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Turaev surfaces and invariants of knots and links

Oliver Dasbach

Department of Mathematics, Louisiana State University

1 Introduction

Turaev constructed to each knot diagram a closed, orientable surface on which the knot
projects [Tur87]. In this short survey, we briefly recall the construction, and then discuss
how Turaev surfaces relate to knot invariants. Most results extend to links as well.

1.1 Turaev surfaces

Kauffman defined an A‐splicing and a  B‐splicing at a crossing of a knot diagram that are
depicted in Figure 1.
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Figure 1:  A‐splicing (middle) and  B‐splicing (right) of a crossing

For a diagram of a knot one can define a closed oriented surface: Let  \Gamma\subset S^{2} be
the planar, 4‐valent graph of the knot diagram. Thicken the projection plane to a slab
 S^{2}\cross[-1,1] , so that  \Gamma lies in  S^{2}\cross\{0\} . Outside a neighborhood of the vertices (crossings),
the surface will intersect this slab in  \Gamma\cross[-1,1] . In the neighborhood of each vertex, we
insert a saddle, positioned so that the boundary circles on  S^{2}\cross\{1\} are the state circles
of the all‐A resolution, and the boundary circles on  S^{2}\cross\{-1\} are the state circles of
the all‐B resolution. (See Figure 2.) The boundary circles are capped off with disks,
obtaining a closed oriented surface  \Sigma.

It is shown in [DFKLS08] that the surface  \Sigma is unknotted. In other words,   S^{3}\backslash \Sigma is
a disjoint union of two handlebodies. Armond, Druivenga and Kindred [ADK15] further
studied the Heegaard splittings given by the Turaev surfaces, and showed that there
is a one‐to‐one correspondence between Turaev surfaces of connected link diagrams on
 S^{2}\subset S^{3} and Heegaard diagrams with certain conditions.

Define the Turaev genus  g_{T}(K) of a knot  K to be the minimal genus of the Turaev genus
of all diagrams of the knot. The knot projects alternatingly on this surface [DFKLS08],
and it follows that the Turaev genus is  0 if and only if the knot is alternating.
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Figure 2: Near each crossing of the diagram, a saddle surface interpolates between state circles of the
all‐A resolution and state circles of the all‐# resolution.

Turaev [Tur87] used the Turaev surfaces to show that the span of the Jones polynomial
of a knot  K with crossing number  c(K) is bounded from above by

span  V_{K}(t)\leq c(K)-g_{T}(K) .

2 The Jones polynomial as an evaluation of the Bollobás‐Riordan‐
Tutte polynomial

Thistlethwaite [Thi87] gave an interpretation of the Kauffman bracket of an alternating
knot projection as an evaluation of the Tutte polynomial of a checkerboard graph of the
knot. To extend this approach naturally to non‐alternating knots the following generaliza‐
tion is useful: Instead of working with alternating knot projections on the plane one uses
the alternating projections on a Turaev surfaces. Those projections admit a checkerboard
coloring and thus the two checkerboard graphs are ribbon graphs, i.e. graphs with an em‐
bedding on a surface such that every face is a disk. Bollobás and Riordan [BROI, BR02]
extended the two variable Tutte polynomial to a three variable polynomial for ribbon
graphs. In [DFKLS08] it is shown that the Kauffman bracket is a suitable evaluation of
this Bollobás‐Riordan‐Tutte polynomial.

More specifically, the surface minus the knot projection can be shaded in black and
white. Here we suppose that the white colored faces correspond to the all‐A resolution.
The vertices of the graph correspond to the white regions and two vertices are connected
by an edge if and only if the two faces meet at a crossing of the knot projection. This
graph  \mathbb{D} is a ribbon graph, i.e. a graph embedded on a surface such that every face is
a disk. Note, that ribbon graphs can be represented by graphs together with a cyclic
orientation of the edges at every vertex. The ribbon graph will be frequently referred
to as the all‐A ribbon graph. Figure 3 shows the knot  8_{21} , its all‐A resolution, and the
associated ribbon graph.

The dual graph on the surface is the all‐B ribbon graph. Bollobás and Riordan defined
an extension of the Tutte polynomial to ribbon graphs. The Bollobás‐Riordan‐Tutte
polynomial is given by
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Figure 3: The knot  8_{21} with all‐A resolution and associated ribbon graph.

 C( \mathbb{D};X, Y, Z)=(X-1)^{-k(\mathbb{D})}\sum_{\mathbb{H}\subset \mathbb{D}
}(X-1)^{k(\mathbb{H})}Y^{n(\mathbb{H})}Z^{g(\mathbb{H})}
Here,  \mathbb{H} ranges over all spanning subribbon graphs of  \mathbb{D} , i.e. the set of vertices in

 \mathbb{H} and  \mathbb{D} are the same. Let  v(\mathbb{H}) denote the number of vertices and  e(\mathbb{H}) denote the

number of edges in  \mathbb{H} . The number of components of  \mathbb{H} is denoted by  k(\mathbb{H}) , the nullity,
i.e.  e(\mathbb{H})-v((\mathbb{H})+k((\mathbb{H}) , by  n((\mathbb{H}) and the genus is the genus of a minimal genus
orientable surface on which  (\mathbb{H} embeds. The following relation to the Kauffman bracket
was discovered in [DFKLS08], and in particular one obtains a topological description of
the Jones polynomial in terms of the Turaev surface:

Theorem 1 ([DFKLS08]) For a connected link projection  P , and  \mathbb{D} the all‐A ribbon
graph of  P as constructed above, the Kauffman bracket  \{P\rangle of  P is given by:

 A^{-e(\mathbb{D})}\{P\rangle=A^{2-2v(\mathbb{D})}C(\mathbb{D};-A^{4}, A^{-2}
\delta, \delta^{-2}) , where  \delta  :=(-A^{2}-A^{-2}) .
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For an extension by Chmutov to virtual links and for further discussions see [Chm09,
CK14, EMM13].

Of particular interest are subgraphs of the ribbon graphs that are called quasi‐trees
[DFKLS10], More explicitly, a spanning subgraph  \mathbb{H} of a ribbon graph  \mathbb{D} is called j‐
quasi‐tree if  \mathbb{H} is of genus  j and he complement of the embedding of  \mathbb{H} on the surface
is connected. Quasi‐trees are a generalization of spanning trees for planar graphs. The
0‐quasi‐trees in a ribbon graph are the spanning trees in the ribbon graph. The general
advantage of developing a theory of the Jones polynomial from the ribbon graph approach
is that one has one additional parameter at hand, the genus. To show an application
where the genus determines the sign: Let  s(\mathbb{D}, j) be the number of j‐quasi‐trees in the
all‐A ribbon graph of diagram  D of the knot  K . Then the determinant  \det(K) of the
knot can be computed by [DFKLS10]:

  \det(K)=|\sum_{j=0}(-1)^{j}s(\mathbb{D}, j)|
3 Turaev surfaces, and knot invariants

The approach to knot and link theory via projections on Turaev surfaces turns out to be
quite fruitful for the study of knot invariants:

3.1 Knot Homology Theories

By its very nature every knot homology theory expresses the coefficients of the underlying
knot polynomial of a knot  K as Euler characteristic of a homology. Thus, it gives a
splitting of the coefficients into an alternating sum of  \mathbb{Z}‐valued knot invariants. Khovanov
homology [KhoOO] can be naturally defined via the Turaev surface approach. One can
construct a homology theory for ribbon graphs that, if applied to the all‐A ribbon graph
of a link diagram, yields the (reduced) Khovanov homology of the corresponding link (see
[DL14] for details on the construction). The ribbon graph chain complex retracts onto
a complex with generators that correspond to spanning quasi‐trees of the ribbon graph.
More specifically, the two gradings are determined by the polynomial grading and (up
to a shift) the genus of the quasi‐trees. Thus the homological degree is interpreted in a
purely topological way.

For (reduced) Khovanov homology it was shown by Manturov [Man05] and Cham‐
panerkar, Kofman and Stoltzfus [CKSII] that the number of terms in this splitting is
generally bounded from above by the Turaev genus  g_{T}(K) increased by 1. More specifi‐
cally, the non‐trivial groups in the bi‐graded Khovanov homology  H_{Kh}^{ij}(K) of the knot  K

lie on slope‐one lines with respect to the  (i, j) ‐grading, and their width  w_{Kh} is bounded
from above by  g_{T}(K)+1.

Surprisingly, Lowrance was able to show that this result also holds for the width
 w_{HF}(K) of the Ozsváth‐Szabó knot Floer homology [Low08]:

 W_{HF}(K)\leq g_{T}(K)+1.
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3.2 The signature of a knot, and the  \tau and  s‐invariants

For knots of Turaev genus  0 , i.e. alternating knots, the knot signature  \sigma , the Ozsváth‐
Szabó  \tau‐invariant [OS03] and the Rasmussen  s‐invariant [Ras10] satisfy:

 2\tau(K)=s(K)=-\sigma(K) . (1)

Traczyk [Tra04] (see also [GL78]) proved that if  D is a reduced alternating diagram of an
alternating knot  K then

 \sigma(K)=s_{A}(D)-n_{+}(D)-1 , (2)

where  s_{A}(D) is the number of components in the all‐A Kauffman resolution of  D and
 n_{+}(D) is the number of positive crossings in  D.

Equation (1) can be generalized using the Turaev genus [DLII]:

 | \tau(K)+\frac{\sigma(K)}{2}|\leq g_{T}(K) ,

  \frac{|s(K)+\sigma(K)|}{2}\leq g_{T}(K) , and

 | \tau(K)-\frac{s(K)}{2}|\leq g_{T}(K) .

For a diagram  D of a knot  K equation (2) generalizes to [DLII]:

 s_{A}(D)-n_{+}(D)-1\leq\sigma(K)\leq(s_{A}(D)-n_{+}(D)-1)+2g_{T}(D) . (3)

4 Further aspects

4. 1 Adequate knots

Adequate knots are knots that admit a Turaev surface where neither of the two checker‐
board ribbon graphs contain a loop, i.e. an edge that connects a vertex with itself.
Alternating knots are examples of adequate knots. Khovanov studied the Khovanov ho‐
mology of adequate knots [Kho03]. Using Khovanov’s results, Abe  [Abe09b] was able to
determine the Turaev genus of adequate knots: It is realized by an adequate diagram of
the knot. Moreover, for an adequate knot  K of crossing number  c(K) and Turaev genus
 g_{T}(K) the span of the Jones polynomial satisfies:

span  V_{K}=c(K)-g_{T}(K) .

4.2 Knots with small Turaev genus

Knots with Turaev genus  0 , i.e. alternating knots, are well understood. Menasco [Men84]
showed that prime alternating knots are hyperbolic, unless they are (2, k)‐torus knots.
Moreover, Tait’s flyping theorem [MT93] gives a classification of alternating diagrams of
an alternating knot: Given an oriented, prime alternating knot  K with reduced alternating
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diagrams  D_{1} and  D_{2},  D_{1} can be transformed to  D_{2} by a finite sequence of moves, called
flypes.

Armond and Lowrance [AL15] classify link diagrams whose Turaev surface has genus
one or two, and prove that similar classification theorems exist for all genera. A similar
result was independently and with different methods proven by Seungwon Kim [Kim18]
for Turaev genus one and two.

For knots with Turaev genus 1 Equation (3) strengthens to

Theorem 2 [DL16] Let  K be a knot with diagram  D whose Turaev surface has genus
one. The signature of  K is determined by

 \sigma(K)=s_{A}(D)-c_{+}(D)\pm 1 and  \sigma(K)=\det(K)-1mod 4.

By using results from Adams [Ada94] and Abe  [Abe09a] the result of Menasco [Men84]
on the hyperbolicity of prime, alternating knots that are not torus knots, extends to:

Theorem 3 [DL16] If  K is a prime knot of Turaev genus one, then  K is either hyperbolic
or a torus pretzel knot.
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