Conjecture about Regularity of Prefix Square Roots of Regular Languages

Kayoko Shikishima-Tsuji

Center for Liberal Arts Education and Research
Tenri University

Zsolt Fazekas, Robert Mercas, Daniel Reidenbach gave the conjecture in [2] which gives necessary and sufficient condition for the primitive prefix square root of a regular language L to be regular. The author gives a counterexample of their conjecture and gives a new conjecture.

1. Preliminary

An alphabet V is a finite and nonempty set of symbols, called letters. Every finite sequence of letters of V is called a word over V. Words over V together with the operation of concatenation with the empty word ε form a free monoid V^*. We denote $V^+ = V^* - \{\varepsilon\}$.

Let $w = a_1a_2\cdots a_n$ where $a_1, a_2, \ldots, a_n \in V$. The length of a word w is n and denoted by $|w|$ and the length of the empty word ε is 0.

For a positive integer p,

$$V^{\leq p} = \{w \in V^* | |w| \leq p\},$$

$$V^p = \{w \in V^* | |w| = p\}.$$

For a word $w = xyz$ for $x, y, z \in V^*$, a prefix of w is x, a factor of w is y and a suffix of w is z.

For a word $w \in V^+$, the following operations are defined in [1]:

- prefix square reduction: $\square(w) = \{uv | w = uuv, \text{ for } u \in V^+, v \in V^*\}$
• suffix square reduction: $\square(w) = \{uv \mid w = vuu, \text{ for } u \in V^+, v \in V^+\}$

• prefix-suffix square reduction: $\square_2(w) = \square_1(w) \cup \square_2(w)$

For simplicity, we restrict the argument to prefix square reduction.

We define the bounded version for a fixed positive integer p:

• p-prefix square reduction: $p\square_1(w) = \{uv \mid w = uuv, \text{ for } u \in V^{\leq p}, v \in V^+\}$

For a language L, we have language: $\square_1(L) = \bigcup_{w \in L} \square_1(w)$.

The following languages are defined:

$\square^0_1(w) = \{w\}$,

$\square^k_{1}(w) = \square_1(\square^k_{1}(w))$ for any $k \geq 0$

$\square^\ast_1(w) = \bigcup_{k \geq 0} \square^k_{1}(w)$.

For a word w, the primitive prefix square root of w is the set $\{u \mid u \in \square^\ast_1(w) \text{ and } \square_1(u) = u\}$ and it is denoted by $\sqrt{\square}_1 w$. The primitive bounded prefix square root of w is the set $\{u \mid u \in p\square^\ast_1(w) \text{ and } p\square_1(u) = u\}$ and it is denoted by $p\sqrt{\square}_1 w$. For a language L, we define $\sqrt{\square}_1 L = \bigcup_{w \in L} \sqrt{\square}_1 w$ and $p\sqrt{\square}_1 L = \bigcup_{w \in L} p\sqrt{\square}_1 w$.

2. Conjectures

Zsolt Fazekas, Robert Mercas, Daniel Reidenbach gave the following conjecture in [2].

Conjecture (in [2]). Let L be a regular language. The primitive prefix square root of L is regular if and only if there exists some positive integer p such that $\sqrt{\square}_1 L = p\sqrt{\square}_1 L$.

But, I give here the following counterexample and new conjecture.

Example. Let $L = aab^+aab^+c$ where $a, b, c \in V$. The language L is regular. On the other hand, the primitive prefix square root of L is $\sqrt{\square}_1 L = ab^+aab^+c \cup ab^+c$ and this language is regular.
But, there is no positive integer p such that $\sqrt[p]{\psi^\square \overline{L}} = ^p\psi^\square \overline{L}$.

Now, we define a new term to describe our new conjecture: For a word w, if xx is a non-trivial prefix of w and x is prefix square free, then we say that xx is the \textit{minimal} prefix square of w.

\textbf{Conjecture.} Let L be a regular language. The primitive prefix square root of L is regular if and only if there exists positive integer N such that, for every word $w \in \mathcal{D}^\ast (L)$, the length of the minimal prefix square of w is smaller than N.

\textbf{References}

Center for Liberal Arts Education and Research
Tenri University
Nara 632-8510
JAPAN
E-mail address: tsuji@tenri-u.ac.jp