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A note on the paper “A knot with destabilized bridge spheres

of arbitrarily high bridge number”

Yeonhee Jang, Tsuyoshi Kobayashi, Makoto Ozawa and Kazuto Takao

1 Introduction

In a recent paper [1], the authors gave an interesting example of bridge spheres of knots
as follows. Let n be an integer with  n\geq 4 . Let  K_{n},  S_{n},  S_{n}^{\perp} be the knot and the two

spheres, respectively, shown in Figure 1. They showed that  S_{n} is a destabilized  n‐bridge
sphere of  K_{n} , and  S_{n}^{\perp} is a destabilized 3‐bridge sphere of  K_{n}.

In this paper, we prove the following fact about stabilizations for the above bridge
spheres.

Fact 1. There exists an  (n+1) ‐bridge sphere of the knot  K_{n} which is obtained from  S_{n}

by one stabilization and bridge isotopies, and from  S_{n}^{\perp}by  n-2 stabilizations and bridge
isotopies.

In the paper [1], the authors also gave an interesting example of bridge positions of
knot types as follows. Let  p_{i} be an integer with  |2p_{i}+1|\geq 5 for each  i\in\{1,2,3,4\} , let
 q be an even integer with  |q|\geq 12 , and let  k be a non‐negative integer. Let  K_{p_{1},p_{2},p_{3},p_{4},q,k}
be the knot shown in Figure 2. In fact, the knot type of  K_{p_{1},p_{2},p_{3},p_{4},q,k} does not depend on
 k . Let  \mathcal{K}_{p_{1},p_{2},p_{3},p_{4},q} denote the knot type. They showed that  K_{p_{1},p_{2},p_{3},p_{4},q,k} is a destabilized

 (2k+5) ‐bridge position of  \mathcal{K}_{p_{1},p_{2},p_{3},p_{4},q}.
In this paper, we also prove the following fact about stabilizations for the above bridge

positions.

Fact 2. For non‐negative integers  k_{+} and  k_{-} with  k_{+}\geq k_{-} , there exists  a(2k_{+}+6) ‐

bridge position of the knot type  \mathcal{K}_{p_{1},p_{2},p_{3},p_{4},q} which is obtained from  K_{p_{1},p_{2},p_{3},p_{4},q,k+} by one

stabilization and bridge isotopies, and from  K_{p_{1},p_{2},p_{3},p_{4},q,k_{-}} by 2  (k_{+}-k_{-})+1 stabilizations
and bridge isotopies.
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Figure 1: A knot  K_{n} and spheres  S_{n} and  S_{n}^{\perp} . The top shows the case where  n is even,
and the bottom shows the case where  n is odd. The knot  K_{n} intersects  S_{n} in  2n points.

The second top weft runs under the warps, and the third weft runs over the warps. Each

of the other wefts threads across the warps by repeating “over, over, under, under” with
the exception in the leftmost and rightmost parts.
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2 Preliminaries

In this section, we review basic definitions concerning bridge spheres and bridge posi‐

tions. We work in the smooth category.
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 \ovalbox{\tt\small REJECT}^{h}
Figure 2: A knot  K_{p_{1},p_{2},p_{3},p_{4},q,k} and the standard height function  h:S^{3}arrow \mathbb{R} . The left
shows the case where  k=0 , and the right shows the case where  k>0 . The box labelled

 p_{i} ” represents the  p_{i} left‐handed half‐twists.

We do not confuse the notions of knot and knot type. A knot is a circle embedded in

the 3‐sphere  S^{3} . Two knots are said to be isotopic if there is an ambient isotopy of  S^{3}

which takes one to the other. A knot type is an isotopy class of knots.
The notion of bridge sphere for knots is defined as follows. Let  K be a knot, and  n be

a positive integer. An  n‐bridge sphere of  K is a 2‐sphere  S in  S^{3} which is transverse to  K

and decomposes  (S^{3}, K) into two  n‐string trivial tangles. That is to say, letting  B_{+} and
 B_{-} denote the 3‐balls divided by  S in  S^{3} , the intersection  K\cap B_{\varepsilon} is a collection of  n arcs
which are simultaneously parallel to  \partial B_{\varepsilon} for each  \varepsilon\in\{+, -\}. A bridge sphere of  K is an
 m‐bridge sphere of  K for some positive integer  m.

The notion of bridge isotopy for bridge spheres is defined as follows. Let  S be a bridge

sphere of a knot  K . Let  \{\varphi_{t}:S^{3}arrow S^{3}\}_{t\in[0,1]} be an ambient isotopy such that  \varphi_{0}=id_{S^{3}},
and  \varphi_{t}(S) is a bridge sphere of  K for every  t\in[0,1] . We say that  \varphi_{1}(S) is obtained from
 S by a bridge isotopy. For two bridge spheres  S_{1} and  S_{2} of  K , by  S_{1_{\tilde{K}}}S_{2} we mean that
 S_{2} is obtained from  S_{1} by a bridge isotopy.

The notion of stabilization for bridge spheres is defined as follows. Let  S be a bridge
sphere of a knot  K . Let  S' be a sphere obtained from  S by a local deformation near a

point in  K\cap S as in Figure 3. One can see that if  S is an  n‐bridge sphere of  K for a

positive integer  n , then  S' is an  (n+1) ‐bridge sphere of  K . We say that  S' is obtained
from  S by a stabilization. A bridge sphere is said to be destabilized if it cannot be obtained

from any bridge sphere by a stabilization and a bridge isotopy.

We let  h denote the standard height function of the 3‐sphere throughout this paper. To
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Figure 3: A stabilization for a bridge sphere.

 |^{h}  arrow  |^{h}
Figure 4: A stabilization for a bridge position.

be specific, one may regard  S^{3} as the unit sphere in  \mathbb{R}^{4} and  h:S^{3}arrow \mathbb{R} as the restriction

of the projection.
The notion of bridge position for knot types is defined as follows. Let  \mathcal{K} be a knot type,

and  n be a positive integer. An  n‐bridge position of  \mathcal{K} is a knot  K in  \mathcal{K} such that the

function  h|_{K} has exactly  2n critical points, they are all non‐degenerate, and any locally

maximal value is higher than any locally minimal value. A bridge position of  \mathcal{K} is an
 m‐bridge position of  \mathcal{K} for some positive integer  m.

The notion of bridge isotopy for bridge positions is defined as follows. Let  K be a

bridge position of a knot type  \mathcal{K} . Let  \{\varphi_{t}:S^{3}arrow S^{3}\}_{t\in[0,1]} be an ambient isotopy such

that  \varphi_{0}=id_{S^{3}} , and  \varphi_{t}(K) is a bridge position of  \mathcal{K} for every  t\in[0,1] . We say that

 \varphi_{1}(K) is obtained from  K by a bridge isotopy. For two bridge positions  K_{1} and  K_{2} of  \mathcal{K},

by  K_{1\tilde{h}}K_{2} we mean that  K_{2} is obtained from  K_{1} by a bridge isotopy.

The notion of stabilization for bridge positions is defined as follows. Let  K be a bridge
position of a knot type  \mathcal{K} . Let  v_{+} denote the minimum of the locally maximal values of

 h|_{K} , and  v_{-} denote the maximum of the locally minimal values of  h|_{K} . Let  K' be a knot

obtained from  K by a local deformation near a point in  K\cap h^{-1}((v_{-}, v_{+})) as in Figure 4.

One can see that if  K is an  n‐bridge position of  \mathcal{K} for a positive integer  n , then  K' is an

 (n+1) ‐bridge position of  \mathcal{K} . We say that  K' is obtained from  K by a stabilization.  A

bridge position is said to be destabilized if it cannot be obtained from any bridge position

by a stabilization and a bridge isotopy.
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3 Proofs

We prove Fact 1 by a concrete construction. Let  n,  K_{n},  S_{n} and  S_{n}^{\perp} be as in Introduction.

Figures 5‐7 show a sequence of bridge spheres which represents a deformation of  S_{n} to
a sphere  S_{n}' in the case where  n is even. Note that the deformation is composed of one

stabilization and bridge isotopies. Figures 8‐10 show a sequence of bridge spheres which
represents a deformation of  S_{n}^{\perp} to  S_{n}' in the case where  n is even and  n>4 . Note that

the deformation is composed of  n-2 stabilizations and bridge isotopies. Similar figures

work in the case where  n is odd or  n=4 . These give a proof of Fact 1.

We also prove Fact 2 by a concrete construction. Let  p_{1},  p_{2},  p_{3},  p_{4},  q,  k,  K_{p_{1},p_{2},p_{3},p_{4},q,k}
and  \mathcal{K}_{p_{1},p_{2},p_{3},p_{4},q} be as in Introduction, and let  K_{p_{1},p_{2},p_{3},p_{4},q,k}' be the knot shown in Fig‐

ure 11. Note that  K_{p_{1},p_{2},p_{3},p_{4},q,k}' is  a(2k+6) ‐bridge position of  \mathcal{K}_{p_{1},p_{2},p_{3},p_{4},q} obtained from

 K_{p_{1},p_{2},p_{3},p_{4},q,k} by one stabilization. Figures 12‐15 show a sequence of bridge positions
which represents a deformation of  K_{p_{1},p_{2},p_{3},p_{4},q,k}' to  K_{p_{1},p_{2},p_{3},p_{4},q,k+1}' in the case where  k=3

and  p_{4} is even. Note that the deformation is composed of two stabilizations and bridge

isotopies. Similar figures work in the case where  k\neq 3 , and simpler figures work in the

case where  p_{4} is odd. These give a proof of Fact 2.
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Figure 5: A sequence of bridge spheres, part 1.
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Figure 6: A sequence of bridge spheres, part 2.
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Figure 7: A sequence of bridge spheres, part 3.
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Figure 8: A sequence of bridge spheres, part 1.
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Figure 9: A sequence of bridge spheres, part 2.
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Figure 10: A sequence of bridge spheres, part 3.
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Figure 11: A knot  K_{p_{1},p_{2},p_{3},p_{4},q,k}' and the standard height function  h:S^{3}arrow \mathbb{R} . The left

shows the case where  k=0 , and the right shows the case where  k>0.

 K_{p_{1},p_{2},p_{3},p_{4},q,3}'
 \infty 1

 \tilde{h}  \tilde{h}

Figure 12: A sequence of bridge positions, part 1. The height function  h is similar to that
in the above figures.
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 y B\frac{H}{o}.Figure 13: A sequence of bridge positions, part 2.
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Figure 14: A sequence of bridge positions, part 3.
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Figure 15: A sequence of bridge positions, part 4.
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