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ON LINEAR RELATIONS BETWEEN L‐VALUES AND
ARITHMETIC FUNCTIONS

REN‐HE SU

1, RESULTS FROM SIEGEL

Let F=\mathbb{Q}(\sqrt{D}) be a quadratic field with discriminant  D>0 , ring
of integers  0 and different  \mathfrak{d} . For integer  k\geq 2 and  B an ideal class of
 F, we define the Eisenstein series

 E_{k,B}(z)= \frac{1}{4}\zeta_{\mathfrak{d}B}(1-k)+\sum_{\xi\in \mathfrak{d}^{-
1},\xi\succ 0}\sigma_{k-1,\mathfrak{d}B}(\xi \mathfrak{d})q^{\xi}
of weight  k and level  SL_{2}(0) , where  z\in \mathfrak{h}^{2} and  q^{\xi}=\exp(2\pi\sqrt{-1}Tr(\xi z)) .
If we let

 \mathcal{R}E_{k,B}(\tau)=E_{k,B}(\tau, \tau)
for  \tau\in \mathfrak{h} , then  \mathcal{R}E_{k,B}\in \mathbb{J}I_{2k}(SL_{2}(\mathbb{Z})) . It is easy to see that

  \mathcal{R}E_{k,B}(\tau)=\frac{1}{4}\zeta_{\mathfrak{d}B}(1-k)+\sum_{n=1}
^{\infty}(\sum_{\xi\in \mathfrak{d}^{-1}}\sigma_{k-1,\mathfrak{d}B}(\xi 
\mathfrak{d}))q^{n},
where  q^{n}=\exp(2\pi\sqrt{-1}n\tau) . Thus by comparing the Fourier coeffi‐
cients, we have the following results.

Theorem 1 (Siegel). If  k=2,4 , then

  \zeta_{B}(1-k)=-\frac{B_{2k}}{k} \sum_{\xi\succ 0,Tr(\xi)=1}\sigma_{k-1,B}(\xi
\mathfrak{d})\xi\in \mathfrak{d}^{-1}.
Corollary 1. We have

  \zeta_{F}(-1)=\frac{1}{60} m^{2}<D\sum_{m\in Z} \sigma_{1}(\frac{D-m^{2}}{4})
 m^{2}\equiv Dmod 4
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and

  \zeta_{F}(-3)=\frac{1}{120} m^{2}<D\sum_{m\in Z} \sigma_{3}(\frac{D-m^{2}}{4}) .

 m^{2}\equiv Dmod 4

Today, we want to use the same technique on the Hilbert forms of
half‐integral weight.

2. MAIN RESULTS

Consider the same  F as in the last section. Put

 \omega=\{   \frac{1+\sqrt{D}}{\frac{}{},2\sqrt{D}2}
if  D\equiv 1  mod 4,
otherwise.

Then  0=\mathbb{Z}+\omega \mathbb{Z} . For any two ideals  b and  c of  F such that bc  \subset 0,
we let

 \Gamma[b, c]=\{ (\begin{array}{ll}
a   b
c   d
\end{array})\in SL_{2}(F)|a, d\in 0, b\in b, c\in c\}
and put  \Gamma=\Gamma[\mathfrak{d}^{-1},4\mathfrak{d}].

Definition 1. For any  z\in \mathfrak{h}^{2} , we put

  \theta(z)=\sum_{\xi\in 0}q^{\xi^{2}} (z\in \mathfrak{h}^{2})
The factor of automorphy of weight 1/2 is given by

  \overline{J}(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}
where  \gamma\in\Gamma.

Let  k\geq 0 . A Hilbert modular form of parallel weight  k+1/2 and
level  \Gamma is a holomorphic function  f on  \mathfrak{h}^{2} which satisfies

 f(\gamma z)=\tilde{j}(\gamma, z)^{2k+{\imath}}f(z)
for any  \gamma\in\Gamma . The space of all such forms is denoted by  M_{k+1/2}(\Gamma)
and the subspace consisting cusp forms in it is denoted by  S_{k+1/2}(\Gamma) .

Now suggest that the different  \mathfrak{d} has a totally positive generator  \delta.

Put  \Gamma'=\Gamma[0,40] . A Hilbert modular form of parallel weight  k+1/2
and lcvel  \Gamma' is a function with the form

 f_{0}(z)=f(\delta^{-1}z)
where  f\in M_{k+1/2}(\Gamma) . It satisfies the automorphic condition

 f_{0}(\gamma z)=\tilde{j}_{0}(\gamma, z)^{2k+1}f_{0}(z)
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where  \gamma\in\Gamma' and  \tilde{j}_{0} comes from  \theta_{0} as for   2\sim . The space of all such forms
and cusp forms are dentoed by  M_{k+1/2}(\Gamma') and Sk  + ı/2  (\Gamma') , respectively.

Note that the congruence subgroup  \Gamma_{0}(4)\subset SL_{2}(\mathbb{Z}) can be embedded

into  \Gamma' diagonally. One can show that if  \gamma=(\begin{array}{ll}
a   b
c   d
\end{array})  \in\Gamma_{0}(4) , we have

 \tilde{j}_{0}(\gamma, (\tau, \tau))=(c\tau+d)\chi_{-4}(d)
where  \tau\in \mathfrak{h} . Thus if we put

 \mathcal{R}f(\tau)=f_{0}((\tau, \tau))

where  f\in M_{k+1/2}(\Gamma) and  \tau\in \mathfrak{h} , then

 \mathcal{R}f\in M_{2k+1}(\Gamma_{0}(4), \chi_{-4}) .

We write  \delta in the form

 \delta=(\alpha+\beta\omega)\sqrt{D}
with  \alpha+\beta\omega>0 a unit of norm‐l. Then if  f has the Fourier expansion

 f(z)= \sum_{\xi\in \mathfrak{o}}c(\xi)q^{\xi} (z\in \mathfrak{h}^{2}) ,

we can write down the Fourier expansion of  \mathcal{R}f explicitly as

  \mathcal{R}f(\tau)=\sum_{n=0}^{\infty}  (\begin{array}{ll}
\Sigma   c(a+b\omega)
(a,b)\in \mathbb{Z}^{2}   
a\beta-b\alpha=n   
\end{array})  q^{n}  (\tau\in \mathfrak{h}) .

If we apply the mapping  \mathcal{R} on  \theta^{2} , we get the following result.

Corollary 2. For  m>0 and number field  K we set

 r_{K,m}(x)=\#\{(x_{1}, x_{2}, \ldots, x_{7m})\in 0_{K}^{m}x_{1}^{2}+\cdots+
x_{m}^{2}=x\}  (x\in K) .

Then with the notations given above, we have

 a \beta-b\alpha=n\sum_{(a,b)\in \mathbb{Z}^{2}}r_{F,m}(a+b\omega)=r_{\mathbb{Q}
,2m}(n)
.

From now let us consider the case for Kohnen plus space. The specific
spaces were first defined by Kohnen [3] in 1980 and generalized to the
case for Hilbert modular forms by Hiraga and Ikeda [2] in 2013. For
any  \xi\in F, we denote by

 \xi\equiv\square  mod 4

if there exists  \lambda\in 0 such that  \xi-\lambda^{2}\in 40.
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Definition 2. The Kohnen plus space is a subspace of  M_{k+1/2}(\Gamma) de‐
fined as

 M_{k+1/2}^{+}(\Gamma)

 = \{f(z)=\sum_{\xi}c(\xi)q^{\xi}\in M_{k+1/2}(\Gamma)
 M_{k+1/2}^{+}(\Gamma)

 = \{f(z)=\sum_{\xi}c(\xi)q^{\xi}\in M_{k+1/2}(\Gamma)
 M_{k+1/2}^{+}(\Gamma)

 = \{f(z)=\sum_{\xi}c(\xi)q^{\xi}\in M_{k+1/2}(\Gamma)  c(\xi)=0 unless  (-1)^{k}\xi\equiv\square  mod 4 .

Also we put  S_{k+1/2}^{+}(\Gamma)=i1l_{k+1/2}^{+}(\Gamma)\cap S_{k+1/2}(\Gamma) . Their images in
 M_{k+1/2}(\Gamma') under the isomorphism  f\mapsto f_{0} are denoted by  M_{k+1/2}^{+}(\Gamma')
and  S_{k+1/2}^{+}(\Gamma') , respectively.

We also define the plus spaces contained in  M_{2k+1}(\Gamma_{0}(4), \chi_{-4}) and
 S_{2k+1}(\Gamma_{0}(4), \chi_{-4}) .

Definition 3. We put

 M_{2k+{\imath}}^{+}(\Gamma_{0}(4), \chi_{-4})

 = \{h(z)=\sum_{n=0}^{\infty}d(n)q^{n}\in M_{2k+1}(\Gamma_{0}(4), \chi_{-4})
 M_{2k+{\imath}}^{+}(\Gamma_{0}(4), \chi_{-4})

 = \{h(z)=\sum_{n=0}^{\infty}d(n)q^{n}\in M_{2k+1}(\Gamma_{0}(4), \chi_{-4})
 M_{2k+{\imath}}^{+}(\Gamma_{0}(4), \chi_{-4})

 = \{h(z)=\sum_{n=0}^{\infty}d(n)q^{n}\in M_{2k+1}(\Gamma_{0}(4), \chi_{-4})  d(n)=0 if  \chi_{-4}(n)=(-1)^{k+1}\}
and  S_{2k+1}^{+}(\Gamma_{0}(4), \chi_{-4})=l1f_{2k+1}^{+}(\Gamma_{0}(4), \chi_{-4})
\cap S_{2k+1}(\Gamma_{0}(4), \chi_{-4}) .

For  k>0 being odd, the space  S_{2k+1}^{+}(\Gamma_{0}(4), \chi_{-4}) was defined by
Kojima [4] in 1982 and shown to be isomorphic to  AI_{2k+2}(\Gamma^{2}(\mathcal{O})) , the
space of Hermitian modular forms of weight  2k+2 and degree 2. The
plus spaces of odd weights can be described exactly in the sense taking
certain linear combinations of the normalized Hecke eigenforms of the
whole space as a basis.

Theorem 2. Let  k\geq 0 . We have

 \mathcal{R}(M_{k+1/2}^{+}(\Gamma))\subset M_{2k+{\imath}}^{+}(\Gamma_{0}(4), 
\chi_{-4})
and

 \mathcal{R}(S_{k+{\imath}/2}^{+}(\Gamma))\subset S_{2k+1}^{+}(\Gamma_{0}(4), 
\chi_{-4})
This theorem can be proved in an elementary way, but can also be

proved in a representation theoretical way, which reflects the nature of
both plus spaces of half‐integral and integral weights more.

As an application, we apply  \mathcal{R} on the Eisenstein series in  M_{k+1/2}^{+}(\Gamma) ,
which was introduced in [5]. Let  \chi be a character of the ideal class
group  Cl(F) of  F . The Eisenstein series in  M_{k+1/2}^{+}(\Gamma) with respect to
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 \chi is given by

 E_{k+1/2,\chi}(z)=L_{F}(1-2k, \overline{\chi}^{2})+(-1)^{k}\xi\equiv\square 
\sum_{mod 4 ,\xi\succ 0}\mathcal{H}_{k}(\xi, \chi)q^{\xi}
where

 \mathcal{H}_{k}(\xi, \chi)=\chi(\mathcal{D}_{(-1)^{k}\xi})L_{F}(1-k, \chi_{(-1)
^{k}\xi}\chi)

  \cross\sum_{alf_{(-1)^{k}\xi}}\mu_{F}(a)\chi_{(-1)^{k}\xi}(\mathfrak{a})
\chi(\mathfrak{a})N_{F/\mathbb{Q}}(\mathfrak{a})^{k-1}\sigma_{F,2k-1,\chi^{2}}
(f_{(-1)^{k}\xi}\mathfrak{a}^{-1})
.

Here  D_{x} and  \chi_{x} are the relative discriminant and the quadratic char‐
acter associated to  F(\sqrt{x})/F, respectvely, and  f_{x} is the integral ideal
such that  f_{x}^{2}\mathcal{D}_{x}=(x) . Further more,  \mu_{F} is the Möbius function with
respect to  F and

  \sigma_{F,m,\chi'}(b)=\sum_{r|b}N_{F/\mathbb{Q}}(\mathfrak{r})^{m}
\chi'(\mathfrak{r}) .

The Eisenstein series given above is a generalization of the one given by
Cohen in [1], whose Fourier coefficients are called generalized Hurwitz
class numbers.

The two Eisenstein series in M2k  + ı  (\Gamma0(4),  \chi_{-4}) are given by

 E_{2k+1,\chi-4}( \tau)=1+\frac{2}{L(-2k,\chi_{-4})}\sum_{n=1}^{\infty}
\sigma_{2k,\chi-4}(n)q^{n}
and

 F_{2k+1,\chi-4}( \tau)=\frac{(-1)^{k}2}{L(-2k,\chi_{-4})}\sum_{n={\imath}}
^{\infty}\sigma_{2k,\chi-4}'(n)q^{n}
where

  \sigma_{2k,\chi-4}'(n)=\sum_{r|n}r^{2k}\chi_{-4}(n/r) .

The series  F_{2k+1,\chi-4} is the normalized image of  E_{2k+1,\chi-4} under the
Fricke involution. By comparison of the constant term at the cusps of
 \Gamma_{0}(4) , we have the following result.

Theorem 3. For  k\geq 0 , we have

 \mathcal{R}G_{k+1/2,\chi}-L_{F}(1-2k,\overline{\chi}^{2})(E_{2k+{\imath},\chi-
4}+(-1)^{k}F_{2k+1,\chi-4})\in S_{2k+1}(\Gamma_{0}(4), \chi_{-4}) .

In particular, since  S_{3}(\Gamma_{0}(4), \chi_{-4})=0 , we have

 a \beta-b\alpha=n\sum_{(a,\'{o})\in \mathbb{Z}^{2}}\mathcal{H}_{1}(a+b\omega, 
\chi)=-4L_{F}(1-2k,\overline{\chi}^{2})(\sigma_{2,\chi-4}(n)-\sigma_{2,\chi-4}
^{I}(n))
.
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For example, let  F=\mathbb{Q}(\sqrt{5}) and  \delta=\omega\sqrt{5} where  \omega=(1+\sqrt{5})/2.
Then by applying the theorem on  E_{3/2,1} and  E_{5/2,1} we may get

 L_{F}(0,  \chi_{-2-\omega})=-\frac{2}{15}(\sigma_{2,\chi-4}(2)-\sigma_{2,\chi-
4}'(2)) ,

 2L_{F}(0,  \chi_{-3})+2L_{F}(0, \chi_{-3+\omega})=-\frac{2}{15}(\sigma_{2,\chi-
4}(3)-\sigma_{2,\chi-4}'(3)) ,

 2L_{F}(0,  \chi_{-4})=-\frac{2}{15}(\sigma_{2,\chi-4}(4)-\sigma_{2,\chi-4}'(4)) ,

 2L_{F}(0,  \chi_{-3})+2L_{F}(0, \chi_{-6-\omega})=-\frac{2}{15}(\sigma_{2,\chi-
4}(6)-\sigma_{2,\chi-4}'(6)) ,

 2 \zeta_{F}(-1)=\frac{1}{75}(\sigma_{4,\chi-4}(1)+\sigma_{4,\chi-4}'(1)+3s(1)) ,

 4 \zeta_{F}(-1)+2L_{F}(-1, \chi_{5+\omega})=\frac{1}{75}(\sigma_{4,\chi-4}(5)+
\sigma_{4,\chi-4}'(5)+3s(5)) ,

and so on. Here

 s(n)= \frac{1}{4}\sum_{a^{2}+b^{2}=n}(a+b\sqrt{-1})^{4}
3. REPRESENTATION THEORETIC VIEW OF THE THEOREM

Let   \psi_{0}=\prod_{0,v\leq\infty}\psi_{0,v} be the additive character of  \mathbb{A}_{F}/F such that

for   v|\infty it satisfies

 \psi_{0,v}(x)=\exp(2\pi\sqrt{-1}(-1)^{k}x) (x\in \mathbb{R}) .

Put  \psi=\psi_{0}(\delta^{-{\imath}}\cdot) . We denote the metaplectic double covering of  SL_{2}
by  Mp_{2} , which is with respect to the Kubota 2‐cocycle. There exists
an irreducible representation  \Omega_{\psi} of   \prod_{v|2}Mp_{2}(\mathfrak{o}_{v}) associated to  \psi . This
representation is a subquotient of the restricted Weil representation as‐
sociated to  \psi and is of 4‐dimension. Note that a modular form of weight
 k+1/2 can be lifted to an automorphic form on  SL_{2}(F)\backslash Mp_{2}(\mathbb{A}_{F}) . Hi‐
raga and Ikeda  [ ?  ] showed the following theorem

Theorem 4 (Hiraga, Ikeda). Let  f_{0}\in M_{k+1/2}(\Gamma') and  W_{4}f_{0} be its
image under the fricke involution with respect to  z \mapsto-\frac{1}{4z}. A sufficient
necessary condition for  f_{0} to be in the plus space  iS

 < \rho(\gamma)W_{4}f_{0}|\gamma\in\prod_{v|2}Mp_{2}(0_{v})> \cong \Omega_{\psi}
.
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Regardless of the choice of  F,  SL_{2}(\mathbb{Z}_{2}) can be embedded into   \prod_{|2}Mp_{2}(\mathfrak{o}_{v})
and the restriction of  \Omega_{\psi} to  SL_{2}(\mathbb{Z}_{2}) remains the same. One can show

 \Omega_{\psi} =\pi_{k}\oplus\sigma_{k}
 SL_{2}(\mathbb{Z}_{2})

where  \pi_{k} and  \sigma_{k} are irreducible representations of dimension 3 and
1, respectively. They only depend on the parity of  k . The following
theorem was shown by Kojima [4] (for odd  k , but the proof can be
easily extended to general positive integer  k ).

Theorem 5 (Kojima). Let  h\in l\downarrow l_{2k+1}(\Gamma_{0}(4), \chi_{-4}). A sufficient neces‐
sary condition for  h to be in the plus space is

 <\rho(\gamma)W_{4}h|\gamma\in SL_{2}(\mathbb{Z}_{2})> \cong \pi_{k}.

By Theorem 4, it is easy to see that if  f\in M_{k+1/2}^{+}(\Gamma) then  W_{4}\mathcal{R}f
generates a irreducible representation of  SL_{2}(\mathbb{Z}_{2}) equivalent to  \pi_{k} . Thus
we get  \mathcal{R}f\in M_{2k+1}^{+}(\Gamma_{0}(4), \chi_{-4}) .
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