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1 Background

In this note, we summarize the author’s paper [14], explaining the background of 4‐
dimensional topology.

One of the most central problems in 4‐dimensional topology has been to classify smooth

4‐manifolds. To do this, it is natural to fix their underlying homeomorphism types, and

note that there exists no algorithm that classify homeomorphism types of closed orientable

smooth 4‐manifolds (cf. [9]). In contrast to other dimensions, this problem has been open
for any single (smoothable) homeomorphism type. The following would be one of the
main difficulties.

Problem 1.1. Given a closed oriented smooth 4‐manifold, find all smooth 4‐manifolds

homeomorphic to the given one.

Indeed, this problem has been open for any 4‐manifold. Since handlebody diagrams

(Kirby diagrams) can represent all closed smooth 4‐manifolds, one might think that di‐
agrams solve this problem. However, it is very difficult to see whether a given diagram

represents a closed 4‐manifold, and moreover there are no known method for constructing

all handlebodies homeomorphic to a given 4‐manifold. The same difficulties occur for

other diagrammatic methods as well.

A potential approach is a twisting operation, that is, removing a submanifold and

regluing it differently. Let us recall the definition of a cork twist. A cork (C, \tau) is a
pair consisting of a compact contractible oriented smooth 4‐manifold  C and a smooth

involution  \tau on the boundary such that  \tau extends to a self‐homeomorphism of  C , but

cannot extend to any self‐diffeomorphism of  C ([1]). Due to the order of  \tau , such  (C, \tau) is
often called of order 2. Removing an embedded  C from a 4‐manifold and regluing it via  \tau

is called a cork twist. A well‐known theorem states that for any exotic (i.e. homeomorphic
but non‐difFeomorphic) pair of simply connected closed oriented smooth 4‐manifolds, one
is obtained from the other by a cork twist ([5], [10]). This cork theorem thus gives
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us an important clue to Problem 1.1. However, since there is no known classification

of compact contractible 4‐manifolds, and many contractible 4‐manifolds admit infinitely

many embeddings into a 4‐manifold, this cork theorem does not solve the problem. We

also note that a cork twist does not always yield an exotic copy.

Recently higher order corks were constructed ([11], [4]), and surprisingly Gompf [8]
discovered infinite order corks. It is thus natural to ask whether every exotic copy of a

simply connected closed oriented smooth 4‐manifold is obtained by twisting a fixed com‐

pact contractible submanifold via a power of a fixed self‐diffeomorphism of the boundary.

However, Tange [12] answered negatively, that is, he gave infinite families of pairwise ex‐
otic simply connected closed 4‐manifolds such that, for any 4‐manifold  X , any contractible

submanifold  C , and any self‐diffeomorphism  f of  \partial C , the families cannot be constructed

from  X by twisting  C via powers of  f , by showing a certain finiteness for Ozsváth‐Szabó
invariants of cork twisted 4‐manifolds.

2 Main results

It would be natural to discuss more general twists. Indeed, it has been well known

that, under a certain condition, logarithmic transforms (i.e. twists along  T^{2}\cross D^{2} ) in a
4‐manifold can produce infinitely many exotic smooth structures (cf. [9], [7]). (However,
many twisting operations including logarithmic transforms do not always produce exotic

copies. Indeed, the resulting 4‐manifolds are often diffeomorphic to the original mani‐

folds.) So we discuss twists and more general surgeries along not necessarily contractible
submanifolds. To contrast with the cork theorem, we will state the main results only

for simply connected closed 4‐manifolds. However, the corresponding results hold for

non‐simply connected 4‐manifolds and non‐closed 4‐manifolds as well.

2.1 Nonexistence of twists generating all exotic smooth structures

We first discuss twists, using the following terminologies.

Definition 2.1. Let  X be an oriented smooth 4‐manifold, and let  W be a compact (not
necessarily connected) codimension zero submanifold. For a family of smooth oriented
4‐manifolds, we say that the family is generated from  X by twisting  W , if each member

is orientation preserving diffeomorphic to a 4‐manifold obtained from  X by removing

the submanifold  W and gluing it back via  a (not necessarily orientation preserving) self‐
diffeomorphism of the boundary  \partial W . In the case where the gluing map reverses the

orientation, the newly glued piece is the orientation reversal  \overline{W} of  W.
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Definition 2.2. For an oriented smooth 4‐manifold  X , let  S(X) be the set of all smooth

structures on  X , that is,  S(X) is the set of all (diffeomorphism types of) oriented smooth
4‐manifolds homeomorphic to  X preserving the orientations.

This set was inspired from Tange’s galaxy ([13]). As is well‐known,  S(X) is a countable
set for any compact oriented 4‐manifold  X . We consider the following problem.

Problem 2.3. Does a given compact oriented smooth 4‐manifold  X admit a compact

(not necessarily connected) codimension zero submanifold  W such that  S(X) is generated
from  X by twisting  W?

This problem asks a generalization of the cork theorem, since we do not impose any

restrictions on the topology of  W and on the gluing map. If the answer is affirmative,

then we obtain a useful approach to Problem 1.1, since  \mathcal{S}(X) is generated by just a

single submanifold in this case. However, we gave a partial negative answer under a mild

assumption on  b_{1}(\partial W) .

Theorem 2.4 ([14]). For each positive integer  n , there exists a simply connected closed
oriented smooth 4‐manifold  X such that, for any compact (not necessarily connected)
codimension zero submanifold  W satisfying  b_{1}(\partial W)<n , the set  S(X) cannot be gen‐

erated from  X by twisting W. Furthermore, there exist infinitely many pairwise non‐

homeomorphic such 4‐manifolds.

For example, the elliptic surface  E(n+1) satisfies the condition of this theorem. We

note that the aforementioned Tange’s result follows from this result, since the boundary of

any compact contractible 4‐manifold is  a (connected) homology 3‐sphere and thus satisfies
 b_{1}=0 . Our proof is completely different from Tange’s one.

This theorem shows that there exists no universal generator of smooth structures re‐

garding twists.

Corollary 2.5 ([14]). There exists no compact (not necessarily connected) oriented smooth
4‐manifold  W such that for any simply connected oriented closed smooth 4‐manifold  X,

the set  S(X) is generated from a smooth oriented 4‐manifold by twisting a fixed embedded

copy of  W.

2.2 Nonexistence of surgeries generating all exotic smooth structures

Next we discuss surgeries using the following terminology.

Definition 2.6. Let  X be an oriented smooth 4‐manifold, and let  W be a compact (not
necessarily connected) codimension zero submanifold. For a family of oriented smooth
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4‐manifolds, we say that the family is generated from  X by performing surgeries on  W,

if each member is obtained from  X by removing the submanifold  W and gluing a com‐

pact oriented smooth 4‐manifold whose boundary is diffeomorphic to  \partial W preserving the

orientations. Note that we do not fix the newly glued piece.

Clearly surgeries are much more general operations than twists. Since surgeries (e.g.
Fintushel‐Stern knot surgery [6]) can produce various infinite exotic families (cf. [9], [7]),
we consider a surgery version of Problem 2.3.

Problem 2.7. Does a given compact oriented smooth 4‐manifold  X with  b_{2}>0 admit

a compact (not necessarily connected) codimension zero submanifold  W with  b_{2}(W)<
 b_{2}(X) such that  S(X) is generated from  X by performing surgeries on  W?

Without the condition  b_{2}(W)<b_{2}(X) , this problem has a trivial affirmative answer.

Indeed, for any compact codimension zero submanifold  V of the 4‐ball, it is easy to see

that  W=X- int  V provides an affirmative answer, realizing any integer not less than

 b_{2}(X) as  b_{2}(W) . We thus need the  b_{2} condition. We gave a partial negative answer under

a mild assumption on  b_{2}(W)+3b_{1}(\partial W) .

Theorem 2.8 ([14]). For each positive integer  n , there exists a simply connected closed
oriented smooth 4‐manifold  X with  b_{2}>n such that, for any compact (not necessarily
connected) codimension zero submanifold  W with  b_{2}(W)+3b_{1}(\partial W)<n , the set  S(X)
cannot be generated from  X by performing surgeries on W. Furthermore, there exist

infinitely many pairwise non‐homeomorphic such 4‐manifolds.

For example, the elliptic surface  E(n+1) satisfies the condition of this theorem as

well. Similarly to the case of twists, this theorem shows the nonexistence of a universal

generator for surgeries.

Corollary 2.9 ([14]). There exists no compact oriented smooth 4‐manifold  W such that
for any simply connected closed oriented smooth  4 ‐manifold  X , the set  S(X) is generated

from  X by performing surgeries on a fixed embedded copy of  W.

2.3 Nonexistence of twists generating all exotic smooth structures by varying

embeddings

We further discuss another generalization.

Problem 2.10. Does a given compact oriented smooth 4‐manifold  X admit a compact

(not necessarily connected) oriented smooth 4‐manifold  W such that  S(X) is generated
from  X by twisting an embedded copy of  W and varying the embedding of  W into  X?
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This problem is largely flexible than Problem 2.3, since we vary an embedding of  W.

Akbulut and the author ([2], [3]) earlier studied a related problem and showed that many
order‐2 corks can produce infinite families of pairwise exotic simply connected closed 4‐

manifolds by twisting corks and varying embeddings of corks. By contrast, we gave a

partial negative answer to this problem for sufficiently large  W , by applying (the proof
of) Theorem 2.8.

Theorem 2.11 ([14]). For each positive integer  n , there exists a simply connected closed
oriented smooth 4‐manifold  X with  b_{2}=12n+10 such that for any compact oriented

smooth 4‐manifold  W with  b_{2}(W)-4b_{1}(\partial W)>11n+10 , the set  S(X) cannot be generated

from  X by twisting an embedded copy of  W and varying the embedding of  W into  X.

In the rest, we explain the outline of the proofs of these results. Let us recall that the

minimal genus function  g_{X} :  H_{2}(X;\mathbb{Z})arrow \mathbb{Z} of a smooth 4‐manifold  X is a function that

sends a second homology class to the minimal genus of a smoothly embedded surface

representing the homology class. This function gives useful informations of 4‐manifolds,

but it is very hard to distinguish two functions due to identifications of second homology

groups and also difficult to determine the values. To avoid these difficulties, we introduced

a new diffeomorphism invariant  G_{X}(n)(\in \mathbb{Z}) determined from the minimal genus function

 g_{X} , which we call the adjunction  n‐genus. Here  n is a positive integer satisfying  n\leq b_{2}(X) ,

and for each  n , the value  G_{X}(n) is a diffeomorphism invariant. We showed that an infinite

family of (not necessarily closed) 4‐manifolds with pairwise distinct adjunction  n‐genera
cannot be generated by twists and surgeries as in Theorems 2.4 and 2.8. By applying the

adjunction inequalities, we also gave sufficient conditions that infinitely many 4‐manifolds

have pairwise distinct adjunction  n‐genera. Then, by constructing infinite families of

pairwise homeomorphic 4‐manifolds satisfying the sufficient conditions, we proved the
main results.
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