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Abstract

Generation process of a large stripy pattern of localized turbulence in pressure‐driven plane chan‐
nel flow under a subcritical transitional regime is considered. The most amplified kinetic energy of
linear Navier‐Stokes equations was computed for each mode in terms of the streamwise and spanwise
wavelengths, with applying an eddy viscosity as the nonliner effect. In the study, we focused on the
generation state of a turbulence spot, where the localized turbulence would grow or remain in a form
of oblique band, or the turbulent stripe. With considering the ıarge‐scale secondary flow around the
spot or along the oblique band as a base flow, we found specific pairs of wavelengths that are more am‐
plified by the existence of spanwise velocity component in the base flow. It implies that the spanwise
flow around a turbulence spot makes flow unstable in the oblique direction, to cause a stripy pattern of
turbulence region.

1 Introduction

In order to elucidate the transition phenomenon from laminar to turbulent flow, there have been many
arguments based on linear hydrodynamic instability in the past century (Reynolds, 1883; Heisenberg,
1951; Landau, 1944). In recent years, new findings have been obtained by large‐scale matrix calcuıation
with aid of developing computer performance.

In the early 1990s , on the generation mechanism of low speed streak structure and streamwise roll
vortex of fuıly‐developed turbulent channeı flow, several researcheres discussed temporal energy growth
of linear hydrodynamic instability due to non‐orthogonality of fluid field (Butler and Farrelı, 1992; Tre‐
fethen et al., 1993; Reddy and Henningson, 1993). In the late  2000' s , the maximum growth rate of the
disturbance was computed based on the linear perturbation equations considering the eddy viscosity as a
nonlinear effect by del Álamo and Jiménez (2006) and Pujals et al. (2009). The average turbulent flow
veıocity distribution was calculated as the basic flow for the linear growth analysis. They confirmed that
the most amplified wavelength of disturbance in a short time corresponds to that of the near‐walı low
speed streak structure: that is, spanwise wavelength of  \lambda_{z}^{+}\approx 100 in wall unit is most unstable for the
turbulent base flow. However, the wavelength that is unstable for a longer target time and estimated as
a ıarge‐scale structure with  \lambda_{z}/d\sim 4.0 by the analysis, has not matched with that observed in direct
numerical simulations (DNS) and experiments at high Reynoıds numbers (Kim and Adrian, 1999; Abe
et al., 2001; del Álamo and Jiménez, 2003), which reported the large‐scale structures with  \lambda_{z}/d\sim 1.5 to
2.0. In addition to this issue for the high Reynolds‐number regime, there stiıı remains unresolved point
for the low Reynolds‐number regime relevant to the subcritical transition.

Tsukahara and co‐workers (Tsukahara et al., 2005, 2010; Tsukahara and Ishida, 2014) performed
DNS were in a plane channel flow at transitional Reynolds numbers. They found that the localized
turbulent region would be extended in an oblique direction against the mainstream and form a large‐scale
stripe pattern or oblique bands. For instance, at the friction Reynolds number of  Re_{\tau}=80 (defined later),
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the oblique structure is tilted approximately 25 degree in the streamwise direction. Further lowering the
Reynoıds number resulted in the limit state: at  Re_{\tau}=45 , the angle of obıiqueness became approximately
45 degree. The mechanism of these oblique‐band formations at very low Reynolds numbers has not yet
been eıucidated. At such a low Reynolds number, the spanwise wavelength  (\lambda_{z}^{+}\sim 100) of the low‐speed
streak structure near the wall is as large as the channel width  (2d) . This leads to an imperfect scale
separation of structures. Their nonlinear mutual interaction may affect on the growth of turbulence and
on the global critical Reynolds number of the subcrtical transition which the wall‐bounded shear flow
undergoes.

In this study, the maximum growth rate of the disturbance in the plane channel flow is computed,
although the attempt is as same as that is carried out by del Álamo and Jiménez (2006) and Pujals
et al. (2009), specialıy at a Reynolds number lower than the critical value based on the classical Orr‐
Sommerfeld equations. We attempt to eıucidate phenomena occurring in the channel flow field in such a
low Reynoıds number based on the required method.

2 Procedure

Computational method

The three‐dimensional linear perturbation equation is described as follows;

  \frac{\partial u_{\lambda}^{\prime+}}{\partial t^{+}}+\frac{\partial}{\partial
x_{j}^{+}}(\overline{u}_{i}^{+}u_{j}^{\prime+}+u_{i}^{\prime+}\overline{u}_{j}^{
+})=-\frac{\partial p^{\prime+}}{\partial x_{i}^{+}}+\frac{\partial}{\partial x_
{j}^{+}}(\nu_{T}^{+}\frac{\partial u_{i}^{\prime+}}{\partial x_{j}^{+}}) . (1)

In the equation,  (\overline{u}_{?}^{+},\overline{p}^{+}) is the base flow and  (u_{\dot{i}}^{\prime+}, p^{\prime+}) is the perturbation. The superscript  + indicates
that non‐dimensionaıization is done on the viscous scaıe near the wall. We assume that the flow is

homogeneous in the streamwise (x‐) and spanwise (z‐) directions. Pressure gradient of the base flow,
 \partial\overline{p}^{+}/\partial x^{+}, is set as 1. We consider the total eddy viscosity as a nonlinear effect, which is normalized
by kinematic viscosity:  \nu_{T}^{+}=\nu_{T}/\nu=1+\nu_{t}^{+} . The eddy viscosity  \nu_{t}^{+} is given based on the formula
proposed by Reynoıds and Tiederman (1967), as

 f_{1} = 1- \eta^{2_{i}} \int_{2}=1+2\eta^{2}, f_{3}=1-\exp(-\frac{(1-|\eta|)Re_
{\tau}}{A}) ,

 \nu_{t}^{+}  = 0.  5 \{1+(\frac{\kappa Re_{\tau}f_{1}f_{2}f_{3}}{3})^{2}\}^{1/2}-0.5 . (2)

The parameters in the expression,  A and  \kappa , are used as  A=26.5 and  \kappa=0.426 , respectively. The
average turbulent flow velocity distribution in the flow direction is

  \frac{\partial\overline{u}^{+}}{\partial\eta}=-\frac{Re_{\tau^{\gamma}I}}{\nu_
{T}^{+}} . (3)

Here,  \eta=y/d , the Reynolds number is defined as   Re_{\tau}=u_{\tau}d/\nu . We calculate  \overline{u}^{+} by Eq. (3) and the
profile can be obtained explicitly, as given in Fig. 1.

In this study, the maximum growth rate of perturbation is computed as

 G_{\max}( \tau)=\Vert u^{f}(0)\Vert=1\max\frac{E(\tau)}{E(0)}=\max\lambda_{j}j . (4)

The present computation program has been verified by comparison with laminar‐based solution (Butler
and Farreıl, 1992) and that of turbulent one (Pujals et al., 2009). Here, the number of grid points in the
wall‐normal direction is 129, and the time step is  \triangle tu_{\tau}/d=0.001.
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Figure 1: Profiles of streamwise base flow  \overline{u}^{+} (left), and the total eddy viscosity  \nu_{T}^{+} (right).

Computational condition

In accordance with the DNS result (Tsukahara and Ishida, 2014), we set the flow field at  Re_{\tau}=50,

in which oblique bands of the localized turbulent region can be observed. At the vicinity of such low
transitional Reynolds number, it has been observed that a turbulent spot which is locally turbulent occurs
first and then the turbulent region gradually grows obliquely into a band‐shaped structure in downstream
(Tsukahara and Ishida, 2014). Therefore, in the present study, we shall confirm the effect of the large‐
scale secondary flow in the spanwise direction which may excite the localized turbulence at the ıow
Reynolds number.

We consider the spanwise velocity distribution as the base flow from DNS results. The distribution is
modelled by the following equation for the sake of convenience.

  \overline{w}^{+}(y/d)=\frac{w_{0}^{+}}{36|\overline{u}^{+}|}\exp(-y/\delta_{1}
d)\cdot\sin(-2y/\delta_{2}d) . (5)

We apply  w_{0}=1.0,  \delta_{1}=0.4 and  \delta_{2}=0.32 . The value of  \overline{w} is  0 at the channel center and the maximum
vaıue is  \overline{w}^{+}=0.4 at approximately  y/d=0.398 . The distribution is shown in Fig. 2.

3 Results and discussion

The  g]_{0}ba1 amplification rate,  G_{globa1} , is obtained, which is the largest among the maximum growth rate
of perturbation,  G_{\max}(\tau) , of each target time, that  \tau u_{\tau}/d is from 0.05 to 5.0, as given by the following
equation:

 G_{g{\imath} oba{\imath}}= \max_{\tau}G_{\max}(\tau) . (6)

At first, if the flow condition is laminar without considering the nonlinear effect by eddy viscosity,
 G_{globa1} of any wavelength pair is less than 1.0. On the other hand, if the flow is turbulent, we observe
a temporal energy amplification with specific wavelength pair, (  \lambda_{x} , A.). These results showed the same
tendency as the results of the authors’ previous computations with  \overline{w}=0 (Yakeno and Tsukahara, 2017).

Secondly, in the case considering the spanwise velocity as the base flow, specific pairs of wavelength
exhibits an increase in the temporal energy growth rate. Here, the difference of global amplification rate,
Gglobal diff, between that with spanwise base flow,  G_{g{\imath} oba{\imath}.w} , and that without the spanwise base velocity,
 G_{g}\iota_{obal} , is calculated as

Gglobal,diff  = Ggıobal.  w-G_{g{\imath} oba{\imath}_{\dot{}}} (7)

and shown in Fig. 3. In the figure, the gray symbol of  + shows the pair of tested wavelengths  (\lambda_{x}, \lambda_{z}) .
Among trials in this study, the peaks of  G_{g}\iota_{obal,diff} are found at  (\lambda_{x}, \lambda_{z})=(20,3) and (100, 3) for the
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early stage of transition, i.e.,  \tau u_{\tau}/d=1.5 . This indicates that the growth rate of the disturbance mode
increases, which corresponds to the oblique direction when the span direction velocity is considered as
the base flow.

In the future, we will investigate further details of the mechanism that the spanwise velocity around the
turbulent flow spot enlarges the localized turbulent region obliquely, by increasing the trial wavelength,
identifying the disturbance mode corresponding to the oblique direction, and confirming the Reynolds
number dependency.
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Figure 3: Contour of increase of the global amplifi‐
Figure 2: Profile of spanwise base flow  w^{+}.

cation rates with spanwise base flow for each wave‐
length modes,  G_{g}\iota_{obal_{:}} dif  f.

4 Conclusion

We computed the most amplified non‐normal mode of transient growth for a plane channel flow at  Re_{\tau}=
 50 . It was found that the growth rate of the disturbance energy increased at specific pairs of wavelengths,
when we consider the spanwise velocity around a turbulent  spot/band as a base flow. The present results
imply that the spanwise secondary flow around a turbulent spotAband wouıd cause the transition in the
oblique direction to form a large‐scale stripe pattern of localized turbulence.
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