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SIMPLIFIED BROKEN LEFSCHETZ FIBRATIONS AND

TRISECTIONS OF SMOOTH 4‐MANIFOLDS

Osamu SAEKI

Institute of Mathematics for Industry, Kyushu University

ABSTRACT. We present a survey on explicit algorithms for simplifying the topology
of indefinite fibrations on 4 manifolds, which include broken Lefschetz fibrations and
indefinite generic maps, from the viewpoint of singularity theory. These algorithms
allow us to give purely topological and constructive proofs of the existence of simplified
broken Lefschetz fibrations on all closed oriented 4‐manifolds, and a theorem of Auroux‐
Donaldson‐Katzarkov on the existence of simplified broken Lefschetz pencils on near‐
symplectic 4‐manifolds. We moreover show the existence of simplified trisections on
all 4‐manifolds and establish a correspondence between broken Lefschetz fibrations and
trisections of 4‐manifolds.

1. INTRODUCTION

This is a survey article summarizing results obtained in [5, 6], which are joint works
with Inanç Baykur (University of Massachusetts).

Lefschetz fibrations on smooth 4‐manifolds have their origin in complex surfaces: in
a sense, they have been imported from algebraic geometry into the world of differential
topology (see [23, 21]). Since then, they have been extensively studied: in particular,
their close relation to symplectic structures on 4‐manifolds revealed by Donaldson [7]
and Gompf [15] accelerated the study. A disadvantage, however, of Lefschetz fibrations
and symplectic structures is that even if a smooth 4‐manifold satisfies obvious algebraic
topological necessary conditions, it may not admit such structures.

Then, Auroux−Donaldson−Katzarkov [3] introduced the notions of broken Lefschetz fi‐
brations and near‐symplectic structures. The important point is that they allowed a closed
2‐form corresponding to a near‐symplectic structure to vanish along a 1‐dimensional sub‐
manifold. The topological counter part for such structures is Lefschetz fibrations with
indefinite fold singularities appearing along 1‐dimensional submanifolds. Since then, sev‐
eral authors have shown that every closed oriented smooth 4‐manifold admits a broken
Lefschetz fibration.

As a broken Lefschetz fibration has indefinite folds as its singularities, its image might be
quite complicated. In this article, we present some explicit procedures for simplifying the
indefinite fold image by several “moves” that modify a given broken Lefschetz fibration by
homotopy. Here, a broken Lefschetz fibration is simplified if all the fibers are connected, its
fold locus is connected, and the restriction to the fold locus is an embedding. The moves
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that we use are closely related to codimension one generic singularities for smooth maps of
4‐manifolds into 2‐manifolds: in other words, they correspond to generic bifurcations for
1‐parameter families of smooth maps. Therefore, the singularity theory plays an essential
role here. The construction of such a homotopy will be given explicitly: as a result, we get
an explicit algorithm for simplifying a broken Lefschetz fibration. As a consequence, we
give a purely topological proof of some results obtained by Auroux−Donaldson−Katzarkov
[3].

In [13], Gay‐Kirby introduced the notion of a trisection decomposition of a 4‐manifold:
it is a decomposition into three 4‐dimensional 1‐handlebodies attached nicely along their
boundaries. They pointed out that such decompositions are naturally obtained from
certain generic smooth maps of 4‐manifolds into  \mathbb{R}^{2} . In the final section of this article, we
apply our simplification process for broken Lefschetz fibrations to such generic maps and
show that every 4‐manifold admits a “simplified” trisection. In fact, given a simplified
broken Lefschez fibration, we give an explicit procedure to get a smooth generic map into
 \mathbb{R}^{2} which is simplified and which corresponds to a trisection decomposition. In partiular,
the image of such a generic map has symmetry of order three. This can be compared to
the work of Gay [10], who constructed trisection decompositions starting from Lefschetz
pencils.

Trisection decompositions of 4‐manifolds can be considered as a generalization of Hee‐
gaard decompositions of 3‐manifolds. Our result implies that every 4‐manifold admits a
trisection decomposition that satisfies certain simplicity conditions. Such simplified trisec‐
tion decompositions are to be further studied. Here, we should note that Hayano [16] has
already given a characterization of trisection decompositions that come from simplified
trisections, and has also classified genus‐2 simplified trisections.

Throughout the paper, all manifolds and maps between them are smooth of class  C^{\infty}

unless otherwise specified.

2. BROKEN LEFSCHETZ FIBRATIONS

Let us start by introducing some concepts which play important roles in this article.
Let  M^{4} and  \Sigma^{2} be closed connected oriented manifolds of dimensions 4 and 2, respec‐

tively, and  f :  M^{4}arrow\Sigma^{2} a smooth map.

Definition 2.1. A singularity (or a singular point) of  f is a point  x\in M^{4} such that the
rank of the differential  df_{x} :  T_{x}M^{4}arrow T_{f(x)}\Sigma^{2} is strictly smaller than 2. The terminology
“singularity” is often used also for referring to (an appropriate equivalence class of) the
map germ of  f at a singular point  x.

A singularity of  f that has the normal form

 (z, w)\mapsto zw

with respect to  C^{\infty} complex coordinates compatible with the orientations, is called a
Lefschetz singularity.

A smooth map  f :  M^{4}arrow\Sigma^{2} is a Lefschetz fibration if it has only Lefschetz singularities.

Definition 2.2. A Lefschetz pencil is a smooth map  M^{4}\backslash Barrow S^{2} for a finite subset
  B\neq\emptyset of  M^{4} with only Lefschetz singularities such that around each point of  B it has
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complex local model

 (z_{1}, z_{2})\mapsto z_{1}/z_{2}\in \mathbb{C}\cup\{\infty\}=S^{2}
Thus, blowing‐up the points in  B , we get a Lefschetz fibration  M^{4}\#(\#^{|B|}\overline{\mathbb{C}P^{2}})arrow S^{2} , where
 |B| is the number of points in  B . In other words, blowing‐down disjoint  (-1) ‐sections
for a Lefschetz fibration, we get a Lefschetz pencil.

By Donaldson [7] and Gompf [15], the existence of a Lefschetz pencil is equivalent to
the existence of a symplectic structure. Here, a symplectic structure refers to a closed
2‐form  \omega\in\Omega^{2}(M^{4}),  d\omega=0 , that is non‐degenerate,  \omega^{2}>0 ; i.e.  \omega\wedge\omega gives a volume
form of  M^{4} compatible with the orientation.

If a 4‐manifold  M^{4} admits a symplectic structure, then we see easily that  b_{2}^{+}(M^{4})>0,
where  b_{2}^{+}(M^{4}) denotes the number of positive eigenvalues of the intersection form of  M^{4},
 H_{2}(M^{4};\mathbb{R})\cross H_{2}(M^{4};\mathbb{R})arrow \mathbb{R} . However, it is known that not every  M^{4} with  b_{2}^{+}(M^{4})>0
admits a symplectic structure. We can say that symplectic structures are “hard”

In order to make it “soft”, let us consider the following singularity.

Definition 2.3. A singularity that has the (real) normal form

 (t, x_{1}, x_{2}, x_{3})\mapsto(t, x_{1}^{2}+x_{2}^{2}-x_{3}^{2})

is called an indefinite fold singularity. See also Definition 3.1 below.

Definition 2.4  (Auroux-Donaldson-Katzarkov [ 3]) . A smooth map  f :  M^{4}arrow\Sigma^{2} is a
broken Lefschetz fibration if it has at most Lefschetz and indefinite fold singularities.

A broken Lefschetz pencil is similarly defined.

For a broken Lefschetz fibration  f , we denote by  Z_{f} the set of indefinite fold singulari‐
ties. Note that  Z_{f} is a closed 1‐dimensional submanifold of  M^{4}.

By  Auroux-Donaldson-Katzarkov [ 3] , the existence of a broken Lefschetz pencil is
equivalent to the existence of a near‐symplectic structure. Here, a near‐symplectic struc‐
ture refers to a closed 2‐form  \omega\in\Omega^{2} (M4),  d\omega=0 , that satisfies the following: at each
point  x\in M^{4} , either  \omega_{x}^{2}>0 (non‐degenerate), or  \omega_{x}=0 and the intrinsic gradient
 \nabla\omega:T_{x}M^{4}arrow\wedge^{2}(T_{x}^{*}M^{4}) as a linear map has rank 3. The zero locus of  \omega , i.e. the set of
points  x\in M^{4} where  \omega_{x}=0 , is a closed 1‐dimensional submanifold of  M^{4} denoted by
 Z_{\omega}.

Example 2.5. The 2‐form  \Omega=dt\wedge dQ+*(dt\wedge dQ) on  \mathbb{R}^{4} with coordinates  (t, x_{1}, x_{2}, x_{3})
is near‐symplectic with  Z_{\Omega} being the  t‐axis. Here,  Q(x_{1}, x_{2}, x_{3})=x_{1}^{2}+x_{2}^{2}-x_{3}^{2} is an
indefinite quadratic form  and*is the Hodge star operator (see [18]).

It is known that every  M^{4} with  b_{2}^{+}(M^{4})>0 admits a near‐symplectic structure [17, 3].
We can say that near‐symplectic structures are “soft”

3. INDEFINITE FIBRATIONS

In this section, we introduce the notion of indefinite fibrations on smooth 4‐manifolds
and state our main results.

Let us first recall the following singularities, which are known to be generic.
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Definition 3.1. A singularity of a smooth map  f :  M^{4}arrow\Sigma^{2} is a fold if it is locally given
by

 (t, x_{1}, x_{2}, x_{3})arrow(t, \pm x_{1}^{2}\pm x_{2}^{2}\pm x_{3}^{2}) .

A singularity is a cusp if it is locally given by

 (t, x_{1}, x_{2}, x_{3})\mapsto(t, x_{1}^{3}+tx_{1}\pm x_{2}^{2}\pm x_{3}^{2}) .

They are indefinite if both of the  + and — signs appear in the above normal forms.
Otherwise, they are definite.

Then, the following theorem is classically known.

Theorem 3.2 (Whitney [31], Thom [29]). An arbitrary smooth map  M^{4}arrow\Sigma^{2} can be
approximated by a map with only fold and cusp singularities. More precisely, the set of
smooth maps with only fold and cusp singularities forms an open and dense subset of the
mapping space  C^{\infty}(M^{4}, \Sigma^{2}) endowed with the Whitney  C^{\infty} ‐topology.

In the following, a smooth map  f :  M^{4}arrow\Sigma^{2} with fold and cusp singularities is called
a generic map. Such a map  f is called an indefinite generic map if its folds and cusps are
all indefinite.

Remark 3.3. Generic maps are often called Morse 2‐functions [11, 12].

Now, let us introduce the following class of maps, which plays a central role in this
article.

Definition 3.4. A smooth map  f :  M^{4}arrow\Sigma^{2} is an indefinite fibration if it is an indefinite
generic map outside of a finite set of Lefschetz singularities.

Note that for an indefinite fibration, the image of its indefinite fold locus is normally
oriented: in the direction, it corresponds to a Morse critical point of index 2, i.e.  a

 3‐dimensional 2‐handle is attached (see Fig. 1). In other words, in the direction, the
topology of a fiber changes by a 2‐handle attachment when crossing over the fold image
from one side to the other.

 g cycle

 f(Z_{f})

FIGURE 1. Normal orientation of fold image
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indefinite ty

 M^{4}

 f

 \Sigma^{2}

 f(Z_{f})

Image of a Lefschetz singularity

FIGURE 2. Fibers of an indefinite fibration: a schematic picture

Let us give a schematic picture of an indefinite fibration  M^{4}arrow\Sigma^{2} . Its fibers vary as
depicted in Fig. 2 when we move the corresponding points in the base surface.

Indefinite fibrations are complicated in general as shown in Fig. 2, in the sense that
the image of the fold locus might have self‐intersections and its position in the target
surface might not be simple. Moreover, fibers might not be connected. Let us introduce
the following concepts which describe “simple” indefinite fibrations.

Definition 3.5. For an indefinite fibration  f:M^{4}arrow S^{2} into the 2‐sphere, we say that
 f is directed if  f(Z_{f}) is contained in a 2‐disk  D in  S^{2} such that the complement of a
regular value   z_{0}\in Int  D can be non‐singularly foliated by arcs oriented from  z_{0} to  \partial D,
which intersect the image of each fold arc transversely in its normal direction. We also say
that  f has embedded fold image, if  f is injective on  Z_{f} . We say that  f is fiber‐connected,
if every fiber  f^{-1}(z),  z\in S^{2} , is connected. Similar notions are defined also for broken
Lefschetz pencils.

Definition 3.6. A broken Lefschetz fibration  M^{4}arrow S^{2} (or a broken Lefschetz pencil) is
simplified if it is fiber‐connected, directed with embedded fold image, and it has connected
fold locus.

In this article, we give a brief survey of a purely topological proof to the following
theorem, originally due to Auroux−Donaldson−Katzarkov.
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Theorem 3.7  (Auroux-Donaldson-Katzarkov [ 3]) . Let  M^{4} be a closed connected oriented
4‐manifold.

(1) For a closed oriented 1‐dimensional submanifold   Z\neq\emptyset of  M^{4} with  [Z]=0 in
 H_{1}(M^{4};\mathbb{Z}) , there exists a simplified broken Lefschetz fibration  f :  M^{4}arrow S^{2} with  Z_{f}=Z.

(2) Let  \omega be a near‐symplectic form with   Z_{\omega}\neq\emptyset . Then, there exists a simplified broken
Lefschetz pencil  g on  M^{4} with  Z_{g}=Z_{\omega}.

In particular, every closed oriented 4‐manifold admits a simplified broken Lefschetz
fibration by Theorem 3.7 (1). (Just consider an oriented circle embedded in a 4‐disk in
 M^{4} as  Z.)

Auroux−Donaldson−Katzarkov [3] used approximately holomorphic techniques in order
to show the above theorem. On the other hand, our proof is based on singularity theory;
in particular, we will see that  f and  g as above can be derived from given generic maps
by explicit algorithms.

Existence of broken Lefschetz fibrations on every 4‐manifold has been proved by sev‐
eral authors. Baykur [4] and Gay‐Kirby [12] used singularity theory; however, the results
were not simplified. Akbulut‐Karakurt [1] and Lekili [19] used Eliashberg’s classification
of over‐twisted contact structures [8] and Giroux’s open‐book/contact‐structure corre‐
spondence [14]; their results were simplified, but the construction was not explicit. Our
algorithms are based on singularity theory and give explicit constructions of broken Lef‐
schetz fibrations and pencils that are simplified.

As a digression, we have the following remark. For other dimensions, we have the
following, where  Z_{f} denotes the set of all singular points of a smooth map  f.

Theorem 3.8 ([25]). A closed orientable 3‐manifold  M^{3} admits a smooth map  f :   M^{3}arrow
 \mathbb{R}^{2} with only fold and cusp singularities such that  f|_{Z_{f}} is an injection if and only if  M^{3}

is a graph manifold.

Theorem 3.9 (Saeki‐Yamamoto [28]). Let  M^{4} be a closed oriented 4‐manifold and  N^{3}

an orientable 3‐manifold. Then, for every generic map  f :  M^{4}arrow N^{3},  f|_{Z_{f}} has at least
 |\sigma(M^{4})| triple points, where  \sigma(M^{4})\in \mathbb{Z} is the signature of  M^{4}.

Note that in Theorems 3.8 and 3.9, the singular point sets  Z_{f} are closed regular sub‐
manifolds of dimensions 1 and 2, respectively.

Therefore, not every map can be modified in such a way that the restriction to the
singular point set is an embedding.

However, maps  M^{4}arrow S^{2} can always be homotopically modified so that it is an em‐
bedding on its singular point set.

4. MOVES

In this section, we shall describe deformations of an indefinite fibration. They are
based on “moves” which modify the immersed fold image locally on a small disk. Some
of them are similar to Reidemeister moves in knot theory except that we do not have any
over‐under crossing information.

In the following, we will focus on the position of the singular point set image in the
base surface of an indefinite fibration  f :  M^{4}arrow\Sigma^{2} . Without loss of generality we may
assume the following:
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(1)  f|_{Z_{f}\backslash C_{f}} is an immersion with normal crossings,
(2)  f|_{C_{f}\cup L_{f}} is injective and its image misses  f(Z_{f}\backslash C_{f}) ,

where  C_{f} (resp.  L_{f} ) denotes the set of cusp singularities (resp. Lefschetz singularities) of
 f,

Definition 4.1. For an indefinite fibration  f :  M^{4}arrow\Sigma^{2} , the base diagram is the pair
 (\Sigma^{2}, f(Z_{f}\cup L_{f})) , where the fold image  f(Z_{f}\backslash C_{f}) is normally oriented and  L_{f} is the set
of Lefschetz singularities of  f (see Fig. 3).

 \Sigma^{2}

 f(Z_{f})

 f(L_{f}) (Image of Lefschetz singularities)

FIGURE 3. Example of a base diagram

First, let us recall the following existence result.

Theorem 4.2 (Williams [32], Gay‐Kirby [12]). If two indefinite fibrations  M^{4}arrow\Sigma^{2} are
homotopic, then one is obtained from the other by a finite sequence of moves.

Remark 4.3. This is an existence result. Finding explicit moves is another issue.

In the above statement, the terminology “move” is used in the following sense.

Definition 4.4. A move for an indefinite fibration  f :  M^{4}arrow\Sigma^{2} is a smooth 1‐parameter
family  f_{t} :  M^{4}arrow\Sigma^{2},  t\in[0,1] , of “mostly” indefinite fibrations, with  f_{0}=f , which
modifies the base diagram only in a small disk neighborhood of a point in  \Sigma^{2} . (Except
for finitely many  t' s,  f_{t} is an indefinite fibratrion.) In fact, there is a list of moves used in
our paper, which will be given shortly.

A move from a local configuration of a base digram, say  A , to another one, say  B,
is always‐realizable if, given an indefinite fibration whose base diagram contains local
configuration  A , we can always find a 1‐parameter family as above that realizes the
relevant base diagram change; i.e. the base diagram of the terminal indefinite fibration
 f_{1} coincides with that of  f_{0} except on a neighborhood of a point in  \Sigma^{2} where it has
configuration  B.
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Remark 4.5. Not all moves are always‐realizable. For example, for the Reidemeister II
type move, even if we have the situation as in the left‐hand side figure, we may not be
able to move it to the one in the right in Fig. 4.

 )  (
FIGURE 4. A Reidemeister II type move

The first list of moves is as depicted in Fig. 5. Filled arrows are always‐realizable, while
blank arrows are not. Cusp merge is “always‐realizable” as long as the fibers over the
relevant region are connected (see [20]).

Birth

 \emptyset

 \vec{arrow Death}  ! FoldMergeCuspM erge\Leftarrow\ovalbox{\tt\small REJECT}

 \vec{arrow}
Flip

Unflip

Wrinkling!Sink
 \cross

 !Unwrinkling\vec{\Leftarrow}  u_{ns\dot{{\imath}}nk}arrow\Rightarrow
FIGURE 5. First list of moves

Remark 4.6. In fact, unsink and sink moves are closely related to the  D_{5}|‐singularity of
planar caustics, or the so called  I_{2,3}‐singularity of a map germ  (\mathbb{R}^{2},0)arrow(\mathbb{R}^{2},0) . A move
similar to the unsink and sink moves appears as a special 1‐dimensional section in a versal
deformation of the  D_{5}‐singularity, see [30] and [33, Fig. 14].

The remaining lists are as depicted in Figs. 6, 7 and 8.

Remark 4.7. These moves were first studied by Furuya in her thesis [9] as far as the author
knows.

For our purpose, we also need the moves as depicted in Fig. 9 each of which is realized
by a finite sequence of realizable moves. These are realized if the fibers over the regions
with  (*) are connected. For example, exchange move is realized as in Fig. 10.
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 R2^{0}

 R2^{1}

 R2_{2}

 e1L\Delta

FIGURE 6. Reidemeister II type moves

 R3_{3}

 R3_{2}

FIGURE 7. Reidemeister III type moves
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push

 e^{C}arrow  x  *arrow  x

 !C^{-1}  !_{P^{ul1}}

FIGURE 8. Cusp‐fold crossing &  push/pull moves

criss‐cross

 (*)

FIGURE 9. Exchange move and criss‐cross braiding

flips unflip

FIGURE 10. Base diagram moves realizing an exchange move

5. CONSTRUCTIONS

Let us start the modification process which simplifies a given indefinite fibration. We
will exclusively use always‐realizable moves and the procedure will be algorithmic.

Lemma 5.1. There exists an explicit algorithm consisting of always‐realizable moves,
which makes any given indefinite fibration directed.

The above lemma can be proved by an idea as depicted in Fig. 11. We modify the fold
image so that it is in a “closed braid form” This can be achieved by utilizing a sequence
of always‐realizable moves consisting of flip, unsink, push and Reidemeister type moves
 R2^{0},  R2^{1},  R2_{2},  R3_{2},  R3_{3} . For details, see [5].

Lemma 5.2. There exists an explicit algorithm consisting of always‐realizable moves,
which turns any given directed indefinite fibration into a directed one with embedded fold
image.

The idea of proof is as depicted in Fig. 12. Using criss‐cross braidings, we can arrange
so that each “component” winds exactly once: in other words the fold image is in a closed
pure braid form. Then, we can further modify it by using Reidemeister type moves so
that finally it is embedded. For details, see [5].

Now, we can make the fibers connected and fold locus connected.
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FIGURE 11. Modifying the fold image so that it is directed

FIGURE 12. Applying criss‐cross braidings so that each component winds
exactly once

Lemma 5.3. There exists an explicit algorithm consisting of always‐realizable moves,
which turns any given directed indefinite fibration with embedded fold image into a fiber‐
connected, directed one with embedded fold image such that the fold locus is connected.

In fact, we have an explicit algorithm for such a modification as depicted in Fig. 13,
which proves Lemma 5.3.
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FIGURE 13. Making the fibers and the fold locus connected

Before proceeding to the modification which realizes a given 1‐dimensional submanifold
as the fold locus, let us recall the following result in singularity theory.

Proposition 5.4 (Ando [2]). Let  f:M^{4}arrow\Sigma^{2} be an indefinite fibration. Then,  Z_{f} is a
closed 1‐dimensional submanifold of  M^{4} which is canonically oriented, and the homology
class  [Z_{f}]\in H_{1}(M^{4};\mathbb{Z}) represented by  Z_{f} vanishes.

Now, we have the following.

Theorem 5.5. Let  M^{4} be a closed oriented 4‐manifold and  Z\neq 0 a closed oriented
1‐dimensional submanifold with  [Z]=0 in  H_{1}(M^{4};\mathbb{Z}) . Then, there exists an explicit
algorithm consisting of always‐realizable moves, which turns any given indefinite fibration
 f :  M^{4}arrow S^{2} to a fiber‐connected broken Lefschetz fibration  g :  M^{4}arrow S^{2} with directed,
embedded fold image such that  Z_{g}=Z.

The idea of proof is as depicted in Fig. 14. We start with an indefinite fibration with
connected fold locus and with directed embedded fold image which can be explicitly
constructed by Lemmas 5.1, 5.2 and 5.3. By using a flip, we create two cusps. Then,
we merge them by using an arc that corresponds to a loop homotopic to a component of
 Z . Then, we repeat the procedure as in the figure until we realize the homotopy class of
all the components of  Z except the final one. By our homological assumption, the final
component of the fold locus is homologous to the corresponding component of  Z . Then
we can further modify the indefinite fibration by always‐realizable moves so that the final
ones coincide with each other up to homotopy (for details, see [5]). Finally, recall that,
as we are working in dimension 4, two closed 1‐dimensional oriented submanifolds in  M^{4}

are isotopic if and only if they are homotopic. This completes the proof of Theorem 5.5.
Then, we get the following.
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‐isotopy on  S^{2}

 \ominus  fl\dot{{\imath}}parrow

 =.\backslash _{A}

 isotopyarrow
on  S^{2}

FIGURE 14. Realizing the singular locus except one component

Theorem 5.6. Let  M^{4} be a closed oriented 4‐manifold, and   Z\neq\emptyset a closed oriented
1‐dimensional submanifold of  M^{4} with  [Z]=0 in  H_{1}(M^{4};\mathbb{Z}) . Then, there exists a fiber‐
connected broken Lefschetz fibration  f:M^{4}arrow S^{2} with directed, embedded fold image such
that  Z_{f}=Z.

In fact, given any generic map  M^{4}arrow S^{2} , such  f as above can be derived by an explicit
algorithm. By analyzing the algorithm carefully, we see, in particular, that birth‐death,
wrinkling‐unwrinkling and sinking moves are unnecessary for the above construction.

The proof of Theorem 5.6 starts with an arbitrary generic map  M^{4}arrow S^{2} which may
not be indefinite. In order to get an indefinite fibration, we need to eliminate definite
folds.

Theorem 5.7 ([26, 27]). An arbitrary smooth map  M^{4}arrow S^{2} is homotopic to an indefinite
generic map without definite folds.

54



55

In other words, we can eliminate definite folds by homotopy. As is shown in [27], such
an elimination procedure can be explicitly realized algorithmically.

We can now apply our algorithm to homotope the resulting indefinite fibration to
a broken Lefschetz fibration with connected fibers and directed, embedded fold image
whose fold locus realizes  Z . This completes the proof of Theorem 5.6, which is nothing
but Theorem 3.7 (1).

As corollaries, we have the following.

Corollary 5.8 (Baykur [4]). Every closed oriented 4‐manifold admits a broken Lefschetz
fibration over  S^{2}.

Corollary 5.9. There exists an explicit algorithm consisting of always‐realizable moves,
which turns any generic map  M^{4}arrow S^{2} to a simplified broken Lefschetz fibration.

This is the first purely topological and explicit construction of broken Lefschetz fibra‐
tions on arbitrary 4‐manifolds with embedded fold images.

For the proof of Theorem 3.7 (2) concerning broken Lefschetz pencils, the reader is
referred to [5].

6. TRISECTIONS

In this section, we apply our techniques concerning explicit moves for indefinite fibra‐
tions to the simplification of trisections.

Gay‐Kirby [13] showed that every connected closed orientable 4‐manifold  M^{4} admits
a generic map into  \mathbb{R}^{2} whose image is as depicted in Fig. 15. Such a map is called a
trisected Morse 2‐function.

FIGURE 15. Left: Image of a generic map corresponding to a trisection:
the outermost circle is the image of definite folds, and the other curves are
the images of indefinite fold and cusps. In each box there is an arbitrary
Cerf graphic. The three half lines divide the image into three parts and
their inverse images give the trisection decomposition. Right: An example
of a Cerf graphic.
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Then, the three half lines divide the image into three parts and their inverse images
are all diffeomorphic to  \Vert(S^{1}\cross D^{3}) . Every 4‐manifold admits such a trisection. (For a
precise definition of a trisection decomposition, the reader is referred to [13].)

Our explicit algorithm for simplifying indefinite fibrations leads to the following.

Theorem 6.1. Every closed connected orientable 4‐manifold  M^{4} admits a simplified tri‐
section, i.e. a trisection with trivial Cerf graphics (see Fig. 16).

FIGURE 16. Image of a simplified trisection

A generic map whose image is as depicted in Fig. 16 is called a simplified trisected
Morse 2‐function.

The proof of Theorem 6.1 goes as follows (for details, see [5]). We start with a fiber‐
connected directed broken Lefschetz fibration over  S^{2} with connected fold locus and with

embedded fold image, i.e. a simplified broken Lefschetz fibration. We then modify the
map over a small disk consisting of regular values in order to get a map into  \mathbb{R}^{2} whose
image is bounded by the embedded image of a definite fold circle. Then, we use our
always‐realizable moves to modify the resulting map so that we get a simplified trisected
Morse 2‐function.

In fact, we can go in the reverse direction as well; i.e. given a simplified trisected Morse
2‐fUnction, we can get a simplified broken Lefschetz fibration by an explicit algorithm.

By analyzing the above procedures carefully, we can get some formulae which compare
the data of the original map with that of the resulting map. In the following, a simplified
 (g, k) ‐trisection is a simplified trisected Morse 2‐fUnction whose singular value set is as
depicted in Fig. 17. The genus of a trisection refers to that of the central regular fiber,
which coincides with  g . For a simplified broken Lefschetz fibration, its genus refers to
that of a higher genus regular fiber (see Fig. 18).

Then, we have the following.

Theorem 6.2. (1) Suppose a closed connected oriented 4‐manifold  M^{4} admits a genus‐g
simplified broken Lefschetz fibration  f :  M^{4}arrow S^{2} , with  k\geq 0 Lefschetz singularities and
 \ell\in\{0,1\} components of  Z_{f} . Then, there exists a simplified  (g', k') ‐trisection of  M^{4} with
 g'=2g+k-\ell+2 and  k'=2g-\ell.

56



57

FIGURE 17. Simplified  (g, k)‐trisection

 -1

FIGURE 18. Simplified broken Lefschetz fibration with genus  g

(2) Conversely, suppose  M^{4} admits a simplified  (g', k') ‐trisection. Then, there exists a
genus‐g simplified broken Lefschetz fibration  f :  M^{4}arrow S^{2} with  k Lefschetz singularities
and one  Z_{f} component, where  g=g'+3 and  k=5g'-3k'+8.

In fact, given a simplified broken Lefschetz fibration (or a simplified trisection), we can
explicitly construct an associated simplified trisection (resp. simplified broken Lefschetz
fibration).

Due to our explicit construction, we can estimate the trisection genera for explicit 4‐
manifolds, where the trisection genus of a 4‐manifold is the minimal genus over all its
trisections.

Example 6.3. We have the following examples of simplified trisections (see [5]).
(1)  S^{4} admits a simplified  (0,0)‐trisection.
(2)  \mathbb{C}P^{2} admits a simplified  ( 1,  0) ‐trisection.
(3)  S^{1}\cross S^{3} admits a simplified (1, 1)‐trisection.
(4)  (\pm \mathbb{C}P^{2})\#(\pm \mathbb{C}P^{2}) and  S^{2}\cross S^{2} admit simplified  ( 2,  0)‐trisections.
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(5)  \mathbb{C}P^{2}\#(S^{1}\cross S^{3}) admits a simplified (2, 1)‐trisection.
(6)  (S^{1}\cross S^{3})\#(S^{1}\cross S^{3}) admits a simplified (2, 2)‐trisection.

Furthermore, we have that there exists an infinite family  L_{n},  L_{n}',  n\geq 2 , of 4‐manifolds
admitting simplified (3, 1)‐trisections, where  L_{n} and  L_{n}' are Pao’s manifolds which are
rational homology 4‐spheres with effective torus actions [24].

We also have the following. For details, see [5].

Proposition 6.4. (1) There exists an exotic simplified (20, 4)‐trisection in the home‐
omorphism class of  \mathbb{C}P^{2}\# 7\overline{\mathbb{C}P^{2}} . In other words, there exists a smooth 4‐manifold  X

homeomorphic to but not diffeomorphic to  \mathbb{C}P^{2}\# 7\overline{\mathbb{C}P^{2}} such that both  X and  \mathbb{C}P^{2}\# 7\overline{\mathbb{C}P^{2}}
admit simplified (20, 4)‐trisections.

(2) There exists an infinite family of exotic simplified (34, 8)‐trisections in the homeo‐
morphism class of  \mathbb{C}P^{2}\# 9\overline{\mathbb{C}P^{2}}.

Problem 6.5. The following problems remain open as far as the author knows.

(1) Which 4‐manifolds admit simplified (3, k)‐trisections for some  k ? Is there any 4‐
manifold, other than the ones mentioned above (and their connected sums), which
admits a simplified (3, k)‐trisection for some  k? How about simplified  ( 4,  k)-
trisections?

(2) Is there any 4‐manifold which admits a trisection, but not a simplified one of the
same “genus”?

(3) Find the smallest genus  g for which there are infinitely many non‐diffeomorphic
4‐manifolds in a homeomorphism class admitting simplified  (g, k)‐trisections for
some fixed  k.

It should be noted that Hayano [16] classifies 4‐manifolds admitting simplified  ( 2,  k)-
trisections for some  k (see also [22]).

ACKNOWLEDGMENT

The author has been partially supported by JSPS KAKENHI Grant Numbers
 JP16K13754,  JP16H03936,  JP17H01090,  JP17H06128.

REFERENCES

[1] S. Akbulut and C. Karakurt, Every 4‐manifold is BLF, J. Gökova Geom. Topol. GGT 2 (2008)
83‐106.

[2] Y. Ando, Elimination of certain Thom‐Boardman singularities of order two, J. Math. Soc. Japan
34 (1982), 241‐267.

[3] D. Auroux, S. Donaldson, and L. Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005),
1043‐1114.

[4] R.I. Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. IMRN (2008), Art. ID
rnn 101, 15 pp.

[5] R.I. Baykur and O. Saeki, Simplifying indefinite fibrations on 4 manifolds, preprint;
arxiv.  org/abs/1705.11169.

[6] R.I. Baykur and O. Saeki, Simplified broken Lefschetz fibrations and trisections of 4‐manifolds,
preprint; arxiv.  org/abs/1710.06529 , to appear in Proc. Natl. Acad. Sci. USA.

[7] S.K. Donaldson, Lefschetz pencils on symplectic manifolds, J. Diff. Geom. 53 (1999), 205‐236.

58



59

[8] Y. Eliashberg, Classification of overtwisted contact structures on 3‐manifolds, Invent. Math. 98
(1989), 623‐637.

[9] Y. Furuya, Sobre  aplica\mathcal{G}^{\overline{O}es} genéricas  M^{4}arrow \mathbb{R}^{2}, PhD Thesis, ICMSC, Univ. of São Paulo, 1986.
[10] D. Gay, Trisections of Lefschetz pencils, Algebr. Geom. Topol. 16 (2016), 3523‐3531.
[11] D. Gay and R. Kirby, Fiber‐connected, indefinite Morse 2‐functions on connected  n ‐manifolds,

Proc. Natl. Acad. Sci. USA 108 (2011), 8122‐8125.
[12] D. Gay and R. Kirby, Indefinite Morse 2‐functions; broken fibrations and generalizations, Geom.

Topol. 19 (2015), 2465‐2534.
[13] D. Gay and R. Kirby, Trisecting 4‐manifolds, Geom. Topol. 20 (2016), 3097‐3132.
[14] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceed‐

ings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press,
Beijing (2002), 405‐414.

[15] R. Gompf and A. Stipsicz, 4‐manifolds and Kirby calculus, Graduate Studies in Mathematics,
vol. 20, American Math. Society, Providence 1999.

[16] K. Hayano, On diagrams of simplified trisections and mapping class groups, preprint;
arxiv.  org/abs/1711.02790.

[17] K. Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004),
629‐664.

[18] K. Honda, Local properties of self‐dual harmonic 2‐forms on a 4‐manifold, J. Reine Angew.
Math. 577 (2004), 105‐116.

[19] Y. Lekili, Wrinkled fibrations on near‐symplectic manifolds, Geom. Topol. 13 (2009), 277‐318.
[20] H.I. Levine, Elimination of cusps, Topology 3 (1965), 263‐296.
[21] Y. Matsumoto, Lefschetz fibrations of genus two—a topological approach, Proceedings of the 37th

Taniguchi Symposium on Topology and Teichmüller Spaces (Eds. S. Kojima et al.), pp. 123‐148,
World Scientific, 1996.

[22] J. Meier and A. Zupan, Genus two trisections are standard, Geom. Topol. 21 (2017), 1583‐1630.
[23] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes

in Math., Vol. 603, New York, Springer‐Verlag, 1977.
[24] P.S. Pao, The topological structure of 4‐manifold with effective torus actions I, Trans. Amer.

Math. Soc. 277 (1977), 279‐317.
[25] O. Saeki, Simple stable maps of 3‐manifolds into surfaces, Topology 35 (1996), 671‐698.
[26] O. Saeki, Elimination of definite fold, Kyushu J. Math. 60 (2006), 363‐382.
[27] O. Saeki, Elimination of definite fold II, preprint; arxiv.  org/abs/1709.03804 , to appear in Kyushu

J. Math.

[28] O. Saeki and T. Yamamoto, Singular fibers of stable maps and signatures of 4‐manifolds, Geom.
Topol. 10 (2006), 359‐399.

[29] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble 6 (1955‐
1956) 43‐87.

[30] R. Thom, Stabilité structurelle et morphogénèse, Essai d’une théorie générale des modèles, Math‐
ematical Physics Monograph Series, W.A. Benjamin, Inc., Reading, Mass., 1972.

[31] H. Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the
plane, Ann. of Math. (2) 62 (1955), 374‐410.

[32] J. Williams, The  h‐principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010), 1015‐1063.
[33] T. Yoshida, Y. Kabata and T. Ohmoto, Bifurcation of plane‐to‐plane map‐germs with corank two

of parabolic type, Theory of singularities of smooth mappings and around it, pp. 239‐258, RIMS
Kôkyûroku Bessatsu B55, Res. Inst. Math. Sci., Kyoto, 2016.

INSTITUTE OF MATHEMATICS FOR INDUSTRY, KYUSHU UNIVERSITY, MOTOOKA 744, NISHI‐
 KU, FuKUOKA 8  19-0395 , JAPAN

Email address: saeki@imi. kyushu−u. ac. jp

59


