^{\mu}-r^{\mu})

 +C \int_{t_{0}-\rho^{B_{0}}}^{t_{0}-\tau^{B_{0}}}\Vert \mathcal{C}
^{\overline{q}}(t)\overline{e}_{K}, .(u(t))^{2}\Vert_{L^{\infty}(B((t_{0}-t)
^{1/B}0_{:}x_{0}))}dt,
where   \overline{q}=\min\{q-2, q(p-1)/p\},  B_{0} as in (3. 7), and the positive exponent  \mu depends
only on  \mathcal{N},  m,  p and  B_{0} , and the positive constant  C depends only on the same ones as

 \mu and  q.

Lemma 7 (Monotonicity estimate for the forward localized scaled  p ‐energy) Let  p>2

and  q>2 . Suppose that  t_{0}-T\leq 1 . For any regular solution to (2.1) the following estimate
holds for all positive  numbe\gamma\cdot s\cdot r,  \rho,  r^{B_{0}}=\Lambda(r)^{2-p}r^{2}<\rho^{B_{0}}=\Lambda(\rho)^{2-p}\rho^{2}\leq 1

(3.11)  E_{+}(\rho) \leq (1+r^{-c0^{B_{0}}})E_{+}(r)+C(\rho^{\mu}-r^{\mu})

 +C \int_{t_{0+r^{B}0}}^{t_{0}+\rho^{B_{0}}}\Vert \mathcal{C}^{\overline{q}}(t)
\overline{e}_{K.\epsilon\propto(B((t-t_{0})^{1/B_{0_{:}}}x_{0}))}(u(t))^{2}
\Vert_{L}dt,
where  c_{0} is a positive number satisfying  c_{0}>2(p-B_{0})/B_{0}(p-2) , which can be as close
to 2  (p-B_{0})/B_{0}(p-2) as possible,   \overline{q}=\min\{q-2, q(p-1)/p\},  B_{0} as in (3. 7)., and the
positive constants  \mu and  C have the same dependence as those in Lemma 6.

Remark. In Lemma 7,  tl_{1}e positive number  c_{0} can be as close to  0 as possible, if  B_{0} is
close to  p.

We need the so‐called Bochner type estimate for the penalized energy density. Here
the positive constant  C_{0} in (2.1) is appropriately chosen.

Lemma 8 (Bochner type estimate) Let  p>2 and  u=u_{K,\epsilon} be a r.egular solution to
(2.1). For  \cdot brevity, put  e(u)=e_{K,\epsilon}(u) . Then, it holds in  JR_{\infty}^{m} that

  \partial_{t}e(u)-\sum_{\alpha,\beta=1}^{\gamma\gamma t}D_{\alpha}((\epsilon+
|Du|^{2})^{\frac{p-2}{2}}\mathcal{A}^{\alpha\beta}D_{\beta}e(u))
(3.12)  +C_{1}(\epsilon+|Du|^{2})^{\frac{p-2}{2}}|D^{2}u|^{2}+C_{2}|2^{-1}KD_{u}\chi (dist2  (u, \mathcal{N}) )  |^{2}

 \leq C_{3}(1+e(u)^{\frac{2}{p}})e(u)^{2(1-\frac{1}{p})},
where

  \mathcal{A}^{\alpha\beta}:=\delta^{\alpha\beta}+(p-2)\frac{D_{\alpha}u\cdot D_
{\beta}u}{\epsilon+|Du|^{2}},
the positive constants  C_{i}(i=1,2,3) depend on  m,  p and  \mathcal{N}.
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4 Passing to the limit

In this section we present the proof of Theorem 1, based on Theorem 5.

Let  \{\epsilon_{k}\} and  \{K_{k}\} be sequences such that  \epsilon_{k}\searrow 0 and   K_{k}\nearrow\infty as   karrow\infty . Let  uK_{k} ,  \epsilon_{k},

 k=1,2 , be a sequence of solutions of the Cauchy problem with initial data  u_{0} for the
penalized equations (2.1) with approximating numbers  \epsilon=\epsilon_{k} and  K=K_{k} , obtained in
Lemma 2. Hereafter we put  u_{k}=u_{K_{k},\epsilon_{k}}e_{k}(u_{k})=e_{K_{k},\epsilon_{k}}(u_{K_{k},
\epsilon_{k}}) , for brevity.

By the energy inequality (2.4), there exist a subsequence of  \{u_{k}\} , denoted by the same
notation, and the limit map  u such that, as  karrow\infty,

(4.1)  u_{k}arrow u weakly  *inL^{\infty}(0, \infty;W^{1_{:}p}(B^{m}, IR^{l})) ,

(4.2)  \partial_{t}u_{k}arrow\partial_{t}u weakly in  L^{2}(\Gamma t_{\infty}^{m}, IR^{l}) ,

(4.3)  Du_{k}arrow Du weakly in  L_{1oc}^{p}(\Gamma t_{\infty}^{m}, IR^{ml}) ,

(4.4)  \chi(dist^{2}(u_{k}, \mathcal{N}))arrow 0 strongly in  L_{1oc}^{2}(\Gamma t_{\infty}^{m}, B^{l}) ,

(4.5)  u_{k}arrow u strongly in  L_{1oc}^{q}(B_{\infty}^{m}, B^{l}) for aIly q  ,  1 \leq q<\frac{mp}{(m-p)_{+}},

where the strong convergence in (4.5) follows from (4.1) and (4.2) (see [2, Lemma 1.4,  p.

28]). Thus , furthermore, for a subsequence  \{u_{k}\} denoted by the same notation,

(4.6)  u_{k}arrow u , dist  (u_{k}, \mathcal{N})arrow 0 almost everywhere in  B_{\infty}^{m}.

We demonstrate that the limit map  u is a partial regular weak solution of the  p‐harmonic
flow, as in the statement of Theorem 1. The proof is divided to several steps and proceeded.

Size estimate of the singular set Let  R_{0} be a sufficient small positive number,
determined in Theorem 5. For  \tau,   0<\tau<\infty , and  R,  0<R< \min\{R_{0}, \tau^{1/\lambda_{0}}\} , we put
two subsets in  B^{m} as

 S( \tau, R):=\{x_{0}\in \mathbb{R}^{7n}:\lim_{karrow}\sup_{\infty}
(\lim_{r\searrow()}\sup r^{\gamma 0-m}\int_{\{t=\tau-R^{\lambda}o\}\cross B(r,
xo)}e_{k}(u_{k}(t, x))dx)\geq 1\} ;

 T( \tau, R):=\bigcap_{l=1}^{\infty}\bigcup_{k=\prime}^{\infty}.   \{x_{0}\in 1R^{\tau n}:\lim_{r\searrow 0}\sup r^{\gamma_{0-\prime}n}\int_{\{t=
\tau-R^{\lambda_{0}}\}\cross B(r_{:}x_{0})}e_{k}(u_{k}(t, x))dx>1/2\}.
(4.7)

From the definition of limit supremum on  k and (4.7), we see that, for every  \tau,  0<\tau<\infty,
and  R,  0<R< \min\{R_{0}, \tau^{1/\lambda_{0}}\},

(4.8)  \mathcal{S}(\tau, R)\subset T(\tau, R) .

Here we have the estimation of size (see [5, Theorem 2.2 ; its proof, pp. 101‐ı03] for the
proof) : It holds that, for every  \tau,   0<\tau<\infty , and  R,  0<R< \min\{R_{0}, \tau^{1/\lambda_{0}}\},

 \mathcal{H}^{m-\gamma_{0}}(T(\tau, R))=0

and so, by (4.8),

 \mathcal{H}^{m-\gamma_{0}}(\mathcal{S}(\tau, R))=0 ;   \mathcal{H}^{7n-\gamma_{0}}(\bigcap_{7^{1/\lambda_{0}}0<R<\min\{R_{0},\}}
\mathcal{S}(\tau, R))=0.
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Let us define the singular bet as

(4.9)   \mathcal{S}=\bigotimes_{0<T<\infty}\bigcap_{00<R<\min\{R_{0},\tau^{1/\lambda}
\}}.\mathcal{S}(\tau, R) ,

where  \otimes means the direct product of sets on positive time  \tau<\infty . Then, for any
  0<\tau<\infty

positive   T<\infty and any open set  K compactly contained in ] R^{M} , letting  K_{T}=(0, T)\cross K,
with respect to the time‐space metric  |t|^{1/\gamma 0}+|x|,

  \mathcal{H}^{m}(\mathcal{S}\cap K_{T})=\int_{0}^{T}\mathcal{H}^{m-\gamma 0}
(\bigcap_{0<R.<R0}\mathcal{S}(\tau, R)\cap K)d\tau=0.
Regularity of the limit map We now show the regula1ity of limit map  u in the

complement of  S . Let  (t_{0}, x_{0}) be in the complement of  S . Thus, there exist a positive
 R< \min\{R_{0}, (t_{0})^{1/\lambda_{0}}\} and an infinite family  \{u_{k}\} of regular solutions such that

  \lim_{r\searrow()}\sup r^{\gamma 0-M}\int_{\{t=t_{0}-R^{\lambda_{0}}\}\cross B
(r_{:}x_{0})}e_{k\wedge}(u_{k}(t, x))dx< ı.

Then we can apply Theorem 5 for each  u_{k} above to obtain

(4.10)   \sup e(u_{k})\leq CR^{-a_{0}p},
 (t_{0}-(R/4)^{\lambda}0_{:}t_{0})\cross B(R./4_{:}x_{0})

where the positive constant  C depends only on  \lambda_{0},  B_{0},  m,  p and  \mathcal{N}.

Now we will show the uniform continuity of  \{u_{k}\} in  Q  :=  (t_{0}-(R/8)^{\lambda_{0}}, t_{0})\cross
 B(R/8, x_{0}) . For this purpose we will have a local  L^{2} estimate of derivative of the penalty
term. For any smooth function  \phi of compact support in  Q , we multiply the Bochner type
estimate (3.12) by  \phi^{2} and integrate by parts in  Q to have, letting  K=K_{k},  u=u_{k} and
 e(u)=e_{k}(u_{k}) ,

(4.11)

  \int_{Q}\phi^{2}(\frac{C_{{\imath}}}{2}(\epsilon+|Du|^{2})^{\frac{p-2}{2}}
|D^{2}u|^{2}+\frac{C_{2}}{2}|\frac{K}{2}D_{u}\chi (dist2  (u, \mathcal{N})|^{2} )  dz

  \leq\int_{Q}(\phi|\partial_{t}\phi|e(u)+|D\phi|^{2}(\frac{2p}{C_{1}}e(u)+\frac
{2}{C_{2}}e(u)^{\frac{2}{p}})+C_{3}\phi 2(1+e(u)^{\simeq}p?)e(u)^{2(1-\frac{1}
{p})}) dz,

where we use the Cauchy inequality in the first inequality.

Let  (t_{0}, x_{0})\subset Q be any point and  r\leq R/8 be any positive number, and  Q(r)=
 (t_{0}-r^{q}, t_{0})\cross B(r, x_{0}) with  q>1 . In (4.11) we choose a smooth function  \phi such that
 0\leq\phi\leq 1 ,  \phi=1 in  Q(r) ,  \phi=0 outside  Q(2r) , and  |D\phi|\leq C/r and  |\partial_{t}\phi|\leq C/r^{q} . Thus
we have, by (4.10),

  \int_{Q(t)}(\frac{C_{1}}{2}(\epsilon+|Du|^{2})^{\frac{p-2}{2}}|D^{2}u|^{2}+
\frac{C_{2}}{2}|\frac{K}{2}D_{u}\chi (dist2  (u, \mathcal{N})|^{2})  dz

(4.12)  \leq C(r^{m}+r^{?n+q-2}+r^{\gamma n+q})\leq C\tau^{77\tau}.

We also need the Poincaré inequality of parabolic type (refer to [6]) : Let  u=u_{k} . There
exists a positive constant  C , depending only on  m and  p_{i} such that, for any  Q(r)\subset Q,

 \Vert u-\overline{u}_{Q(r)}\Vert_{L^{2}(Q(r))}^{2}\leq C(r^{2}\Vert 
Du|\Vert_{L^{2}(Q(r))}^{2}+r^{-7n+q-2}\Vert(\epsilon+|Du|^{2})^{1/2}\Vert_{L^{p-
1}(Q(r))}^{2(p-{\imath})}
(4.13)  +r^{2q}\Vert 2^{-1}KD_{u}\chi(^{2}(u, \mathcal{N}))\Vert_{L^{2}(Q(r))}^{2}) ,
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where  \overline{u}_{Q(r)} is the integral mean of  u in  Q(r) .
Substituting (4.10) and (4.12) into (4.13), we have, for any  (t_{0}, x_{0})\subset Q , any positive

 r\leq R/8 , and  Q(r)=(t_{0}-r^{q}, t_{0})\cross B(r, x_{0}) ,

(4.14)  \Vert u-\overline{u}_{Q(r)}\Vert_{L^{2}(Q(r))}^{2}\leq C(r^{7\Pi+q+2}+r^{m+3q-
2}+r^{\gamma n+2q})

and thus, choosing  q>1 in (4.14), we obtain from Campanato’s isomorphism theorem
(refer to [5]) that  \{u_{k}\} is uniformly Hölder continuous in  Q with exponent   \min\{1, q-1, \frac{q}{2}\},
uniformly on  u_{k} . Thus, we see that  \{u_{k}\} is equicontinuous, and uniformly bounded in  Q
by Lemma 4. Therefore, by Arzela‐Ascoli theorem we find for a subsequence denoted by
the same notation  \{u_{k}\} and the limit map  u that, as  karrow\infty,

(4.15)  u_{k}arrow u uniformly in  Q

and that the limit map  u is uniformly continuous in  Q . From (4.10) and (4.15), we obtain
that, as  karrow\infty,

(4.16)  \chi(dist^{2} (u_{k}, \mathcal{N}))\leq C/K_{k}arrow 0 uniformıy in  Q  \Rightarrow u\in \mathcal{N} in  Q

Now we will show that the limit map  u satisfies the  p ‐harmonic flow equation in  Q.

From (4.10) and (4.11) we also see that  \{(K_{k}/2)D_{u}\chi(dist^{2}(u, \mathcal{N})|_{71_{=}U}k } is bounded in
 L^{2}(Q, B^{l}) and thus, there exists a vector‐valued function  \nu\in L^{2}(Q, B^{l}) such that, as
 karrow\infty,

(4. 17)  (K_{k}/2)D_{u}\chi (dist2  (u, \mathcal{N})|_{u=u_{A:}}arrow\nu weakıy in  L^{2}(Q) .

By the continuity of  u in  Q the image  u(Q) of  Q is an open subset of  \mathcal{N}.  Let\mathcal{P}_{\mathcal{N}}(u(Q))
be a neighborhood of  u(Q) in  \mathcal{N} . Let  \tau(v) be any smooth tangent vector field of  \mathcal{N} on
 \mathcal{P}_{\mathcal{N}}(u(Q)) ,  \tau(v)\in T_{v}\mathcal{N} for any  v\in \mathcal{P}_{\mathcal{N}}(u(Q)) . By (4.15), we can choose a sufficiently
large  k_{0} such that, for any  k\geq k_{0},  u_{k}\in \mathcal{O}_{\delta_{\Lambda^{(}}} in  Q , and  \pi N(u_{k})\in \mathcal{P}_{\mathcal{N}}(u(Q))\subset \mathcal{N} and

 \tau(\pi \mathcal{N}(u_{k}))\in T_{\pi(u_{k})}\mathcal{N}N in  Q , where  \mathcal{O}_{\delta_{N}} is a tubular neighborhood of  \mathcal{N} with width  \delta_{\mathcal{N}},
and  \pi \mathcal{N} is the nearest point projection to  \mathcal{N} from the tubular neighborhood of  \mathcal{N} . Thus,
we have that

 D_{u}\chi (dist2  (u, \mathcal{N}) )  |_{u=u_{k}} .  \tau(\pi \mathcal{N}(u_{k}))  =  2\chi'dist(u_{k}, \mathcal{N})D_{u}dist(u, \mathcal{N})|_{u=u_{k}} .  \tau(\pi \mathcal{N}(u_{k}))
 =  0 in  Q,

because  D_{u} dist  (u, \mathcal{N}) 沖  u_{k} is orthogonal to  T_{\pi(u_{k}))}\mathcal{N}N for any  z\in Q , and thus,

(4.18)   \int_{Q}\frac{K_{k}}{2}D_{u}\chi (dist2  (u, \mathcal{N}) )  |_{u=u}A\wedge.  \cdot\tau(\pi \mathcal{N}(u_{k}))dz=0.

By (4.15) and (4.17), we can take the limit as   karrow\infty in (4.18) to have, for any smooth
tangent vector field  \tau(v) of  \mathcal{N} on  \mathcal{P}_{N}(u(Q))\subset \mathcal{N} , as  karrow\infty,

  0= \int_{Q}\frac{K_{k}}{2}D_{u}\chi (dist2  (u, \mathcal{N}) )  |_{u=u_{k}} .   \tau(\pi N(u_{k}))dzarrow\int_{Q}\nu\cdot\tau(u)dz
  \Rightarrow\int_{Q}\nu\cdot\tau(u)dz=0

(4.19)  \Leftrightarrow\nu(z)\perp T_{u(z)}\mathcal{N} for any  z\in Q.

and, thus,  \nu(z) is a normal vector field along  u(z) for any  z\in Q . In the weak form of
(2.1), for any smooth map  \phi with compact support in  Q,

  \int_{Q}  ( \partial_{t}u_{k}\cdot\phi+(\epsilon_{k}+|Du_{k}|^{2})^{\frac{P-2}{2}}Du_{k}
\cdot D\phi+\frac{K_{k\wedge}}{2}D_{u}\chi(dist^{2}(u, \mathcal{N}))|_{u=u_{k}}.
\cdot\phi)dz=0,

195



196

we pass to the limit as   karrow\infty to find that the limit map  u satisfies

(4.20)   \int_{Q}(\partial_{t}u\cdot\phi+|Du|^{p-2}Du\cdot D\phi+\nu\cdot\phi)dz=0,
where we use the convergence in the 1st line of (4.19) and, the strong convergence of
gradients  \{Du_{k}\} , obtained from (2.1) with the convergence (4.1), (4.2) and (4.17) (see [2,
Theorem 2.1, pp. 31‐33]). Therefore, we have that

(4.21)  \partial_{t}u-\triangle_{p}u+\nu=0 almost everywhere in  Q as  L^{2}(Q) ‐map.

We now observe that

(4.22)

 |\nu(z)|=-|Du(z)|^{p-2}Du(z)\cdot(Du(z)\cdot D_{u}\gamma(u)|_{u=u(z)}) ahnost every  z\in Q.

Let  \overline{z}=(\overline{t},\overline{x})\in Q be arbitrarily taken and fixed. Let  \gamma(v) be a smooth unit normal
vector field of  \mathcal{N} in  u(Q)\subset \mathcal{N} such that  \gamma(v)\in(T_{v}\mathcal{N})^{\perp},  |\gamma(v)|=1 for any  v\in u(Q) and
 \gamma(u(\overline{z}))=\nu(\overline{z})/|\nu(\overline{z})| . We take the composite map  \gamma(u) of  \gamma(\cdot) and the limit map  u , and
use a test function  \gamma(u)\eta for any smooth real‐valued function  \eta with compact support in
 Q to have

  \int_{Q}(\partial_{t}u\cdot\gamma(u)\eta+|Du|^{p-2}Du\cdot(D\gamma(u)\eta+
\gamma(u)D\eta)+\nu\cdot\gamma(u)\eta)dz=0 ;

  \int_{Q}(|Du|^{p-2}Du\cdot D\gamma(u)+\nu\cdot\gamma(u))\eta dz=0,
 \Rightarrow\nu\cdot\gamma(u)=-|Du|^{p-2}Du\cdot D\gamma(u) almost everywhere in  Q,

where, in the 2nd line, we use that  \partial_{t}u,  D_{\alpha}u\in T_{u}\mathcal{N},  \alpha=1 , .  m , and  \gamma(u)\in(T_{u}\mathcal{N})^{\perp} in
 Q . The last line yields, at  z=\overline{z},

 |\nu(\overline{z})|=\dashv Du(\overline{z})|^{p-2}Du(\overline{z}) .  (Du(\overline{z}) . D_{u}\gamma(u)|_{u=u(\overline{z})}) .

Furthermore. we find that, for a positive constant  C depending only on bounds of curva‐
ture of  \mathcal{N},

(4.23)  |\nu|\leq C|Du|^{p} almost everywhere in  Q.

In fact, from (4.22) we obtain

 | \nu(z)|\leq C\max_{v\in t\iota(Q)}|D_{v}\gamma(v)||Du(z)|^{p} for almost every  z\in Q.

Finally, we have by (4.23) and (4.10) that

 \partial_{t}u-\triangle_{p}u=-\nu\in L^{\infty}(Q) almost everywhere in  Q

(4.24)  \Rightarrow Du is locally Hölder continuous in  Q,

where, for the last statement of gradient continuity, we refer to [4, Theorem 1.1, p. 245 ;
Sect 4, p. 291 ; Sect.  1 ‐  (ii)_{\dot{\ovalbox{\tt\small REJECT}}} pp. 217‐218]. The use of convergence (4.3) and (4.2) in the
energy boundedness (2.4) for  u_{k} also yields

(4.25)   \Vert\partial_{t}u\Vert_{L^{2}(IR_{\infty}^{m})}^{2}+ \sup E(u(t))\leq E(u_{0}
) .
  0<t<\infty
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Closedness of  S  S is actually closed set in  \mathcal{M}_{\infty} . For any  z_{0}=(t_{0}, x_{0}) in the
complement of  S , we can take a positive  R\leq R_{0} and an neighborhood of  z_{0},  Q'  :=

 (t_{0}-(R/4)^{\lambda_{0}}, t_{0})xB(R/4)(x_{0}) , and an infinite family  \{u_{k}\} of regular solutions of (2.1),
and have the uniform boundedness in  Q' of gradients as in (4.10). Thus, we have that,
for any solution  u_{k} , and any  z'=(t', x') in  Q  :=(t_{0}-(R/8)^{\lambda_{0}}, t_{0})\cross B(R/8)(x_{0}) and all
small positive  r<R/8,

(4.26)  r^{\gamma_{0}-m} \int_{\{t=t'-(R/8)^{\lambda}0\}\cross B(r_{\wedge}.x')}e(u_{k}
(t, x))dx\leq CR^{-pa_{0}}r^{\gamma_{0}}
and thus, for any  z'=(t', x') in  Q,

  \lim_{karrow}\sup_{\infty}(\lim_{r\searrow()}\sup_{\{t=t'-R^{\lambda}}
r^{\gamma 0-m}\int_{0\}\cross B(r_{:}x')}e(u_{k}(t, x))dx)=0,
which implies that  Q is a subset of the complement of  S. Thet.efore, we see that the
complement of  \mathcal{S} is open and thus,  S is closed.

Weak solution of the  p‐harmonic flow The proof is based on the size estimate of
singular set  S above. A covering argument is applied for the singular set  \mathcal{S} , by use of a
family of parabolic cylinders under an intrinsic scaling, depending on a size of gradient of
solution. For the details see [8].  \square 
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