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Diophantine Frobenius problems from semigroup’s series
and identities for zeta functions
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1 Introduction

The Frobenius Problem is to determine the largest positive integer that is
NOT representable as a nonnegative integer combination of given positive
integers that are coprime (see [11] for general references).

Given positive integers d_{1} , . . . ,  d_{m} with  gcd(d_{1}, \ldots, d_{m})=1 , it is well‐
known that all sufficiently large  b the equation

 d_{1} xı  +\cdot\cdot\cdot  +d_{rn}x_{rn}=b (1)

has a solution with nonnegative integers  x_{1} , . . . ,  X_{?n}.

The Frobenius number  F(d_{1}, \ldots, d_{m}) is the LARGEST integer  b such that
(1) has no solution in nonnegative integers. For  m=2 , we have

 F(d_{1}, d_{2})=(d_{1}-1)(d_{2}-1)-1

(Sylvester (1884) [15]). For  m\geq 3 , exact determination of the Frobenius
number is difficult. The Frobenius number cannot be given by closed formulas
of a certain type (Curtis 1990 [4]), the problem to determine  F(d_{1}, \ldots, d_{m})
is NP‐hard under Turing reduction (see, e.g., Raml’rez Alfonsín [11]).

Some formulae for the Frobenius number in three variables can be seen

in [17].

Proposition 1. Let

  q:= \lfloor\frac{a}{a-p}\rfloor and  r:=a-q(a- \ell)=(a-\ell)\{\frac{a}{a-\ell}\}
If  \ell>k and  br<cq , then

 F(a, b, c)=\begin{array}{ll}
-a+b((\lambda+1)(a-P)+r-1)   
-a+b(a-\ell-1)+c(q-\lambda-1)   if \lambda\leq\frac {}{}if \lambda\geq\frac{c(q-
1)-br}{c(q-1)-br,b(a-\ell)+cb(a-p)+c};,
\end{array}
where  \lambda  := \lfloor\frac{cq-br}{b(a-\ell)+c}\rfloor .
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Proposition 2. Let

  \overline{q}:=\lfloor\frac{a}{p}\rfloor and   \overline{r}:=a-\overline{q}\ell=P\{\frac{a}{\ell}\}
If  \ell>k and  b(\ell-\overline{r})<c(\overline{q}+1) , then

 F(a, b, c)=\{\begin{array}{ll}
-a+b(\ell-1)+c(\overline{q}-1)   Of 0\leq\overline{r}<\ell-k;
-a+b(\overline{r}-1)+c\overline{q}   if \ell-k\leq\overline{r}<\ell.
\end{array}
Consider the number of solutions. Sylvester (1882) gave the number of

positive integers with no nonnegative integer representation by  d_{1} and  d_{2} by

 g(d_{1}, d_{2})= \frac{(d_{1}-1)(d_{2}-1)}{2} (2)

The number of solutions of the equation (1) in nonnegative integers  x_{1} , . . . ,  x_{m},

denoted by  N(d_{1}, \ldots, d_{m};b) . For  m=2 , there exists an explicit formula for
the number of solutions.

Proposition 3. Tripathi (2000) [16]

 N(d_{1}, d_{2};b)= \frac{b+d_{1}d_{1}'+d_{2}d_{2}'}{d_{1}d_{2}}-1,
where  d\'{i}\equiv-bd_{1}^{-1}(mod d_{2}),  d_{2}'\equiv-bd_{2}^{-1}(mod d_{1}) with  1\leq d\'{i}  \leq d_{2} and

 1\leq d_{2}'\leq d_{1}.

But, the problem becomes fairly hard if  m\geq 3.

We give the method for computing the desired number. For the set
 \{a_{1}, . . . , a_{n}\}\subset\{1,2, . . . \} with  gcd(a_{1}, \ldots, a_{n})=1 , we have

  \mathcal{N}(x):=\sum_{b=0}^{\infty}N(d_{1}, \ldots, d_{m};b)x^{b}=\frac{1}{(1-
x^{d\perp})\cdots(1-x^{d_{m}})}
 = \frac{c_{1}}{1-x}+\cdots+\frac{c_{7n}}{(1-x)^{rn}}

 + \sum_{k={\imath}}^{d_{1}-1}\frac{A_{d_{1}}(k)}{1-\zeta_{d_{1}}^{-k_{X}}}+
\cdots+\sum_{k={\imath}}^{d_{m}-1}\frac{A_{d_{m}}(k)}{1-\zeta_{d_{m}}^{-k_{X}}} , (3)
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where  \zeta_{d_{l}}=e^{2\pi i/d_{l}}(l=1,2, \ldots, m) . For the first decomposition into ordinary
partial fractions, putting

  \sum_{t=0}^{\infty}P_{A}(t)x^{t}=\frac{C{\imath}}{1-x}+\cdots+\frac{c_{m}}{(1-
x)^{m}},
we know that

 P_{A}(t)= \sum_{l=1}^{\infty}c_{l}  (b   +l-b   1) ,

where we take  c_{l}=0 for  l>n.

Then, we have the following expression ([2]).

Theorem 1.

 P_{A}(t)= \frac{1}{d_{1}\cdots d_{m}}\sum_{l=0}^{m-1}\frac{(-1)^{l}}{(m-l-1)!}
  \cross\sum_{k_{1}+\cdots+k_{m}=\iota}d_{1}^{k_{1}}\cdots d_{m}^{k_{m}}\frac{B_
{k_{1}}\cdots B_{k_{m}}}{k_{1}!\cdots k_{7Yl}!}b^{m-l-1}

 = \frac{1}{d_{1}\cdots d_{m}}\sum_{l=0}^{m-1}\frac{(-1)^{l}}{(m-l-1)!}
\sum_{k_{1}+2k_{2}+\cdots+lk_{l}=l}\frac{(-1)^{k_{2}.+\cdot+k_{l}}}{k_{1}
!\cdot\cdot k_{l}!}
  \cross(\frac{B_{1}S_{1}}{1\cdot 1!})^{k_{1}}\cdots(\frac{B_{l}S_{l}}{l\cdot 
l!})^{k_{l}}b^{\gamma n-l-{\imath}}

where  S_{j}=d\'{i}  +\cdots+d_{m}^{j} and  B_{m} is the m‐th Bernoulli number.

If we write

 P_{A}(t)= \sum_{l=1}^{\infty}c_{l} (b   +l-b   1)= \sum_{j=0}^{m-1}d_{j}
\mathcal{U},
 d_{j} can be expressed as follows ([9]).

Theorem 2. For  l\geq 0 we have

 d_{m-l-{\imath}}= \frac{(-1)^{l}}{(m-l-1)!l!P}Y_{l}  (Bı  S_{1},  - \frac{B_{2}S_{2}}{2},  \ldots,  (-1)^{l+1} \frac{\sqrt{}\iota S_{l}}{l})
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where  P= \prod_{j=1}^{r\gamma t}d_{J}\prime,  S_{n}= \sum_{j=1}^{m}d_{j}^{n},  B_{n} is the n‐th Bernoulli number, and
 Y_{n}(y_{{\imath}}, \ldots, y_{n}) are Bell polynomials defined by

  \exp(\sum_{k=1}^{\infty}y_{k}\frac{x^{k}}{k!})=\sum_{n=0}^{\infty}Y_{n} (  yı, . . .  y_{n} )   \frac{x^{n}}{n!}
with  Y_{0}=1 , and expressed as

  Y_{n} (y_{1}, . . . y_{n})=k_{1}+2k_{2}+.\cdot.\cdot.\cdot+nk_{n_{0}}=
n\sum_{k_{1},k_{2},,k_{n\geq}}\prod_{\dot{i}={\imath}}^{n}\frac{n!y_{i}^{k_{i}}}
{k_{i}!(\dot{i}!)^{k_{\dot{i}}}}
For the second decomposition including the periodic sequences in (3), we

know that for  l=1 , 2, . . . ,  m_{r}

 A_{d_{l}}(k)= \frac{1}{d_{l}}\frac{1}{(1-\zeta_{d_{l}}^{d_{1}k})\cdots(1-\zeta_
{d_{l}}^{d_{l-1}k})(1-\zeta_{d_{l}}^{d_{l+\perp}k})\cdots(1-\zeta_{d_{l}}^{d_{m}
k})}
2 Numerical semigroups

A numerical semigroup  S(d^{m})=\{d_{1}, . . . , d_{m}\} is said to be generated by a
minimal set of natural numbers  d^{rn}=\{d_{1}, . . . , d_{m}\} with  gcd(d_{1}, \ldots, d_{m})=1
if neither of its elements is linearly representable by the rest of them. Namely,

 S( d^{m})=\{s\in \mathbb{N}\cup\{0\}|s=\sum_{i=1}^{7n}x_{i}d_{i}, x_{i}\in 
\mathbb{N}\cup\{0\}\}
Here,  d_{1} , . . . ,  d_{m} are called generators. Put   \pi_{m}=\prod_{i=1}^{m}d_{i} and   a_{m}=\sum_{\dot{i}=1}^{m}d_{i}.
  \mu=\min\{d_{1}, . . . , d_{m}\} is called multiplicity.
 G(d^{m})=\mathbb{N}\backslash S(d^{m}) : set of gaps of semigroup
 F( d^{m})=\max\{G(d^{m})\} : Frobenius number

 g(d^{rr\iota})=\#\{G(d^{m})\} : genus of semigroup
 c(d^{m})=1+F(d^{m}) : conductor of semigroup, so that  c(d^{m})\leq 2g(d^{m})

  \rho(d^{m})=1-\frac{g(d^{m})}{c(d^{rn})} : density of non‐gaps

 H(d^{m};z)  := \sum_{s\in S(d^{m})}z^{s} : Hilbert series

 \Phi(d^{rn};z)  := \sum_{s\in G(d^{m})}z^{s} : Generating function of gaps, so that  H(d^{rn};z)+

  \Phi(d^{m};z)=\frac{1}{1-z}
Several special numerical semigroups  S(d^{m}) are as follows.
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Proposition 4 (Roberts (1956) Arithmetic sequence [12]). For  d^{m}=\{a,  a+

 d
, . . . ,  a+(m-1)d\}

 F( d^{m})=a\lfloor\frac{a-2}{m-1}\rfloor+d(a-1)
Proposition 5 (Selmer (1997) [14]; Rödseth (1994) [13] Almost arithmetic
sequence). For  d^{7n}=\{a, ha+d, ha+2d, . . . , ha+(m-1)d\}

 F( d^{m})=ha\lfloor\frac{a-2}{m-1}\rfloor+a(h-1)+d(a-1)
Proposition 6 (Selmer (1997) [14]; Rödseth (1994) [13]) Almost arithmetic
sequence). For  d^{m}=\{a, a+1, a+2, a+2^{2}, . . . , a+2^{m-2}\}

 F( d^{m})=\frac{a(a+1)}{2^{m-2}}+\sum_{k=0}^{m-3}2^{k}\lfloor\frac{a+2^{k}}
{2^{m-2}}\rfloor+a(m-4)-1
Proposition 7 (Ong & Ponomarenko (2008) Geometric sequence [10]). For
 d^{m}=\{a^{7n-1}, a^{m-2}b, a^{m-3}b^{2}, . . . , b^{7n-1}\}

 F( d^{m})=b^{m-2}(ab-a-b)+\frac{(b-1)a^{2}(a^{m-2}-b^{m-2})}{a-b}
A semigroup  S(d^{m}) is called symmetric if for any integer  s

 s\in S(d^{m})\Rightarrow F(d^{m})-s\not\in S(d^{m}) .

In fact, we have

 c( d^{m})=2g(d^{m}) , \rho(d^{m})=\frac{1}{2}
Otherwise,  S(d^{m}) is called nonsymmetric.

Proposition 8 (Watanabe (1973) [18]). Let  H_{1}=\{d_{1} , . . . ,   d_{m}\rangle be a semi‐
group. For positive integers  a and  b , satisfying  a\in H_{1}\backslash \{d_{1}, . . . , d_{m}\} and
 gcd(a, b)=1 , denote  H  :=\langle a,  bH_{1}\rangle=\langle a,  bd_{1} , . . . ,   ad_{rn}\rangle . Then

His symmetric  \Leftrightarrow H_{1} is symmetric.

Proposition 9 (Johnson (1960), [8]).

 F(H)=bF(H_{1})+(b-1)a.
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The semigroup  S(d^{2}) is always symmetric.

Proposition 10 (Sylvester (1884) [15], Rödseth (1994) [13]).

 F(d^{2};z)=d_{1}d_{2}-d_{1}-d_{2},

 H( d^{2};z)=\frac{1-z^{d_{1}d_{2}}}{(1-z^{d_{1}})(1-z^{d_{2}})}
However, the Hilbert series  H(d^{3};z) and the power sum  g_{n}(d^{3};z) are not

so simple. For given  d^{3}=(d_{1}, d_{2}, d_{3}) , Johnson’s minimal relations (1960) [8]
are constructed as follows.

 a_{11}d_{1}=a_{12}d_{2}+a_{13}d_{3},  a_{22}d_{2}=a_{21}d_{1}+a_{23}d_{3},  a_{33}d_{3}= a3ıd1  +a_{32}d_{2} ,

where

 a_{11}= \min\{u_{11}|v_{11}\geq 2, v_{11}d_{1}=v_{12}d_{2}+v_{13}d_{3}, u_{12},
v_{13}\in \mathbb{N}\cup\{0\}\} ,

 a_{22}= \min\{v_{22}|v_{22}\geq 2, v_{22}d_{2}=v_{21}d_{1}+v_{23}d_{3}, v_{21},
v_{23}\in \mathbb{N}\cup\{0\}\} ,

 a_{33}= \min\{v_{33}|v_{33}\geq 2, v_{33}d_{3}=v_{31}d_{1}+v_{32}d_{2}, v_{31},
v_{32}\in \mathbb{N}\cup\{0\}\}.

The auxiliary invariants  a_{ij}(i\neq j) are uniquely determined by this definition
and

 gcd (  a_{11},  a_{12} , a13)  =gcd (  a_{22},  a_{22} , a23)  =gcd (  a_{31},  a_{32} , a33)  =1.

The denominator of the Hilbert series is given by  (1-z^{d_{1}})(1-z^{d_{2}})(1-z^{d_{3}}) .
The numerator of the Hilbert series  Q(d^{3};z) for nonsymmetric semigroups

 S(d^{3}) is given by the following.

 Q(d^{3};z)=1-(z^{ad_{1}}11+z^{ad_{2}}22+z^{ad_{3}}33)

 +z^{1/2(\{a,d\rangle-J(d^{3}))}+z^{1/2(\langle a,d\}+J(d^{3}))},
where

 \langle a, d\}=a_{11}d_{1}+a_{22}d_{2}+a_{33}d_{3}
and

 J(d^{3})=\sqrt{\langle a,d\}-4\sum_{i>j}a_{ii}a_{jj}d_{i}d_{j}+4d_{1}d_{2}d_{3}
}.
The numerator of the Hilbert series for symmetric semigroup  S(d^{3}) is

given by
 Q(d^{3};z)=(1-z^{a_{22}d_{2}})(1-z^{ad}333) .
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3 Semigroup’s series for negative degrees of
the gaps values

We derive an explicit form for an inverse power series over values of gaps of
numerical semigroups generated by two integers.

Let  S_{m}=\langle d_{1} , . . . ,  d_{m}\} be the semigroup generated by a set of integers
 \{d_{1}, . . . , d_{m}\} such that

 1<d_{1}<. . .  <d_{m} ,  gcd(d_{1}, \ldots, d_{m})=1.

This sum of integer powers of values the gaps in numerical semigroups  S_{m}=
 \langle d_{1} , . . . ,  d_{rn}\} is referred often as semigroup’s series

 g_{n}(S_{m})= \sum_{s\in \mathbb{N}\backslash S_{m}}s^{n} (n\in \mathbb{Z}) ,

and  g_{0}(S_{7n}) is known as a genus of  S_{m}.
For  n\geq 0 , an explicit expression of  g_{n}(S_{2}) was given.

Proposition 11. Rödseth (1994) [13]) For  n\geq 0,

 g_{n}(S_{2})= \frac{1}{(n+1)(n+2)}\sum_{k=0}^{n+1}
  \sum_{l=0}^{n+1-k}  (\begin{array}{ll}
n   +2
   k
\end{array})(\begin{array}{lll}
n   +2-   k
   l   
\end{array})  B_{k}B_{l}d_{{\imath}}^{m+1-k}d_{2}^{n+1-l}

 - \frac{B_{n+1}}{n+1},
where  B_{n} is n‐th Bernoulli number.

Remark. For  n=0 , it is reduced to Sylvester’s expression [15]:

 g_{0}(S_{2})= \frac{(d_{1}-1)(d_{2}-1)}{2}
For  n=1 , the result was given by Brown and Shiue in 1993 [3].

 g_{1}(S_{2})= \frac{g_{0}(S_{2})}{6}(2d_{1}d_{2}-d_{1}-d_{2}-1) .
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An implicit expression of  g_{n}(S_{3}) was given by Fel and Rubinstein in 2007 [6].

We derive a formula for semigroup series

 g_{-n}(S_{2})= \sum_{s\in \mathbb{N}\backslash S_{2}}s^{-n} (n\geq 1) .

Consider the numerical semigroup  S_{2}=  \langle dı,   d_{2}\rangle , where  d_{1},  d_{2}\geq 2 . We intro‐
duce the Hilbert series  H(z;S_{2}) and the gaps generating function  \Phi(z;S_{2})
are given by

 H(z;S_{2})= \sum_{s\in S_{2}}z^{s} and

  \Phi(z;S_{2})=\sum_{s\in \mathbb{N}\backslash S_{2}}z^{s}
so that

 H(z;S_{2})+ \Phi(z;S_{2})=\frac{1}{1-z} (z<1) . (4)

Here,   \min\{\mathbb{N}\backslash S_{2}\}=1.   \max\{\mathbb{N}\backslash S_{2}\}=d_{1}d_{2}-d_{1}-d_{2} is exactly the same as
Frobenius number.

The rational representation of  H(z;S_{2}) is given by

 H(z;S_{2})= \frac{1-z^{d_{1}d_{2}}}{(1-z^{d_{1}})(1-z^{d_{2}})} (5)

Introduce a new generating function  \Psi ı  (z; S_{2}) by

  \Psi_{1}(z;S_{2})=\int_{0}^{z}\frac{\Phi(t;S_{2})}{t}dt=\sum_{s\in \mathbb{N}
\backslash S_{2}}\frac{z^{s}}{s}
Hence,

  \Psi_{1}(1;S_{2})=\sum_{s\in \mathbb{N}\backslash S_{2}}\frac{1}{s}=g_{-1}
(S_{2}) . (6)

Substituting (4) into (6), we obtain

  \Psi_{1}(z;S_{2})=\int_{0}^{z}(\frac{1}{1-t_{ノ}}-H(t;S_{2}))\frac{dt}{t} (7)

Present an integral in (7) as follows.

  \Psi_{1}(z;S_{2})=\int_{0}^{z}(\sum_{k=0}^{\infty}t^{k-1}-\frac{H(t;S_{2})}{t}
)dt,
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  \frac{H(t;S_{2})}{t}=\sum_{j=0}^{2}h_{j}(t;S_{2}) , (8)

 h_{0}(t;S_{2})= \frac{1}{t}, h_{1}(t;S_{2})=\sum_{k_{1}=1}^{d_{2}-1}t^{k_{1}
d_{1}-1},
 h_{2}(t;S_{2})= \sum_{k_{1}=0}^{d_{2}-1}\sum_{k_{2}=1}^{\infty}t^{k_{1}d_{1}+k_
{2}d_{2}-1} (9)

Perform integration in (8) as

  \Psi_{1}(Z1S_{2})=\sum^{\infty}\frac{z^{k}}{k}-\frac{1}{d_{{\imath}}}-
1\sum^{d_{2}}\frac{z^{k_{1}d_{1}}}{k_{{\imath}}}--1\sum^{d_{2}}\sum^{\infty}
\frac{z^{k_{1}d_{1}+k_{2}d_{2}}}{k_{1}d_{1}+k_{2}d_{2}},
 k=1  k_{1}=1 kı  = 0  k_{2}=1

so by (6) we obtain

 g_{-1}(S_{2})= \sum_{k=1}^{\infty}\frac{1}{k}-\sum_{k_{1}=0}^{d_{2-{\imath}}}
\sum_{k_{2}=1}^{\infty}\frac{1}{k_{1}d_{1}+k_{2}d_{2}}-\frac{1}{d_{1}}
\sum_{k_{1}=1}^{d_{2}-1}\frac{1}{k_{1}}
4 A sum of the negative degrees of the gaps

values  g_{-n}(S_{2})
We can have a general formula as  g_{-1}(S_{2}) by introducing of a new generating
function  \Psi_{n}(z;S_{2})(n\geq 2) by

  \Psi_{n}(Z1S_{2})=\int_{0}^{Z}\frac{dt1}{t_{1}}\int_{0}^{t_{1}}\frac{dt_{2}}
{t_{2}} . . .   \int_{0}^{t_{n-1}}\frac{dt_{n}}{t_{n}}\Phi(t_{n};S_{2})
 =   \sum\frac{z^{s}}{s^{n}} , so,  \Psi_{n}(1;S_{2})=g_{-n}(S_{2}) , (10)

 s\in \mathbb{N}\backslash S_{2}

satisfying the recursive relation:

 \Psi_{k+} ı  (t_{n-k-11}S_{2})= \int_{0}^{t_{n}}  k- \perp\frac{dt_{n-k}}{t_{n-k}}\Psi_{k}(t_{n-k1}S_{2})  (k\geq 0)

with  \Psi_{0}(t_{n};S_{2})=\Phi(t_{n-1};S_{2}) and  t_{0}=z.
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Hence,

  \Psi_{1}(t_{n-1};S_{2})=\int_{0}^{t_{n-1}}\frac{dt_{n}}{t,n}\Psi_{0}(t_{n};
S_{2}) ,

  \Psi_{2}(t_{n-2};S_{2})=\int_{0}^{t_{n-2}}\frac{dt_{n-1}}{t_{n-1}}\Psi_{1}
(t_{n-1};S_{2}) .

Performing integration in (10), we obtain

  \Psi_{n}(z;S_{2})=\sum_{k=1}^{\infty}\frac{z^{k}}{k^{n}}-\frac{1}{d_{1}^{n}}
\sum_{k_{1}=1}^{d_{2}-1}\frac{z^{k_{1}d_{1}}}{k_{1}^{n}}-\sum_{k_{1},k_{2}\in 
\mathbb{K}_{2}}\frac{z^{k_{1}d_{{\imath}}+k_{2}d_{2}}}{(k_{1}d_{1}+k_{2}d_{2})
^{n}}
Thus, setting  z=1 , we have for  n\geq 2

 g_{-n}(S_{2})= \sum_{k={\imath}}^{\infty}\frac{1}{k^{n}}-\sum_{k_{1}=0}^{d_{2}-
1}\sum_{k_{2}=1}^{\infty}\frac{1}{(k_{1}d_{1}+k_{2}d_{2})^{n}}-\frac{1}{d_{1}
^{n}}\sum_{k_{1}=1}^{d_{2}-1}\frac{1}{k_{1}^{n}}
Define a ratio  \delta=d_{1}/d_{2} and represent the last expression as follows.

 g_{-n}(S_{2})= \sum_{k={\imath}}^{\infty}\frac{1}{k^{n}}-\frac{1}{d_{2}^{n}}
\sum_{k_{2}=1}^{\infty}\frac{1}{k_{2}^{n}}-\frac{1}{d_{2}^{n}}\sum_{k_{1}=1}^{d_
{2-{\imath}}}\sum_{k_{2}=1}^{\infty}\frac{1}{(k_{1}\delta+k_{2})^{n}}-\frac{1}
{d_{1}^{n}}\sum_{k_{1}=1}^{d_{2-1}}\frac{1}{k_{1}^{n}}
Making use of the Hurwitz   \zeta(n, q)=\sum_{k=0}^{\infty}(k+q)^{-n} and Riemann zeta

functions  \zeta(n)=\zeta(n, 1) , we obtain

  g_{-n}(S_{2})=(1- \frac{1}{d_{2}^{n}})\zeta(n)-\frac{1}{d_{2}^{n}}\sum_{k_{1}=
1}^{d_{2}-1}\zeta (  n ,  k ı  \delta )  (n\geq 2) . (11)

Interchanging  d_{1} and  d_{2} in (11), we get an alternative expression for
 g_{-n}(S_{2}) :

 g_{-n}(S_{2})=(1- \frac{1}{d_{1}^{n}})\zeta(n)-\frac{1}{d_{1}^{n}}\sum_{k_{2}=
1}^{d_{1}-1}\zeta(n, \frac{k_{2}}{\delta}) (12)

5 Identities for Hurwitz zeta functions

Combining formulas (11) and (12), we get the identity

  \delta^{n}\sum_{k={\imath}}^{d_{2}-1}\zeta(n, k\delta)=(1-\delta^{n})\zeta(n)+
\sum_{k=1}^{d_{1}-1}\zeta(n, \frac{k}{\delta})
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Another spinoff of formulas (11) and (12) is a set of identities for Hurwitz
zeta functions.

For example, consider the numerical semigroup {3,   4\rangle with three gaps
 \mathbb{N}\backslash \langle 3,4\}=\{1,2,5\} . Substituting it into (11) and (12), we have

  \zeta(n, \frac{3}{4})+\zeta(n, \frac{6}{4})+\zeta(n, \frac{9}{4})=(4^{n}-1)
\zeta(n)-(4^{n}+2^{n}+(\frac{4}{5})^{n})
and

  \zeta(n, \frac{4}{3})+\zeta(n, \frac{8}{3})=(3^{n}-1)\zeta(n)-(3^{n}+(\frac{3}
{2})^{n}+(\frac{3}{5})^{n})
respectively.

 We^{1} shall show the identity (11) can be reduced to the multiplication
theorem in Hurwitz zeta functions (see, e.g., [1,  p.249],[5, (16)  ,p.71] ). It is
similar for (12).

Since gcd(dı,  d_{2} )  =1 , if  k_{1}d_{1}\equiv k_{2}d_{1}(mod d_{2}) then  k{\imath}\equiv k_{2}(mod d_{2}) .
Therefore,

  \zeta(n, \{\frac{d_{1}}{d_{2}}\})+\zeta(n, \{\frac{2d_{{\imath}}}{d_{2}}\})+
\cdots+\zeta(n, \{\frac{(d_{2}-1)d_{1}}{d_{2}}\})
 = \zeta(n, \frac{1}{d_{2}})+\zeta(n, \frac{2}{d_{2}})+\cdots+\zeta(n, 
\frac{d_{2}-1}{d_{2}}) (13)

where  \{x\} denotes the fractional part of a real number  x . There exists a
nonnegative integer  a such that

  \frac{ad_{1}}{d_{2}}<1<\frac{(a+1)d_{1}}{d_{2}}
Then for any integer  k' with  a<k'\leq d_{2}-1 there exists a positive integer  l'

such that  1\leq k'd_{1}-l'd_{2}<d_{2} , and

  \zeta(\prime n, \frac{k'd_{1}}{d_{2}})=\zeta(n, \frac{k'd_{1}-l'd_{2}}{d_{2}})
-(\frac{d_{2}}{k'd_{1}-l'd_{2}})^{n}
 -( \frac{d_{2}}{k'd_{1}-(l'-1)d_{2}})^{n}-\cdots-(\frac{d_{2}}{k'd_{1}-d_{2}})^
{n} (14)

1This part was suggested by Dr. Ade Irma Suriajaya (RIKEN) in February 2018.
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where

  \frac{k'd_{1}-l'd_{2}}{d_{2}}=\{\frac{k'd_{1}}{d_{2}}\}
For any positive integer  r , there exist integers  x and  y such that  r=xd_{1}+yd_{2}.
If  0\leq x<d_{2} , then  r can be expressed uniquely. Thus, if  y\geq 0 , then  r\in S_{2}.
If  y<0 , then  r\not\in S_{2} . The largest integer is given by  (d_{2}-1)d_{1}-d_{2} , that is
exactly the same as Frobenius number F(dı,  d_{2} ). Thus,  k'd_{1}-l"d_{2}\not\in S_{2} for
all  l" with  1\leq l"\leq l' in (14). In addition, if kldı—lld2  =k_{2}d_{1}-l_{2}d_{2} , then
by  gcd(d_{1}, d_{2})=1 we have  d_{1}|(k_{1}-k_{2}) and  d_{2}|(l_{1}-l_{2}) . As  0<k_{1},  k_{2}<d_{2}
and  0<l{\imath},  l_{2}<d_{1} , we get  k_{1}=k_{2} and  l_{1}=l_{2} . Thus, all such numbers of
the form kdı—ld2  \not\in S_{2} are different.

In [7, (3.32)] for a real  \xi and  d=gcd(d_{1}, d_{2})

  \sum_{k=0}^{d_{2}-1}\lfloor\frac{kd_{1}+\xi}{d_{2}}\rfloor=d\lfloor\frac{\xi}
{d}\rfloor+\frac{(d_{{\imath}}-1)(d_{2}-1)}{2}+\frac{d-1}{2} (15)

Hence, by (15) with  d=1 and  \xi=0 , the total number of non‐representable
positive integers of the form  kd_{1}-ld_{2}(a<k<d_{2}, l=1,2, \ldots, \lfloor kd_{1}/d_{2}\rfloor-1)
is

  \sum_{k=1}^{d_{2}-1}\lfloor\frac{kd_{1}}{d_{2}}\rfloor=\frac{(d_{1}-1)(d_{2}-
1)}{2},
that is exactly the same as the number of integers without non‐negative
integer representations by  d_{1} and  d_{2} in (2). Therefore, the right‐hand side of
(11) is

 (1- \frac{1}{d_{2}^{n}})\zeta(n)-\frac{1}{d_{2}^{n}}\sum_{k_{{\imath}}={\imath}
}^{d_{2}-1}\zeta(n, \frac{k_{1}d_{{\imath}}}{d_{2}})
 =(1- \frac{1}{d_{2}^{n}})\zeta(n_{\Pi})-\frac{1}{d_{2}^{n}}(\sum_{k_{1}=1}
^{d_{2}-1}\zeta(n, \{\frac{k_{{\imath}}d_{1}}{d_{2}}\})-d_{2}^{n}\sum_{s\in 
\mathbb{N}\backslash S_{2}}s^{-n})
 =(1- \frac{1}{d_{2}^{n}})\zeta(n)-\frac{1}{d_{2}^{n}}\sum_{k_{1}={\imath}}
^{d_{2-{\imath}}}\zeta(n, \frac{k}{d_{2}})+\sum_{s\in \mathbb{N}\backslash S_{2}
}s^{-n}

On the other hand, the left‐hand side of (11) is

 g_{-n}(S_{2})= \sum_{s\in N\backslash S_{2}}s^{-n}
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Therefore, we obtain that

  \sum_{k=1}^{d_{2}}\zeta(n, \frac{k}{d_{2}})=d_{2}^{n}\zeta(n) ,

that is the multiplication theorem in Hurwitz zeta functions.
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