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Diophantine Frobenius problems from semigroup’s series
and identities for zeta functions

Takao Komatsu
School of Mathematics and Statistics, Wuhan University

1 Introduction

The Frobenius Problem is to determine the largest positive integer that is
NOT representable as a nonnegative integer combination of given positive
integers that are coprime (see [11] for general references).

Given positive integers di,...,d,, with ged(dy,...,d,) = 1, it is well-
known that all sufficiently large b the equation

dyzy+ -+ dpT = b (1)

has a solution with nonnegative integers z1, ..., Z,.
The Frobenius number F(dy,...,d,,) is the LARGEST integer b such that
(1) has no solution in nonnegative integers. For m = 2, we have

F(dy,dg) = (di = 1)(d2 — 1) = 1

(Sylvester (1884) [15]). For m > 3, exact determination of the Frobenius
number is difficult. The Frobenius number cannot be given by closed formulas
of a certain type (Curtis 1990 [4]), the problem to determine F(dy,...,d,)
is NP-hard under Turing reduction (see, e.g., Ramirez Alfonsin [11]).

Some formulae for the Frobenius number in three variables can be seen
in [17].

Proposition 1. Let

q::[ QEJ and T::a—~q(a—f)=(a—€){ai£}.

a_
If ¢ > k and br < cq, then
—at+b((A+D@—0+r—1) if x> g

—a+bla—l—1)4+c(g—A—=1) ifA< Cb((qa__lg);bcr )

F(a,b,c) = {

where \ := Lb(j’jﬁcJ .
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Proposition 2. Let

q:= L%J and F::a-cﬂ:é{%}.

Ift >k and b(£ —T) < c(g+ 1), then

Flab,o —a+b(l—1)4+c(@g—1) f0<F<Ll—k
a, 0, ==
’ —a+b(F—1)+cq ifl—k<rF</{.

Consider the number of solutions. Sylvester (1882) gave the number of
positive integers with no nonnegative integer representation by d; and dy by

gl dy) = DG 1), )

The number of solutions of the equation (1) in nonnegative integers z1, . . ., T,
denoted by N(di,...,dn;b). For m = 2, there exists an explicit formula for
the number of solutions.

Proposition 3. Tripathi (2000) [16]

bt dyd, + dod!
N(dy, dy; b) = 2= 1d1d+ 2% _ g
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where dj = —bd;' (mod dy), dy = —bdy* (mod d;) with 1 < d| < dy and
1<d) < d.

But, the problem becomes fairly hard if m > 3.
We give the method for computing the desired number. For the set
{a1,...,a,} € {1,2,...} with ged(ay,...,a,) = 1, we have

e 1
- . b __
N(x).—bz_;N(dl,...,dm,b)x = Ao
=2y
Cl-=x (I—2z)m
di—1 dm—1
Ag, (k Aq,, (k)
+ 4+ —, (3)
Zl_cdl ; 1"Cd,f5”



where (4, = €2™/4 (I = 1,2,...,m). For the first decomposition into ordinary
partial fractions, putting

C1 Cm
Ps(t)zt =
Z alt)e T—z (1—z)m’
t=0
we know that

= (b+l— 1)

=D «a ,

=1

where we take ¢; = 0 for [ > n.
Then, we have the following expression ([2]).

Theorem 1.
1 m—1 (_1)[
di--dpny — (m—1-1)!

B, - B
k ky Pk1° km 1m—I—1
X E dit - di ————kl ] b

Pu(t) =

ki+-+km=l

d Z —1—1) 2

k1+2ka+-+lk; =l

X BlSl Ce BlSl . bm—l——l
-1 [-1 ’

where S; = d} + --- + dJ, and By, is the m-th Bernoulli number.

(_1)k2+~--+kz
kil Kyl

If we write B
t) = db’
) z( ; ) >

d; can be expressed as follows ([9]).
Theorem 2. Forl > 0 we have

(=1 B, S, 11 BiSt
1= Y, | B i 1
dm -1 (m—l—l)'l'P l 1‘5’11 2 ?° ( ) l )
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where P = H;’;l dj, S, = >, d?, B, is the n-th Bernoulli number, and

j=1"77

Y.(y1,-..,yn) are Bell polynomials defined by

* k
€xXp <Zyk%> ZY yla"'7yn)
k=1 ’

with Yo = 1, and expressed as

|

k1+2kg+-+nkp=n =1
K1,k kn >0

TL

For the second decomposition including the periodic sequences in (3), we
know that for I =1,2,....,m

1 1
Ag (k) = —
S TR BT ST T e o

2 Numerical semigroups

A numerical semigroup S(d™) = (di,...,d,,) is said to be generated by a
minimal set of natural numbers d™ = {d,,...,d,,} with ged(d;,...,d,) =1
if neither of its elements is linearly representable by the rest of them. Namely,

S(dm) = {s e NU{0}|s = indi, z; € NU {O}} .
i=1
Here, dy, ..., dn, are called generators. Put 7, =[]~ d; and oy, = >, d;.
p = min{dy,...,d,} is called multiplicity.
G(d™) = N\S(d™): set of gaps of semigroup
F(d™) = max{G(d™)}: Frobenius number
g(d™) = #{G(d™)}: genus of semigroup
c(d™) =1+ F(d™): conductor of semigroup, so that c¢(d™) < 2g(d™)

p(d™) =1-— iggmi . density of non-gaps

H(d™; z) = ZseS(dm) z%: Hilbert series
o(d™; z2) = ZseG’(dm) z°: Generating function of gaps, so that H(d™;z) +
1
O(d™;2) =
(d™;2) 1—2
Several special numerical semigroups S(d™) are as follows.




Proposition 4 (Roberts (1956) Arithmetic sequence [12]). For d™ = {a,a+
d,...,a+ (m—1)d}

a—2

|y

m —

F(d™) = a {

Proposition 5 (Selmer (1997) [14]; Rodseth (1994) [13] Almost arithmetic
sequence). For d™ = {a,ha+d,ha+ 2d,... ha+ (m — 1)d}

F(dm)zha[a_iJ +a(h—1)+d(a—1)

Proposition 6 (Selmer (1997) [14]; Rodseth (1994) [13]) Almost arithmetic
sequence). For d™ = {a,a+1l,a+2,a+2%,... a+ 2™ ?}

Fam) = a+1 ’i {a+2J+a(Trl—4>~1

k=

Proposition 7 (Ong & Ponomarenko (2008) Geometric sequence [10]). For
d™ = {a™t a™%b,a™ 3%, ... b1}

(b o 1)a2(am—2 _ bm—Z)
a—b

F(d™) = b™2(ab — a — b) +

A semigroup S(d™) is called symmetric if for any integer s
seSd™) = F(d™) —s ¢ S(d™).
In fact, we have
o(d") = 29(d"),  p(d™) = 5
Otherwise, S(d™) is called nonsymmetric.

Proposition 8 (Watanabe (1973) [18]). Let H, = (di,...,d,,) be a semi-
group. For positive integers a and b, satisfying a € Hi\{d,...,dn} and
ged(a, b) =1, denote H := (a,bH;) = (a,bdy, ..., ad,,). Then

His symmetric <= Hyis symmetric.
Proposition 9 (Johnson (1960), [8]).
F(H)=bF(H;)+ (b—1)a.
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The semigroup S(d?) is always symmetric.
Proposition 10 (Sylvester (1884) [15], Rodseth (1994) [13]).
F(d%2) = didy — dy — do,
1 — zhd2
N
However, the Hilbert series H(d?; z) and the power sum g,(d?; z) are not

so simple. For given d® = (d;, ds, d3), Johnson’s minimal relations (1960) [8]
are constructed as follows.

H(d*z

ay1dy = arady + ai3ds, azpdy = axidy + agsds, azsds = azid; + asxdy,
where
ai; = min{vy|vi > 2, vi1dy = viady + vi3ds, vig,v13 € NU{0}},
A9 = min{v22|v22 > 2, Vgody = Va1d1 + vo3ds, Va1,V93 € NU {0}} )
assz = min{v33[v33 > 2, v33ds = v31dy + V3ady, v31,v32 € NU {0}} .

The auxiliary invariants a;; (i # j) are uniquely determined by this definition
and

ged(ar, are, al3) = ged(age, ass, a23) = ged(asy, ase, a33) =1.

The denominator of the Hilbert series is given by (1—2z%)(1—2%)(1—2%).
The numerator of the Hilbert series Q(d?; z) for nonsymmetric semigroups
S(d?) is given by the following.

Q(dg; Z) —-1— (Zanth + Zazzdz» + Zassds)
1/2((ad)-J(@) | _1/2((ad)+7(@?))
+ z +z

where
(a7 d> = andl + a22d2 + a33d3

and

J(d3) = (a, d> —4 Z aiiajjdidj + 4d1d2d3 .
i>j
The numerator of the Hilbert series for symmetric semigroup S(d?) is
given by
Q(d?; z) = (1 — 2922%2)(1 — ossds)



3 Semigroup’s series for negative degrees of
the gaps values

We derive an explicit form for an inverse power series over values of gaps of
numerical semigroups generated by two integers.

Let S,, = (di,...,d») be the semigroup generated by a set of integers
{dy,...,dn} such that

l<dy < - <dp, ged(dy,...,dy)=1.

This sum of integer powers of values the gaps in numerical semigroups S,, =

(dy,...,dy) is referred often as semigroup’s series
gn(Sm)= D " (n€),
SEN\Sm

and ¢o(S,,) is known as a genus of S,,.
For n > 0, an explicit expression of g,(Sz) was given.

Proposition 11. Rddseth (1994) [13]) For n > 0,

n+1

o 1
) = ) &

k=0

n+l—k
2 2—k
Z <n —II: ) (n + l ) BkBld‘llﬂxFlfkd;l‘Fl*l

=0
o Bn+1

n+1’

where B, is n-th Bernoulli number.

Remark. For n = 0, it is reduced to Sylvester’s expression [15]:

(di = 1)(d> — 1)

9o(S2) = 5

For n = 1, the result was given by Brown and Shiue in 1993 [3].

S
91(Ss) = %(le@ —di—dy—1).
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An implicit expression of g,(S3) was given by Fel and Rubinstein in 2007 [6].

We derive a formula for semigroup series

g-n(S2) = Z s (n>1).

s€N\S,

Consider the numerical semigroup S, = (dy, ds), where d;,d, > 2. We intro-
duce the Hilbert series H(z;S;) and the gaps generating function ®(z;Ss)
are given by

H(z;S;) = Z z° and ®(z;5,) = Z 2%,
SES?2 seN\S;
so that 1
H(Z;52)+(I)(Z;SQ) = 1_—_2 (Z < 1) (4)
Here, min{N\S,} = 1. max{N\Sy} = d;d, — d, — d; is exactly the same as

Frobenius number.

The rational representation of H(z;S,) is given by
1 — zhd
7 g ()
(1 —2%)(1 - z%)

Introduce a new generating function ¥,(z; S,) by

z t: s
w2, 5 2
J0

H(z;S;) =

Hence,

WIS = S =gy (6)

seN\ S,
Substituting (4) into (6), we obtain

w(es) = [ (2 - fws)) & )

Present an integral in (7) as follows.

W)= [ (i oot - 2 Sz)) dt,

k=0
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H(t; S, :
B5) S hytr:50), )
=0
1 do—1
Q) — Q) — kidi—1
ho(t; S2) = 7 hi(t; S) = Zt T
k1=1
da—1 oo
ho(t;85) = ) | ) thdithademt, 9)
k1 =0 ko=1
Perform integration in (8) as
o] -1 da2—1 oo
Z 1 Skida 27 Ski1d1+kady
(2;9;) = —— = —
2) I; k dllzz1 ky ;;)kz krdy + kady

so by (6) we obtain

00
k=1

— da—1

= 1 1
Z:E:: d1+k2d2 d_1,;_1k—1

k1

?v]f—‘

4 A sum of the negative degrees of the gaps
values ¢_,(5)

We can have a general formula as g_;(S2) by introducing of a new generating
function ¥, (z; S;) (n > 2) by

dty " di et dt,
Z Sz / 1/ 2/ 7 @(tn,SQ)

z°
- Z S_n’ S0, \I]n(la S?) = g—n(82)7 (10)
s€N\S2
satisfying the recursive relation:
n—-k—-1 dtn—k

¢
Vi1 (tn—k-1;52) = / Uy (tn-g;S2) (k>0)
0

tn—k

with Uy(t,; Se) = ®(t,_1;52) and ¢y = 2.
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Hence,

ot dt,
Uy (ty—1;5,) = —L Uy (tn; Sa),
0 t

tn—2 dtn—l
‘I’z(tn—z; 52) = t—‘l’l(tn—l; 52) .
0 n—1

Performing integration in (10), we obtain

© Lk 1 d2—1 Skrdy kidi+kads
T DEANE S ) P
k=1 k di k1—1 ki k1,k2€Ka (krdy + ksdy)
Thus, setting z = 1, we have for n > 2
) 1 do—1 oo 1 do—1
_n(Sy) = —— I —— ——
g ( 2) — kn Z:: z_: kidy + ]Czdz) d’f Pt kY

Define a ratio § = d;/d, and represent the last expression as follows.

e 1 [ d2—1 oo da—1
9-n(%2) :;F_ dg;k" dn Z Z (k15—|—k2 d" Z kp

Making use of the Hurwitz ((n,q) = Y ;- ,(k + ¢)" and Riemann zeta
functions ((n) = {(n,1), we obtain

g_n(Sz) = (1 - al—n) n) - Z C(n,kd) (n>2). (11)

2k11

Interchanging d; and dy in (11), we get an alternative expression for

g-n(S2): "
g_n<82>=(1——)c<n ZC( 2). (12)

5 Identities for Hurwitz zeta functions

Combining formulas (11) and (12), we get the identity

dy—1 di1—1
0" " ¢(n, kd) = (1 —6")¢( +Zg<n —).
k=1



Another spinoff of formulas (11) and (12) is a set of identities for Hurwitz
zeta functions.

For example, consider the numerical semigroup (3,4) with three gaps
N\ (3,4) = {1,2,5}. Substituting it into (11) and (12), we have

(n2) e (n8) wc(n) = (w4 (4))
and
(2)rc(o8) o (o ()1 )

respectively.

We! shall show the identity (11) can be reduced to the multiplication
theorem in Hurwitz zeta functions (see, e.g., [1, p.249],[5, (16),p.71]). It is
similar for (12).

Since ged(dy,dy) = 1, if kidy = kod; (mod dy) then k; = ky (mod dy).
Therefore,

) e e 24)
()l i)

where {z} denotes the fractional part of a real number z. There exists a
nonnegative integer a such that

ad1 (Cl + 1)d1
—_— <l —
P

Then for any integer £’ with a < &’ < dy — 1 there exists a positive integer I’
such that 1 < k'dy — l'dy < dy, and

(n BB (K=t d \"
a, )\ 4 Kd — U'd;

da " dy "
— _——e 1
(k:’d1 —(I' - 1)d2> (k’dl — d2> » (14)

! This part was suggested by Dr. Ade Irma Suriajaya (RIKEN) in February 2018.
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where

Kdi—Udy  [K'dy
ds l dy [

For any positive integer r, there exist integers = and y such that r = zd; +yd,.
If 0 < = < dj, then r can be expressed uniquely. Thus, if y > 0, then r € S,.
If y <0, then r € S;. The largest integer is given by (dy — 1)d; — dy, that is
exactly the same as Frobenius number F(d;,d;). Thus, k'd; —"d, & S, for
all I” with 1 <1” <1"in (14). In addition, if kid; — lidy = kody — lods, then
by ged(dy,dy) = 1 we have d;|(ky — k) and da|(l; — I3). As 0 < ky, ky < dy
and 0 < ly,ly < dy, we get k; = ko and [; = l,. Thus, all such numbers of
the form kd; — ldy € Sy are different.
In [7, (3.32)] for a real € and d = ged(dy, d)

S [He] o g BHRNL 0
k=0

Hence, by (15) with d = 1 and £ = 0, the total number of non-representable
positive integers of the form kd; —ld; (a < k < dy, 1l =1,2,...,|kd;/d2| —1)
is

doy—

ZZI {@J (di —1)(dy - 1)
—~ | dy 2

that is exactly the same as the number of integers without non-negative
integer representations by d; and dy in (2). Therefore, the right-hand side of

(11) is
1 1 e k1d,
(- 3)an -5 Eelet®)

2 k=1
(] 1 (e kydy - .
() (e {5) e 2
1 1 e
(1) - g X (ng) s X e
2 2 k=1 2 s€EN\S>

On the other hand, the left-hand side of (11) is

g—n(SZ): Z s".

s€N\S2



Therefore, we obtain that

da k
k=1

that is the multiplication theorem in Hurwitz zeta functions.

Acknowledgement

This work was supported by the Research Institute for Mathematical Sci-
ences, a Joint Usage/Research Center located in Kyoto University.

References

[1] T. M. Apostol, Introduction to Analytics Number Theory, Springer, New
York, 1976.

[2] M. Beck, I. M. Gessel and T. Komatsu, The polynomial part of a re-
stricted partition function related to the Frobenius problem, Electron. J.
Combin. 8 (No.1) (2001), #NT7.

[3] T. C. Brown and P. J. Shiue, A remark related to the Frobenius problem,
Fibonacci Quart. 31 (1993), 32-36.

[4] F. Curtis, On formulas for the Frobenius number of a numerical semi-
group, Math. Scand. 67 (1990), 190-192.

[5] H. Davenport, Multiplicative Number Theory, Second Edition, Revised
by H. L. Montgomety, Springer, New York, 1980.

[6] L. G. Fel and B. Y. Rubinstein, Power sums related to semigroups
S(dy,ds, ds), Semigroup Forum 74 (2007), 93-98.

[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics,
Addison-Wesley, Reading MA, 1988.

[8] S. M. Johnson, A Linear Diophantine problem, Canad. J. Math. 12

(1960), 390-398.



34

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Komatsu, On the number of solutions of the Diophantine equation of
Frobenius—General case, Math. Communications 8 (2003), 195-206.

D. C. Ong and V. Ponomarenko, The Frobenius number of geometric
sequences, Integers 8 (2008), Article A33, 3 p.

J. L. Ramirez Alfonsin, The Diophantine Frobenius Problem, Oxford
University Press, Oxford, 2005.

J. B. Roberts, Notes on linear forms, Proc. Amer. Math. Soc. 7 (1956),
465-469.

O. J. Rodseth, A note on Brown and Shiues paper on a remark related
to the Frobenius problem, Fibonacci Quart. 32 (1994), 407-408.

E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine
Angew. Math. 293/294 (1997), 1-17.

J. J. Sylvester, Mathematical questions with their solutions, Educational
Times 41 (1884), 21.

A. Tripathi, The number of solutions to ax + by = n, Fibonacci Quart.
38 (2000), 290-293.

A. Tripathi, Formulae for the Frobenius number in three variables, J.
Number Theory 170 (2017), 368-389.

K. Watanabe, Some examples of 1-dim Gorenstein domains, Nagoya
Math. J. 49 (1973), 101-1009.

School of Mathematics and Statistics
Wuhan University

‘Wuhan 430072

CHINA

E-mail address: komatsu@whu.edu.cn



