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1 Introduction

Let  M^{n} be a closed, connected, orientable  n‐manifold and  f:M^{n}arrow \mathbb{C}^{n} be an immersion.

A point  p\in M^{n} is said to be a complex tangent if  df_{p}(T_{p}M^{n}) contains a complex line.
By Thom’s transversality theorem, the set of complex tangents of a generic immersion

 f:M^{n}arrow \mathbb{C}^{n} is empty or forms a closed  (n-2)‐dimensional submanifold. Elgindi initiated
to study the problem of determining the isotopy classes of knots in  S^{3} which can be realized

as the set of complex tangents of an embedding  S^{3}arrow \mathbb{C}^{3}[2,3,4] . In [11] the aurhor and
Takase showed that any link  L in a closed oriented 3‐manifold  M^{3} can be realized as the

set of complex tangents of an embedding  M^{3}arrow \mathbb{C}^{3} if and only if the homology class  [L]
is trivial in  H_{1}(M^{3};\mathbb{Z}) .

An immersion is said to be totally real if it has no complex tangent, and when the

immersion is embedding, it is called a totally real embedding. For totally real embeddings,

Gromov [8] and Forstnerič [6] proved the following theorem. This is called the  h ‐principle
for totally real embeddings.

Theorem 1 (Gromov [8], Forstnerič [6]). Let  M^{n} be a closed orientable  n‐manifold with
 n\geq 3 . Then,  M^{n} admits a totally real embedding into  \mathbb{C}^{n} if and only if it admits a totally

real immersion into  \mathbb{C}^{n} which is regularly homotopic to an embedding.

As a consequence of this theorem, the following is easily shown.

Corollary 2. Any closed orientable 3‐manifold admits a totally real embedding into  \mathbb{C}^{3}.

Since the proof relies on the  h‐principle, however, almost nothing can be analyzed

about the obtained totally real embedding. On the other hand, some explicit examples

of totally real embedings are known. Ahern and Rudin [1] explicitly constructed a totally
real embedding of the 3‐sphere into  \mathbb{C}^{3} . In this article, using Ahern‐Rudin’s example, we

give a new proof of Corollary 2. The argument of the proof was inspired by the work of
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Etnyre and Furukawa [5]. They defined the notion of braided embeddings and used it to
prove the existence of contact embeddings into the standard contact 5‐sphere for some

contact 3‐manifolds. We show that braided embeddings are also useful for constructing

totally real embeddings.

2 Preliminaries

In this section, we introduce Ahern‐Rudin’s example and the notion of braided embed‐

dings.

In [7] Gromov stated that there exist totally real embeddings of the 3‐sphere into  \mathbb{C}^{3},
but he did not give the proof there. In order to prove it, Ahern and Rudin [1] constructed
the following example.

Example 3 (Ahern‐Rudin [1]). Let  P(z, w)=\overline{z}\overline{w}(|w|^{2}+i|z|^{2}) . We consider the 3‐
sphere as the unit shpere  S^{3}=\{(z, w)||z|^{2}+|w|^{2}=1\}\subset \mathbb{C}^{2} . Then, the embedding
 F:S^{3}arrow \mathbb{C}^{3} defined by

 F(z, w)=(z, w, P(z, w))

is a totally real embedding.

Next, we explain the definition of braided embeddings. First, we recall branched cover‐

ings.

Definition 4. Let  M^{n} and  Y^{n} be  n‐manifolds. A  d‐fold branched covering is a smooth,

proper map  p :  M^{n}arrow Y^{n} with critical set  B\subset Y^{n} called the branch locus, such that

 p restricted  M^{n}-p^{-1}(B) is a covering map of degree  d , and for each  x\in p^{-1}(B) there

are local coordinates near  x and  p(x) such that  p is given by  (q, z)\mapsto(q, z^{m}) for some

 m\in \mathbb{Z}_{>0} , where  q is a coordinate on  D^{n-2} and  z is a coordinate on the unit disk in  \mathbb{C}.

The integer  m is called the branching index of  p at  x. A  d‐fold branched covering is called

simple if the pre‐image of any point in  Y^{n} has either  d or  d-1 points.

Etnyre and Furukawa [5] defined the following notion.

Definition 5 (Etnyre‐Furukawa [5]). Let  M^{n} and  Y^{n} be  n‐manifolds. An embedding

 e:M^{n}arrow Y^{n}\cross D^{2}

is called a braid about  Y^{n} if  \pi\circ e :  M^{n}arrow Y^{n} is a branched covering, where  \pi :   Y^{n}\cross D^{2}arrow

 Y^{n} is the first projection. If  Y^{n} is embedded in  a(n+2) ‐manifold  W^{n+2} with trivial

normal bundle, then  M^{n} is also embedded in  W^{n+2} . This embedding of  M^{n} into  W^{n+2}
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is called a braided embedding. Moreover, a branched covering  p:M^{n}arrow Y^{n} is said to be
braided about  Y^{n} if there exists a function  f :  M^{n}arrow D^{2} such that

 e :  M^{n}arrow Y^{n}\cross D^{2} :  x\mapsto(p(x), f(x))

is an embedding.

For braided embeddings of 3‐manifolds, a theorem due to Hilden, Lozano and Mon‐

tesinos [10] is known. Using the terminology of [5], their theorem can be stated as follows.

Theorem 6 (Hilden‐Lozano‐Montesinos [10]). Every closed oriented 3‐manifold  M^{3} can
be braided about the 3‐sphere where the corresponding branched covering is a simple

3‐fold branched covering.

3 An alternative proof of Corollary 2

Combining Example 2 with Theorem 6, we can give a very simple proof of Corollary 2.

Proof. In Example 2,  F also defines an embedding of  \mathbb{C}^{2} into  \mathbb{C}^{3} . Since the normal bundle

of the embedding  F is trivial, we obtain an embedding  \overline{F} of a tubular neibourhood  \mathbb{C}^{2}\cross D^{2}

into  \mathbb{C}^{3} . We also describe the restricted embedding  S^{3}\cross D^{2}arrow \mathbb{C}^{3} by the same symbol
 \overline{F} . Then, of course,  \overline{F}(S^{3}\cross\{(0,0)\})=F(S^{3}) is nothing but Ahern‐Rudin’s example. By

Theorem 6, for any closed orientable 3‐manifold  M^{3} , there is a function  f :  M^{3}arrow D^{2}

such that

 e :  M^{3}arrow S^{3}\cross D^{2} :  x\mapsto(p(x), f(x))

is an embedding, where  p :  M^{3}arrow S^{3} is a simple 3‐fold branched covering. Since the

totally reality is an open condition, for a sufficiently small positive number  \epsilon , the tangent

space of the image of the embedding

 e_{\epsilon} :  M^{3}arrow S^{3}\cross D^{2} :  x\mapsto(p(x), \epsilon f(x))

is close enough to that of  S^{3}\cross\{(0,0)\} in the sense of  C^{\infty} ‐topology, so that the composition

with the embedding  \overline{F}:S^{3}\cross D^{2}arrow \mathbb{C}^{3} is a totally real embedding. Thus, we obtained a

totally real embedding  \overline{F}\circ e_{\epsilon} :  M^{3}arrow \mathbb{C}^{3}.  \square 

Although the above proof is not by an explicit construction in the sense that the function

 f is not explicitly given, further analysis of the obtained totally real embedding can be

expected because we avoided using the  h‐principle. For example, it might be easy to

take a Seifert surface of the totally real submanifold, since the corresponding branched

covering carries informations of the totally real embedding. However, there is a problem.

The embedding  \overline{F}\circ e_{\epsilon} :  M^{3}arrow \mathbb{R}^{6} arises from an embedding of  M^{3} into  \mathbb{R}^{5} . Hence,
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intersting examples like Haefliger knots [9] never appears. In order to realize Haefliger
knots as totally real submanifolds explicitly, we need to study braided immersions or the

3‐codimensional version of braided embeddings of 3‐manifolds.

Problem 7. Can a Haefliger knot be realized as a 3‐codimensional braided embedding

of the 3‐sphre?

The author suspect that Takase’s works on Haefliger knots [12, 13] are the keys to
approaching this problem. Anyway this is a future problem.
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