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Coverings of surfaces sometimes induce injective homomorphism from (a finite index

subgroup of) a mapping class group into another mapping class group. Using Birman‐
Hilden double branched coverings and right‐angled Artin groups, we can completely de‐

termine whether certain mapping class groups is virtually embedded in another mapping

class group. Here, a group H is said to be virtually embedded in a group  G if there is a

finite index subgroup of  H which is embedded in  G.

1 Surface embedding and Birman‐Hilden double branched cov‐

ering

In this article, by  S_{g,p}^{b} we denote a connected orientable surface of genus  g with  p marked

points and with  b boundary components. The homeomorphism group,  Homeo_{+}(S_{g,p}^{b}) , of
the surface  S_{g,p}^{b} is the group of orientation‐preserving homeomorphisms of  S_{g,p}^{b} , which

preserve the set of the marked points and fix the boundary components point‐wise. The

mapping class group Mod  (S_{g,p}^{b}) is the quotient group obtained from  Homeo_{+}(S_{g,p}^{b}) by
collapsing homeomorphisms isotopic to the identity map. In particular, the mapping

class group Mod  (S_{0,p}^{1}) is called the p‐th braid group and is denoted by  B_{p}.
Let us see some typical methods for embedding mapping class groups. The reader is

referred to a well‐written textbook [5].

1.1 Cylindrical embedding

Let  P and  P' be the sets of marked points of surfaces  S and  S' , respectively. An inclusion

map  \iota:Sarrow S' between two surfaces is called a surface embedding if  \iota^{-1}(P')\subset P.
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 1 : Essential simple closed curves  \beta_{1},  \beta_{2} parallel to the boundary components.

We say that a surface embedding  \iota is cylindrical if every component of  S'\backslash IntN(\iota(S))
is homeomorphic to none of  S_{0,0}^{1} and  S_{0,1}^{1} , and at least one component of  S'\backslash IntN(\iota(S))
is a cylinder  S_{0,0}^{2}.

Example 1.1. Consider a surface embedding  S_{g-1,0}^{2}arrow S_{g,0}^{0} (see Figure 1) obtained from
gluing  S_{0,0}^{2} into  S_{g-1,0}^{2} . This surface embedding is cylindrical. Gluing a homeomorphism of

 S_{g-1,0}^{2} and the identity map of the cylinder induces a new homeomorphism of  S_{g,0}^{0} . Since

every homeomorphism isotopic to the identity map of  S_{g-1,0}^{2} induces a homeomorphism

isotopic to the identity map of  S_{g,0}^{0} , we have a canonical homomorphism  \phi:Mod(S_{g-1,0}^{2})arrow
 Mod(S_{g,0}^{0}) . The kernel of  \phi is generated by  T_{\beta_{1}}T_{\beta_{2}}^{-1} (see [13]). Here,  T_{\beta_{i}} is the Dehn twist
along an essential closed curve parallel to a boundary component  C_{i} of  S_{g}^{2}1,0(i=1,2) .

1.2 Anannular embedding

A surface embedding  \iota:Sarrow S' is said to be anannular if each component of  S'\backslash 
 IntN(\iota(S)) is homeomorphic to none of  S_{0,0}^{1},  S_{0,1}^{1} and  S_{0,0}^{2}.

An anannular surface embedding  Sarrow S' induces [13] an injective homomorphism
Mod  (S)arrow Mod(S') .

Example 1.2. One‐holed sphere with  n marked points,  S_{0,n}^{1} , admits a surface embedding

into a sphere with  n+2 marked points,  S_{0,n+2}^{0} . This surface embedding is anannular, and
hence we have  B_{n}\simeq+Mod(S_{0,n+2}^{0}) .

Example 1.3. By gluing  S_{0,1}^{2} into  S_{g-1,0}^{2} , we obtain an anannular surface embedding

 S_{g-1,0}^{2}arrow S_{g,1}^{0} . Hence, Mod  (S_{g-1,0}^{2})\simeq+Mod(S_{g,1}^{0}) .

1.3 Birman‐Hilden double branched covering

Example 1.4. Assume that  n\leq 2g.

Take the center line of  S_{g-1,0}^{2} and consider the  \pi‐rotation (hyper‐elliptic involution) with
respect to this center line. Then we have a double branched covering  p:S_{g-1,0}^{2}arrow S_{0,2g}^{1}.
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 2:S_{2,0}^{2} covers  S_{0,6}^{1} with 6 branched points, and  S_{3,0}^{0} covers  S_{0,8}^{0} with 8 branched points. The symbol
 \tau represents a hyper‐elliptic involution, and crossings represent marked points.

By  SHomeo_{+}(S_{g-1,0}^{2}) , we denote the subgroup of  Homeo_{+}(S_{g-1,0}^{2}) , which consists of fiber‐

preserving homeomorphisms. Here, a homeomorphism  f:S_{g-1,0}^{2}\cong S_{g-1,0}^{2} is said to be

fiber‐preserving if for all  x,  x'\in S_{g-1,0}^{2} with  p(x)=p(x') , the identity  p(f(x))=p(f(x'))
holds. Obviously, any fiber‐preserving homeomorphism of  S_{g-1,0}^{2} descends to a homeo‐

morphism of  S_{0,2g}^{1} . Moreover, every homeomorphism of  S_{0,2g}^{1} has a lift  S_{g-1,0}^{2}arrow S_{g-1,0}^{2},
which is a fiber‐preserving homeomorphism. Thus, we have a surjective homomorphism

 SHomeo_{+}(S_{g-1,0}^{2})arrow Homeo_{+}(S_{0,2g}^{1}) . By the Birman‐Hilden theory, any fiber‐preserving

homeomorphism of  S_{g-1,0}^{2} , which is isotopic to the identity, is fiber‐isotopic to the identity.

In other words, if a fiber‐preserving homeomorphism of  S_{g-1,0}^{2} is isotopic to the identity,

then the descendant in the quotient  S_{0,2g}^{1} must be isotopic to the identity. Hence, we have

a canonical surjective homeomorphism

 d:SMod(S_{g-1,0}^{2})arrow Mod(S_{0,2g}^{1})=B_{2g}.

Here, the symmetric mapping class group SMod  (S_{g-1,0}^{2}) is the subgroup of Mod  (S_{g-1,0}^{2})
consisting of fiber‐preserving mapping classes. This canonical homomorphism  d is injec‐

tive, because every homeomorphism of  S_{0,2g}^{1} has a lift. Thus, we have an embedding

 d^{-1}:B_{2g}\simeqarrow Mod(S_{g-1,0}^{2}) .

Furthermore, the restriction of  \phi to the symmetric mapping class group SMod  (S_{g-1,0}^{2})\cong
 B_{2g} is injective. To see this, we have to show that  T_{\beta_{1}}^{m}T_{\beta_{2}}^{-M} is contained in SMod  (S_{g-1,0}^{2})
only if  m=1 . We now suppose that  T_{\beta_{1}}^{m}T_{\beta_{2}}^{-m}\in SMod(S_{g-1,0}^{2}) . Then  T_{\beta_{1}}^{m}T_{\beta_{2}}^{-M} is an

element of the center of SMod  (S_{g-1,0}) . On the other hand, the center of  B_{2g} is cyclic

and is identified with  \langle T_{\beta_{1}}T_{\beta_{2}}\rangle in SMod  (S_{g-1,0}^{2}) . Now, the assumption   T_{\beta_{1}}^{m}T_{\beta_{2}}^{-m}\in\{T_{\beta_{1}}T_{\beta_{2}}\rangle
implies  m=1 . Therefore, the restriction of  \phi is injective and  B_{2g}\simeq+Mod(S_{g,0}^{0}) .
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Example 1.5. Case  p=2g+2 . Take the center line of  S_{g,0}^{0} and consider the  \pi‐

rotation  \tau with respect to the center line. Then we obtain a double branched covering

 p:S_{g,0}^{0}arrow S_{0,2g+2}^{0} . In this case,  \tau is an element of SMod  (S_{g,0}^{0}) and descends to the identity

map of  S_{0,2g+2}^{0} . Hence, by an argument similar as in the previous example, we have an

isomorphism
SMod  (S_{g,0}^{0})/\langle\tau\rangle\cong Mod(S_{0,2g+2}^{0}) .

Since Mod  (S_{g,0}^{0}) is residually finite, there is a finite index subgroup  H of Mod  (S_{g,0}^{0}) which

avoids  \tau . Then  HnSMod(S_{g,0}^{0}) is a finite index subgroup of SMod  (S_{g,0}^{0}) and is embedded

in Mod  (S_{0,2g+2}^{0}) as a finite index subgroup. Therefore, Mod  (S_{0,2g+2}^{0}) is virtually embedded
in Mod  (S_{g,0}^{0}) .

Case  p\leq 2g+1 . The pure braid group  PB_{p-1} (the kernel of canonical homomorphism
from  B_{p-1} to the  (p-1)‐th symmetric group  \Sigma_{p-1} ) splits as a direct product   PB_{p-1}\cong

 PMod(S_{0,p}^{0})\cross \mathbb{Z} . By Example 1.4, we have  B_{p-1}\simeq+Mod(S_{g,0}^{0}) . Hence, PMod  (S_{0,p}^{0}) is

embedded in Mod  (S_{g,0}^{0}) . Since PMod  (S_{0,p}^{0}) is a finite index subgroup of Mod  (S_{0,p}^{0}) , we

have that Mod  (S_{0,p}^{0}) is virtually embedded in Mod  (S_{g,0}^{0}) .

The reader is referred to [1], [2] and [7] for unbranched coverings of surface which induce
injective homomorphisms between mapping class groups.

Remark 1.6. Suppose that  p\geq 2 . Then the mapping class group Mod  (S_{0,p}^{0}) of a sphere

with  p marked points has a non‐trivial torsion element. On the other hand,  B_{p-1} is

torsion‐free. Hence, Mod  (S_{0,p}^{0}) does not admit an embedding into  B_{p-1} . However, a finite

index subgroup PMod  (S_{0,p}^{0}) of Mod  (S_{0,p}^{0}) is embedded in  B_{p-1}.

Theorem 1.7. Suppose  g\geq 1 and  \delta\in\{0,1\} . Then we have the following.

(1) If  n\leq 2g , then  B_{n}\simeq+Mod(S_{g,0}^{0}) .

(2) If  p\leq 2g+2 , then Mod  (S_{0,p}^{0}) is virtually embedded in Mod  (S_{g,0}^{0}) .

For more details about the Birman‐Hilden theory, see Margalit‐Winarski [12].

2 Right‐angled Artin groups

For a simple graph  \Gamma , the right‐angled Artin group  A(\Gamma) on  \Gamma is the group which has

the following group presentation:

 A(\Gamma)=\langle v_{1},  v_{2},  v_{n}|v_{i}v_{\dot{j}}v_{i}^{-1}v_{j}^{-1}=1 if  \{v_{i}, v_{j}\}\in E(\Gamma)\rangle.

Here,  \{v_{1}, v_{2}, v_{n}\} is the vertex set of  \Gamma and  E(\Gamma) is the edge set of  \Gamma.

One algebraic virtue of right‐angled Artin group is as follows.
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Lemma 2.1. Let  A be right‐angled Artin group,  G a group, and  H a finite index subgroup

of G. If  A is embedded in  G , then  A is embedded in  H.

Theorem 2.2 ([11, Theorem 1.1]). For a sufficiently large  n , the n‐th powers of the Dehn
twists  T_{1}^{n},  T_{m}^{n} along mutually non‐isotopic essential simple closed curves generate a

right‐angled Artin group in Mod  (S_{g,p}^{0})

3 Obstructions to the existence of virtual embeddings

The cohomological dimension  cd(G) of a group  G is defined to be the maximum dimen‐

sion  n such that the n‐th group cohomology  H^{n}(G, M) is non‐trivial for some  G‐module
 M . By Serre’s theorem [14], the cohomological dimension of a torsion‐free group  G co‐
incides with that of any finite index subgroup of  G . Note that the mapping class group

of surfaces have torsion‐free subgroups of finite indices. Hence, the virtual cohomologi‐

cal dimension  vcd(Mod(S)) of the mapping class group Mod(S) , which is defined to be
the cohomological dimension of a torsion‐free finite index subgroup of Mod(S) , is well‐
defined. The virtual cohomological dimensions of the mapping class groups are computed

by Harer.

Theorem 3.1 ([6, Theorem 4.1]). Suppose that  2g+p+b>2 . Then we have

 vcd(Mod(S_{g,p}^{b}))=\{\begin{array}{ll}
4g-5   (p+b=0)
4g+p+2b-4   (p+b>0)
p+2b-3   (g=0)
\end{array}
If a group  H is virtually embedded in a group  G , then  vcd(H)\leq vcd(G) .

Example 3.2.  B_{p+1} is not embedded in Mod  (S_{0,p+2}^{0}) even virtually, because  vcd(B_{p+1})=
 p>p-1=vcd(Mod(S_{0,p+2}^{0})) .

Theorem 3.3.  B_{n}\llcorner+Mod(S_{0,p+2}^{0}) if and only if  n\leq p+2.

Proof. Suppose that  n\leq p+2 . Then  S_{0,n}^{1} admits an anannular embedding into  S_{0,p+2}^{0}.
Hence,  B_{n^{L}}\Rightarrow Mod(S_{0,p+2}^{0}) .

We now suppose that  B_{n}\simeq+Mod(S_{0,p+2}^{0}) . Then by Example 3.2, we have  n\leq p+2.  \square 

Theorem 3.4 ([4, Theorem A]). Suppose that  2-2g-p<0 . If  G is an abelian subgroup
of Mod  (S_{g,p}^{0}) , then  G is finitely generated with torsion‐free rank bounded by  3g-3+p.
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4 Certain right‐angled Artin groups in mapping class groups

In this section we introduce embeddability results on certain right‐angled Artin groups.

By  P_{m} we denote the path graph on  m vertices (the underlying space of  P_{m} is homeo‐
morphic to the unit closed interval). By  C_{m} we denote the cyclic graph on  m vertices
(the underlying space of  C_{m} is homeomorphic to the unit circle). Complement graph

 \Gamma^{c} of the original graph  \Gamma is the graph whose vertex set is  V(\Gamma) and the edge set is

 \{\{u, v\}|\{u, v\}\not\in E(\Gamma)\}.

Theorem 4.1.  A(P_{m}^{c})\simeq+Mod(S_{g,p}^{0}) if and only if  m satisfies the following inequality.

 m\leq\{\begin{array}{ll}
0   ((g,p)\in\{(0,0), (0,1), (0,2), (0,3)\})
2   ((g,p)\in\{(0,4), (1,0), (1,1)\})
p-1   (g=0, p\geq 5)
p+2   (g=1, p\geq 2)
2g+p+1   (g\geq 2) .
\end{array}
Theorem 4.2.  A(C_{m}^{c})\simeqarrow Mod(S_{g,p}^{0}) if and only if  m satisfies

 m\leq\{\begin{array}{ll}
3   (g,p)=(1,1)
5   (g,p)=(1,2)
p+2   (g=1, p\geq 3)
2g+p+1   (g\geq 2,1\leq p\leq 2) .
2g+p   (g\geq 2, p\geq 3) .
\end{array}
Theorem 4.3. Suppose that  p\geq 2 . Then the following hold.

(1)  A(P_{m}^{c})\simeq+B_{p} if and only if  m satisfies

 m\leq\{\begin{array}{ll}
p-1   (p=2,3)
p   (p\geq 4) .
\end{array}
(2)  A(C_{m}^{c})L+B_{p} if and only if  m satisfies

 m\leq\{\begin{array}{ll}
0   (p=2)
3   (p=3)
p+1   (p\geq 4) .
\end{array}
Theorem 4.4.  A(C_{m}^{c})\cross \mathbb{Z}\simeqarrow B_{p} if and only if  m satisfies

 m\leq\{\begin{array}{ll}
0   (p=2)
3   (p=3)
p+1   (p\geq 4) .
\end{array}
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Theorem 4.5. Let  g be an integer  \geq 2 . Then  A(C_{m}^{c})\cross \mathbb{Z}\mapsto Mod(S_{g,p}^{0}) if and only if  m

satisfies

 m\leq\{\begin{array}{l}
2g+1 (g\geq 2, p=0)
2g+p (g\geq 2, p\geq 1) .
\end{array}
The reader is referred to the papers [9] and [10] for more details. The “if parts” of Theo‐

rems come from Koberda’s embedding theorem (Theorem 2.2) together with desired curve
systems on surfaces. The “only if parts” are derived from the combinatorial structure of

curve graphs of surfaces.

5 Main Theorem

Theorem 5.1. Suppose that  g\geq 1 and  \delta\in\{0,1\}.

(1)  B_{n} is virtually embedded in Mod  (S_{g,\delta}^{0}) if and only if  n\leq 2g.

(2) Mod  (S_{0,p}^{0}) is virtually embedded in Mod  (S_{g,0}^{0}) if and only if  p\leq 2g+2.

Proof. (1) The “if part” follows from Theorem 1.7 (1). Therefore, we will prove the “only
if‘ part. Suppose that  B_{n} is virtually embedded in Mod  (S_{g,\delta}^{0}) . Namely, there is a finite

index subgroup  H of  B_{n} which is embedded in Mod  (S_{g,\delta}^{0})
Case  g=1.  B_{3} contains free abelian group  \mathbb{Z}^{2} of rank two as a subgroup. However,

Mod  (S_{1,0}^{0})=Mod(S_{1,1}^{0})=SL(2, \mathbb{Z}) does not contain  \mathbb{Z}^{2} as a subgroup. Hence,  B_{3} is not

virtually embedded in Mod  (S_{1,0}^{0})=Mod(S_{1,1}^{0}) . Thus,  n\leq 2 , as required.

Case  g\geq 2 . Assuming  n\geq 4 , we will prove that  n\leq 2g . Since  n\geq 4 , the braid group
 B_{n} contains  A(C_{n+1})\cross \mathbb{Z} . Hence,  H contains  A(C_{n+1})\cross \mathbb{Z} as a subgroup by Lemma 2.1.

By our assumption that  H is embedded in Mod  (S_{g,\delta}^{0}) . Thus we have  n+1\leq 2g+1(i.e.,
 n\leq 2g) .

(2) can be treated similarly.  \square 

Problems concerning virtual embeddability between mapping class groups can be found

in [3] and [8].
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