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1 Introduction

The cluster algebra, introduced by Fomin‐Zelevinsky [FZ02], is a commutative associa‐
tive algebra associated with a (possibly weighted) quiver  Q without loops and 2‐cycles.
It is a subalgebra of the field of rational functions  \mathbb{C}  (A_{1} , A_{N}) obtained by applying a
finite number of rational transformations called cluster  A‐transformations to the initial

variables  A_{1} , ,  A_{N} . The cluster algebra is effectively used to investigate the function

algebras of the double Bruhat cells of a reductive algebraic group and solve the classical

total positivity problem. Almost simultaneously, a geometric counter part (and a “dual‐
ization”) of the cluster algebra is formulated by Fock‐Goncharov [FG09]. They associate
a dual pair of schemes  A_{|Q|} and  \mathcal{X}_{|Q|} , each of which is equipped with a distinguished

collection of birational toric charts whose transition functions are given by cluster A‐ and
 \mathcal{X}‐transformations. Here a cluster  \mathcal{X}‐transformation is another rational transformation.

The pair  (\mathcal{A}_{|Q|}, \mathcal{X}_{|Q|}) is called the cluster ensemble associated with  Q . The cluster algebra
lies in the function algebra of  A_{|Q|}.

The cluster transformations are induced by a mutation, which is a transformation of

quivers. The cluster modular group  \Gamma_{|Q|} is, roughly speaking, the group of sequences of

mutations which preserves a quiver. It acts on the cluster algebra and the cluster ensemble

by compositions of cluster transformations.

Since the foundation, many fruitful connections between the cluster algebra/ensemble
and a broad area of mathematics are found: higher Teichmüller theory [FG06], quantum
groups [Ip16], integrable systems [GK13], and many others. In particular, the cluster
modular group plays important roles in these theories: it gives a combinatorial description

of the action of the mapping class group on higher Teichmüller spaces; the universal R‐

matrix of a quantum group is realized in the cluster modular group; it gives discrete flows

in cluster integrable systems, and so on.

Example 1.1. A basic example is given by the quiver  Q=Q_{\triangle} associated with an

ideal triangulation  \triangle of a marked surface  \Sigma . In this case, the corresponding cluster
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ensemble describes a combinatorial structure of Teichmüller spaces related to  \Sigma : the

positive real part  \mathcal{A}_{|Q|}(\mathbb{R}_{>0}) coincides with the decorated Teichmüller space introduced by

Penner [Pen12] equipped with the lift of the Weil‐Petersson form,  \mathcal{X}_{|Q|}(\mathbb{R}_{>0}) coincides with
the enhanced Teichmüller space [FG07] equipped with the Goldman Poisson structure.
They are two types of extensions of the Teichmüller space of  \Sigma , which is the universal

cover of the Riemann moduli space of  \Sigma . The cluster modular group  \Gamma_{|Q|} contains the

mapping class group  MC(\Sigma) as a subgroup of finite index [BS15]. Namely, each element
 \phi\in MC(\Sigma) is represented by a mutation sequence and the actions on these Teichmüller

spaces are represented by the corresponding composition of cluster transformations.

From this example, we would be able to say that: the cluster ensemble is a generalization

of the Teichmüller space, and the cluster modular group is a generalization of the mapping

class group. Then our general question is the following:

Problem 1.2. Is it possible to generalize a theorem for the Teichmüller spaces/mapping
class groups to a theorem for the cluster ensembles/cluster modular groups /?

In this manuscript, we introduce cluster Dehn twists in the cluster modular group and

show that they have similar properties as Dehn twists in the mapping class groups of
surfaces.

2 Definitions

In this section, we recall basic notions of cluster ensemble following [FG09]. For our
purpose, it is enough to consider the positive real part of the cluster ensemble which is a

pair of contractible manifolds, rather than considering the corresponding schemes.

A quiver without loops and  2cycles is given by the data  Q=(I, \varepsilon) , where  I is a finite

set (the set of vertices),  \varepsilon=(\varepsilon_{ij})_{i,j\in I} is a skew‐symmetric matrix (the entry  \varepsilon_{ij} gives
 \#\{ arrows i  arrow j\}-\#\{ arrowS  \dot{j}arrow i\}) . Let us consider a tuple  (Q, (A_{i})_{i\in I}, (X_{i})_{i\in I}) , called

a seed, where  Q is a quiver and  (A_{i})_{i\in I},  (X_{i})_{i\in I} are two bunches of commutative variables

parametrized by the vertex set  I of  Q . For a vertex  k\in I , we define the mutation
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 \mu_{k}:(Q, (A_{i})_{i\in I}, (X_{i})_{i\in I})arrow(Q', (A_{i}')_{i\in I}, (X_
{i}')_{i\in I}) by the following formulas:

 \varepsilon_{ij}'=\{\begin{array}{ll}
-\varepsilon_{ij}   i=k or j=k,
\varepsilon_{\dot{i}j}+\frac{|\varepsilon_{ik}|\varepsilon_{kj}+\varepsilon_{ik}
|\varepsilon_{kj}|}{2}   otherwise,
\end{array} (1)

 A_{\dot{i}}'=\{\begin{array}{ll}
A_{k}^{-1}(\prod_{j:\varepsilon_{kj}>0}A_{j}^{\varepsilon_{kj}}+\prod_{j:
\varepsilon_{kj}<0}A_{j}^{-\varepsilon_{kj}})   i=k,
A_{i}   i\neq k.
\end{array} (2)

 X_{i}'=\{\begin{array}{ll}
X_{k}^{-1}   i=k,
X_{i}(1+X_{k}^{-sgn(\varepsilon_{ik})})^{-\varepsilon_{ik}}   i\neq k,
\end{array} (3)

The mutation class  |Q| is the set of quivers which are obtained by finite sequences of

mutations from  Q . Henceforth, let us concentrate our attention to the  \mathcal{A}‐side. (The story
for the  \mathcal{X}‐side goes similarly.) The partial data  (Q, (A_{i})_{i\in I}) of a seed is encoded in the
following geometric object. Let  \mathcal{A}_{Q} be the positive Euclidean space  \mathbb{R}_{>0}^{I} equipped with

coordinates  (A_{i})_{i\in I} and a presymplectic structure  \omega_{Q}  := \sum_{i,j\in I}\varepsilon_{ij}d\log A_{i}\wedge d\log A_{j} . The

cluster  A‐transformation is the isomorphism  \mu_{k}^{a} :  (\mathcal{A}_{Q}, \omega_{Q})arrow(\mathcal{A}_{Q'}, \omega_{Q'}) such that the

pull‐back  (\mu_{k}^{a})^{*}A_{i} is given by the right‐hand side of the formula (2).
The cluster  \mathcal{A}‐space  \mathcal{A}_{|Q|}(\mathbb{R}_{>0}) is defined to be a presymplectic manifold which satisfies

the following conditions.

1. For each quiver  Q'\in|Q| , we have an isomorphism  A_{Q'} :  \mathcal{A}_{|Q|}(\mathbb{R}_{>0})arrow(\mathcal{A}_{Q'}, \omega_{Q'}) .

2. If  Q"=\mu_{k}(Q') , then the corresponding coordinate transformation  A_{Q"}\circ A_{Q}^{-1} coincides
with the cluster transformation  \mu_{k}^{a}:(\mathcal{A}_{Q'}, \omega_{Q'})arrow(\mathcal{A}_{Q"}, \omega_{Q"}) .

It depends only on the mutation class  |Q| and it has the following natural symmetry

group. A mutation sequence is a finite sequence  \phi of mutations and permutations on the

set  I . Let  \phi^{a} denote the corresponding composition of  \mu_{k}^{a\prime}s and  \sigma^{a\prime}s . Here  \sigma^{a} denotes

the permutation of the coordinates corresponding to a permutation  \sigma . We identify two

mutation sequences  \phi_{1} and  \phi_{2} if  \phi_{1}^{a}=\phi_{2}^{a} . The cluster modular group  \Gamma_{Q} at  Q is the group

of mutation sequences from  Q to  Q , modulo this identification. If  Q'=\mu_{k}(Q) , then

the conjugation by  \mu_{k} gives a group isomorphism  \Gamma_{Q'}\cong\Gamma_{Q} . Therefore we identify these

groups via this isomorphism and denote the resulting abstract group by  \Gamma_{|Q|} . When we fix
 a “basepoint”  Q'\in|Q| , an element  \phi\in\Gamma_{|Q|} is represented by a mutation sequence. The

action of  \Gamma_{|Q|} on  \mathcal{A}_{|Q|}(\mathbb{R}_{>0}) is given by the natural action  \Gamma_{Q'}arrow Aut(\mathcal{A}_{Q'}, \omega_{Q'}),  \phi\mapsto\phi^{a}
for some  Q'\in|Q|.

Remark 2.1. One can similarly define the cluster  \mathcal{X}‐space  \mathcal{X}_{|Q|}(\mathbb{R}_{>0}) using the cluster
 \mathcal{X}‐transformation and a Poisson structure  \Pi_{Q}  := \sum_{i,j\in I}\varepsilon_{ij}X_{i}\frac{\partial}{\partial X_{i}}\wedge X_
{j}\frac{\partial}{\partial X_{j}} instead of  \omega_{Q}.
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For each mutation sequence  \phi , one can associate the corresponding compostion  \phi^{x} . It is

known [Man14] that  \phi_{1}^{a}=\phi_{2}^{a} if and only if  \phi_{1}^{x}=\phi_{2}^{x} . Hence the cluster modular group
 \Gamma_{|Q|} acts on  \mathcal{X}_{|Q|}(\mathbb{R}_{>0}) as well.

Definition 2.2. An element  \phi\in\Gamma_{|Q|} of infinite order is called a cluster Dehn twist if

there exist integers  n,  l\in \mathbb{Z},  l\neq 0 , such that  \phi^{n}=((ij)\mu_{j})^{l} for some vertices  i,  j\in I of

a quiver  Q'\in|Q| . Here  (ij) denotes the transposition of  i and  j.

Example 2.3 (Dehn twists and half‐twists). Dehn twists and half‐twists in the mapping
class group of a marked surface are cluster Dehn twists. (Details are in the talk)

3 Parabolic dynamics

The cluster  \mathcal{A}‐space  \mathcal{A}_{|Q|}(\mathbb{R}_{>0}) admits a natural compactification  \overline{\mathcal{A}}_{|Q|} , which we call the

Fock‐Goncharov compactification. It is constructed by attaching the projectivized tropical

space at infinity. Crucial properties are:  \overline{\mathcal{A}}_{|Q|} is homeomorphic to a closed ball  B^{I} and

the action of the cluster modular group extends to  \overline{A}_{|Q|} continuously. Then the action of

a cluster Dehn twist on  \overline{\mathcal{A}}_{|Q|} has the following dynamical property:

Theorem 3.1. Let  Q be a connected quiver with at least 3 vertices,  \phi\in\Gamma_{|Q|} be a cluster

Dehn twist. Then there exists a unique boundary point  \ell\in\partial\overline{A}_{|Q|} such that

  narrow\infty 1\dot{{\imath}}m\phi^{\pm n}(g)=\ell
in  \overline{\mathcal{A}}_{|Q|} , for all  g\in \mathcal{A}_{|Q|}(\mathbb{R}_{>0}) .

In other words, the action of  \phi has parabolic dynamics. Note that the Dehn twist

 t_{C}\in MC(\Sigma) along a simple closed curve   C\in\Sigma has parabolic dynamics in the Thurston

compactification of the Teichmüller space: indeed, the limit point  \ell is given by the element

represented by  C in the Thurston boundary, which is the space of measured geodesic
laminations on  \Sigma.

Remark 3.2 (Nielsen‐Thurston classification). In [Ish17], the elements of a cluster mod‐
ular groups are classified into 3 types: periodic/cluster‐reducible/cluster‐pA (pseudo‐
Anosov). They are characterized by fixed point properties of the action on the Fock‐
Goncharov compactification  \overline{\mathcal{X}}_{|Q|} of the  \mathcal{X}‐space, modulo some technical conjectures on

cluster algebras. In these terms, a cluster Dehn twist is a cluster‐reducible element which

is maximally reducible (cluster‐reduction induces a 2‐dimensional dynamics).
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4 Generation of a cluster modular group by cluster Dehn twists

It is known that the mapping class group of a marked surface is virtually generated by

Dehn twists and half‐twists. Next we provide a generalization of this theorem. A quiver

 Q is of finite mutation type if the set  |Q| is finite.  Q is of finite type if it is mutation‐

equivalent to a Dynkin quiver. It is known that the cluster modular group  \Gamma_{|Q|} is a finite

group if  Q is of finite type, and it is a infinite group if  Q is of mutation finite type and

not finite type.

Theorem 4.1 (Felikson‐Shapiro‐Tumarkin [FST12]). Suppose a quiver  Q is of finite
mutation type and not finite type. Then either  Q is associated with an ideal triangulation

of a marked surface or mutation‐equivalent to one of the following 8 quivers:  \tilde{E}_{6},\tilde{E}_{7},\tilde{E}_{8},
 E_{6}^{(1,1)},  E_{7}^{(1,1)},  E_{8}^{(1,1)},  X_{6},  X_{7}.

Then we prove the following.

Theorem 4.2. Let  Q be a quiver of finite mutation type. If  Q is not of type  \overline{E}_{6}^{(1,1)},\overline{E}_{7}^{(1,1)}
or  \overline{E}_{8}^{(1,1)} , then the cluster modular group  \Gamma_{|Q|} is generated by cluster Dehn twists.

We conjecture that for all quiver of finite mutation type, the corresponding cluster

modular group is generated by cluster Dehn twists.
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