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1 Introduction

Let M™ be a closed, connected, orientable n-manifold and f: M™ — C™ be an immersion.
A point p € M™ is said to be a complex tangent if df,(T,M"™) contains a complex line.
By Thom’s transversality theorem, the set of complex tangents of a generic immersion
f: M™ — C™ is empty or forms a closed (n—2)-dimensional submanifold. Elgindi initiated
to study the problem of determining the isotopy classes of knots in S which can be realized
as the set of complex tangents of an embedding S* — C? [2, 3, 4]. In [11] the aurhor and
Takase showed that any link L in a closed oriented 3-manifold M? can be realized as the
set of complex tangents of an embedding M?® — C? if and only if the homology class [L]
is trivial in H,(M?3;Z).

An immersion is said to be totally real if it has no complex tangent, and when the
immersion is embedding, it is called a totally real embedding. For totally real embeddings,
Gromov [8] and Forstneric [6] proved the following theorem. This is called the h-principle

for totally real embeddings.

Theorem 1 (Gromov [8], Forstneri¢ [6]). Let M™ be a closed orientable n-manifold with
n > 3. Then, M™ admits a totally real embedding into C™ if and only if it admits a totally
real immersion into C™ which is regularly homotopic to an embedding.

As a consequence of this theorem, the following is easily shown.
Corollary 2. Any closed orientable 3-manifold admits a totally real embedding into C3.

Since the proof relies on the h-principle, however, almost nothing can be analyzed
about the obtained totally real embedding. On the other hand, some explicit examples
of totally real embedings are known. Ahern and Rudin [1] explicitly constructed a totally
real embedding of the 3-sphere into C?. In this article, using Ahern-Rudin’s example, we
give a new proof of Corollary 2. The argument of the proof was inspired by the work of



Etnyre and Furukawa [5]. They defined the notion of braided embeddings and used it to
prove the existence of contact embeddings into the standard contact 5-sphere for some
contact 3-manifolds. We show that braided embeddings are also useful for constructing
totally real embeddings.

2 Preliminaries

In this section, we introduce Ahern-Rudin’s example and the notion of braided embed-
dings.

In [7] Gromov stated that there exist totally real embeddings of the 3-sphere into C?,
but he did not give the proof there. In order to prove it, Ahern and Rudin [1] constructed
the following example.

Example 3 (Ahern-Rudin [1]). Let P(z,w) = zw(|w|* + i|z]?). We consider the 3-
sphere as the unit shpere S* = {(z,w) | |2|* + |w|* = 1} € C? Then, the embedding
F: 83 — C? defined by

F(z,w) = (z,w, P(z,w))

is a totally real embedding.

Next, we explain the definition of braided embeddings. First, we recall branched cover-

ings.

Definition 4. Let M™ and Y" be n-manifolds. A d-fold branched covering is a smooth,
proper map p : M™ — Y with critical set B C Y™ called the branch locus, such that
p restricted M™ — p~*(B) is a covering map of degree d, and for each x € p~!(B) there
are local coordinates near x and p(x) such that p is given by (¢, z) — (¢, z™) for some
m € Zsg, where ¢ is a coordinate on D"~2 and z is a coordinate on the unit disk in C.
The integer m is called the branching index of p at x. A d-fold branched covering is called
simple if the pre-image of any point in Y has either d or d — 1 points.

Etnyre and Furukawa [5] defined the following notion.
Definition 5 (Etnyre-Furukawa [5]). Let M™ and Y™ be n-manifolds. An embedding
e:M" —Y" x D?

is called a braid about Y™ if moe : M™ — Y™ is a branched covering, where 7 : Y™ x D? —
Y™ is the first projection. If Y™ is embedded in a (n + 2)-manifold W™ with trivial
normal bundle, then M™ is also embedded in W2, This embedding of M" into W"+2
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is called a braided embedding. Moreover, a branched covering p : M™ — Y™ is said to be
braided about Y™ if there exists a function f : M™ — D? such that

e M" = Y"x D*: x> (p(), f(z))
is an embedding.

For braided embeddings of 3-manifolds, a theorem due to Hilden, Lozano and Mon-
tesinos [10] is known. Using the terminology of [5], their theorem can be stated as follows.

Theorem 6 (Hilden-Lozano-Montesinos [10]). Every closed oriented 3-manifold M? can
be braided about the 3-sphere where the corresponding branched covering is a simple
3-fold branched covering.

3 An alternative proof of Corollary 2
Combining Example 2 with Theorem 6, we can give a very simple proof of Corollary 2.

Proof. In Example 2, I also defines an embedding of C? into C?. Since the normal bundle
of the embedding F' is trivial, we obtain an embedding F of a tubular neibourhood C2 x D?
into C*. We also describe the restricted embedding S® x D? — C? by the same symbol
F. Then, of course, F(S* x {(0,0)}) = F(S3) is nothing but Ahern-Rudin’s example. By
Theorem 6, for any closed orientable 3-manifold M?3, there is a function f : M? — D?
such that

e: M? — S*x D*:x v (p(x), f(z))

is an embedding, where p : M?® — S® is a simple 3-fold branched covering. Since the
totally reality is an open condition, for a sufficiently small positive number ¢, the tangent
space of the image of the embedding

ec: M? — S* x D*: s (p(x),cf(x))

is close enough to that of S*x {(0,0)} in the sense of C*°-topology, so that the composition
with the embedding £ : §% x D? — C? is a totally real embedding. Thus, we obtained a
totally real embedding Foe, : M® — C3, a

Although the above proof is not by an explicit construction in the sense that the function
f is not explicitly given, further analysis of the obtained totally real embedding can be
expected because we avoided using the h-principle. For example, it might be easy to
take a Seifert surface of the totally real submanifold, since the corresponding branched
covering carries informations of the totally real embedding. However, there is a problem.
The embedding F o e, : M® — RS arises from an embedding of M3 into R®. Hence,



intersting examples like Haefliger knots [9] never appears. In order to realize Haefliger
knots as totally real submanifolds explicitly, we need to study braided immersions or the
3-codimensional version of braided embeddings of 3-manifolds.

Problem 7. Can a Haefliger knot be realized as a 3-codimensional braided embedding
of the 3-sphre?

The author suspect that Takase’s works on Haefliger knots [12, 13] are the keys to
approaching this problem. Anyway this is a future problem.
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