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We give a survey of recent work on the construction of differential operators
on various types of modular forms (mod p) . We also discuss a framework for
determining the effect of such operators on the  mod p Galois representations
attached to Hecke eigenforms.

1 Introduction

A celebrated result of Deligne [Gro90, Proposition 11.1] attaches a  mod p Galois repre‐
sentation to a  mod p Hccke eigenform:

Theorem 1 (Deligne). Let  f be a modular form (mod  p) of weight  k and level  \Gamma_{0}(N) and
suppose  f is an eigenform for all the Hecke operators:  T_{\ell}f=a_{p}f with  a_{\ell}\in\overline{\mathbb{F}}_{p}.

Then there is a continuous semisimple representation

 \rho_{f}:Ga1(\overline{Q}/\mathbb{Q})arrow GL_{2}(\overline{\mathbb{F}}_{p})

that is unramified at all primes  l\{pN and, for all such  \ell , the characteristic polynomial
of  \rho_{f}(Frob_{l}) is

 x^{2}-a_{\ell X+\ell^{k-1}}

This provides the top row of a diagram that can be extended as indicated in Figure 1,
where

 e the right vertical map is tensoring by the  mod p cyclotomic character

 \chi:Ga1(\overline{\mathbb{Q}}/\mathbb{Q})arrow GL_{1}(\overline{\mathbb{F}}
_{p}) ,

determined by  \chi(Frob_{l})=\ell for all  \ell\neq p ;
 *
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 e the effect of the left vertical map  \vartheta on  q‐expaılsions is simply

 ( \vartheta f)(q)=q\frac{df(q)}{dq}
The fact that the formal power series on the right hand side is once again a  mod p
modular form (of weight  k+p+1 ) is a theorem of Serre and Swinnerton‐Dyer [SD73,
Section 3] in level one and of Katz [Kat77] for general level.

 f\in S_{k}(\Gamma_{0}(N);\overline{\mathbb{F}}_{p}) \rho_{f}:
Ga1(\overline{\mathbb{Q}}/\mathbb{Q})arrow GL_{2}(\overline{\mathbb{F}}_{p})

 \vartheta(_{\vartheta f\in S_{k+p+1}(\Gamma_{0}(N);\overline{\mathbb{F}}_{p})}^
{T_{p}f=a_{\ell}f}\mapsto^{\rho_{\vartheta f}\cdot Ga1(\overline{\mathbb{Q}}
/\mathbb{Q})arrow GL_{2}(\overline{\Gamma}_{p})}\mapsto_{charpo1y\rho_{f}
(Frob_{p})=x^{2}-a_{\ell}x+l^{k-1}})  -\otimes\chi

 T_{\ell}\vartheta f=\ell a_{\ell}\vartheta f charpoly\rho_{\vartheta f}
(Frob_{l})=x^{2}-\ell a_{p}x+P^{k+1}

Figure 1: The relation between the theta operator on modular forms and tensoring by the
cyclotomic character on Galois representations

The fundamental property of  \vartheta that makes the diagram possible is its commutation
relation with the Hecke operators:

(1.1)  \vartheta oT_{\ell}=\ell T_{\ell}o\vartheta.

This paper has several interrelated aims:

(a) to describe various constructions of the differential operator  \vartheta ;

(b) to survey the generalisations of these constructions to modular forms  (mod p) on
groups other than  GL_{2}/\mathbb{Q} (in particular: Siegel, Hilbert, Picard, hermitian modular
forms);

(c) to explain how commutation relations generalising Equation (1.1) give rise to relations
between the attached Galois representations.

For reasons of space, we can only mention in passing the existence of similar differential
operators in characteristic zero, either on  C^{\infty} (rather than holomorphic) modular forms,
or on  p‐adic modular forms. Analytic constructions of such operators go all the way
back to work of Maass and of Shimura. The modern approach uses algebraic geometric
methods, which illuminate the rationality properties of these operators; for instance,
see [Kat78, Chapter II] for Hilbert modular forms, [Har81, Section 4] for Siegel modular
forms or [Eis12] for modular forms on unitary groups.

1.1 Notation

We denote the space of modular forms of weight  k , level  \Gamma_{0}(N) and coefficicnt ring  R by
 M_{k}(N;R) . The cuspidal subspace will be denoted  S_{k}(N;R) .
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2 Analytic construction

We begin by describing this construction in the case of classical modular forms. Up to
minor modifications, it is a special case of the method employed by Böcherer and Nagaoka
in the Siegel setting [BN07, Section 4].

It was observed long ago that the derivative of  f\in M_{k}(N;\mathbb{C}) satisfies the not‐quite‐
modular relation

 f'( \frac{az+b}{cz+d})=(cz+d)^{k+2}f'(z)+ck(cz+d)^{k+1}f(z) .

This failure to be modular can be exploited/fixed in a number of ways, for which we refer
the reader to Zagier’s expositions in [Zag08, Chapter 5], [Zag94],

One of these approaches involves taking a second form  g\in M_{\ell}(N;\mathbb{C}) and defining the
Rankin‐Cohen brackct

 [f, g]= \frac{1}{2\pi\dot{i}}(kfg'-\ell f'g)\in M_{k+\ell+2}(N;\mathbb{C}) .

This construction preserves the ring of coefficients of the Fourier expansions: if  R is a
subring of  \mathbb{C} and both  f and  g have coefficients in  R , then so does  [f, g].

We can use the Rankin‐Cohen bracket to construct a theta operator on  mod p classical
modular forms, as described in the following diagram:

 OB
 f\in S_{k}(N;\mathbb{Z}[1/N])-[f, g]\in S_{k+p+1}(N;\mathbb{Z}[1/N])

 OLI if k  \geq 2  mod p\mathfrak{s}oR
 \overline{f}\in S_{k}(N;\overline{\mathbb{F}}_{p})1\cdot\cdot 
*\vartheta(\overline{f}):=\overline{[f,g]}\in S_{k+p+1}(N;\overline{\mathbb{F}}_
{p})

In step  \copyright we lift the  mod p cusp form  \overline{f} to a form  f in characteristic zero. This is

known to be possible if the weight is at least two [Kat73, Theorem 1.7.1]. In step  OB we

take t
 heRankin-

Cohen bracket o  ffandanaux\dot{{\imath}}1\dot{{\imath}}aryformg such t  hatg(q)\equiv l(modConcretelw eusetheEisenstein s  er\dot{{\imath}}es=E_{p-1} rovided t he_{R)}^{p;}
is simply reduction modulo  p.

The ingredients involved in this construction have been generalised to other settings:

(a) Lifting modular forms  mod p to characteristic zero is possible in many situations if
both the weight and the prime  p are sufficiently large, as shown for PEL‐type Shimura
varieties by Lan‐Suh [LSII], [LS13, Theorem 8.13 and Corollary 8.14], and in the spe‐
cial case of Siegel modular forms by Hida [Hid02, Section 3.5] and Stroh [Str10], [Str13,
Théorème 1.3], In cases not covered by these results, one can dispense with the lift‐
ing step at the expense of getting an operator that is only defined on the subspace of
modular forms  mod p that are liftablel.

1These are colloquially referred to as  mod p forms à la Serre (defined as reductions modulo  p of char‐
acteristic zero forms), as opposed to  mod p forms à la Katz (defined intrinsically as sections of line
bundles on modular curves in positive characteristic).
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(b) Rankin‐Cohen brackets have been defined for Siegel modular forms [CE98, Theo‐
rem 1.4], [EI98], hermitian modular forms [MS17, Theorem 3.2], Hilbert modular
forms [LeeOl, Theorem 5.1], [CKR07 Section 4], Picard modular forms  [CvdGl3,
Section 9], [FSM14]. There are typically several choices of brackets, many of which
start with scalar‐valued forms and yield vector‐valued forms2.

(c) Characteristic zero forms whose  q‐expansion is congruent to 1 modulo  p : the state
of the art is the construction of such forms as theta series attached to certain special
lattices, which was accomplished in the case of Siegel modular forms [BN07, Theorem
1] and hermitian modular forms [HN09, Theorem 3.3], [KN09, Theorem 3.1], [KNII,
Propositions 5.1 and 6.1]. They are obviously related to the Hasse invariants that
appear in the algebraic‐geometric context described in the next section.

Putting everything together, there are analytic constructions of thcta operators for
Siegel modular forms [BN07, Theorem 4], [BN14, Theorem 4.5] and hermitian modular
forms [KN17, Theorem 3].

A drawback of the method described in this section is that it is by no means clear how
the resulting theta operators commute with the Hecke operators. This needs to be checked
separateıy by means of rather unenlightening calculations involving explicit formulas for
the effect of Hecke operators on  q‐expansions (see for exampıe [GM18, Corollary 15] for
the case of the Böcherer‐Nagaoka theta operators on Siegel modular forms).

3 Algebraic‐geometric construction

This originated with Katz [Kat77]; we will describe a variant due to Gross [Gro90, Section
5], that was first brought to our attention by Eyal Goren.

Let  X^{ord} denote the ordinary locus of the modular curve  X  :=X_{0}(N)_{\overline{\Gamma}_{p}} and consider

the Igusa curve  \tau:Iarrow X^{ord}.

The modular curve  X is endowed with an invertible sheaf  \underline{\omega} (the Hodge bundle) which
gives rise to the spaces of modular forms:

 M_{k}(N;\overline{\mathbb{F}}_{p})=H^{0}(X, \underline{\omega}^{\otimes k}) .

The construction proceeds as indicated in Figure 2.
The lower horizontal map is induced by the Kodaira‐Spencer isomorphism

 \kappa:\tau^{*}(\underline{\omega}^{\otimes 2}(-C))arrow\Omega_{I}^{1},

where  C is the divisor consisting of the cusps on the modular curve  X.

Finally, in step  OE we extend the section  g from the ordinary locus to the entire modular
curve: a caıculation shows that  g has a simple pole at each supersingular point in  X , so
multiplying  g by the Hasse invariant  A\in H^{0}(X, \underline{\omega}^{\otimes p-1}) clears the poles.

The commutation relation (1.1) between  \vartheta and the Hecke operator  T_{\ell} can be obtained
by determining the effect of degree  P isogenies on the various steps. All steps commute

2Finding generators for spaces of vector‐valued forms is in fact a major application of Rankin‐Cohen
brackets.
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 f\in H^{0}(X,\underline{\omega}^{\otimes k})\}\cdot\cdot \succ\vartheta f:=
Ag\in H^{0}(X, \underline{\omega}^{k+p+1}(-C))

 \mathfrak{s} IoE
 \tau^{*}f\in H^{0}(I, \tau^{*}\underline{\omega}^{\otimes k})  g\in H^{0}(X^{ord}, \underline{\omega}^{\otimes k+2}(-C))

I I
  \frac{\tau^{*}f}{a^{k}}\in H^{0}(I, \mathcal{O}_{I}) a^{k}\kappa^{-1}(\eta_{f}
)\in H^{0}(I, \tau^{*}(\underline{\omega}^{\otimes k+2}(-C)))

 d:\mathcal{O}_{I}arrow\Omega_{I}^{1}\mathfrak{s} I
  \eta_{f}:=d(\frac{\tau^{*}f}{a^{k}})\in H^{0}(I, \Omega_{I}^{1})-\kappa^{-1}
(\eta_{f})\in H^{0}(I, \tau^{*}(\underline{\omega}^{\otimes 2}(-C)))

 \kappa:\tau^{*}(\underline{\omega}^{\otimes 2}(-C))arrow\Omega_{I}^{1}

Figure 2: Algebraic‐geometric construction of theta operator on classical modular forms
 mod p : the Igusa curve version

with  \ell‐isogenies, with the exception of the Kodaira‐Spencer isomorphism, which commutes
up to multiplication by  \ell.

The original form of this argument, given in [Kat77], works entirely on the modular
curve  X . The role of differentiation is played by the Gauss‐Manin connection  \nabla , which
is defined on de Rham cohomology (instead of sheaf cohomology). Hence it is necessary
to pass from sheaf cohomology to de Rham cohomology and back, which can be done
over the ordinary locus of  X . Extending to all of  X once again involves multiplication
by the Hasse invariant. For the details, we refer the interested reader to [Kat77] or the
exposition in [Ram05].

Some of the ingredients in the above constructions are automatically defined in much
greater generality. Others have been extended to more general settings:

(a) Igusa varieties for certain unitary groups [HTOI, Chapter IV] or for more general
PEL‐type Shimura varieties [Man05, Section 4];

(b) Hasse invariants: Hilbert case covered in [AG05, Section 7], see [KW18, GK16] for
iecent developments for general Shimura varieties.

Putting these pieces together3, there are algebraic‐geometric constructions of  mod p
theta operators for

(a) Hilbert modular forms [AG05, Section 15];

(b) Siegel modular forms in genus two [Yam14, Proposition 3.9] and general genus [FG];

(c) Picard modular forms [ dSG16 , Section 3], more generally forms on  GU(m, n)[dSG17]
and [EM17, Sections 5 and 6].

3We took an intentionally over‐simplistic view of the process, in order to allow the big picture of the
algebraic‐geometric framework to emerge. In practice, each setting has its own geometric intricacies,
and dealing with these requires more than just piecing together the various ingredients.
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4 Group‐cohomological construction

For a ring  R , let  V_{k-2}(R)=R[x, y]_{k-2} denote the space of homogeneous polynomials of
degree  k-2 . We consider the cohomology group  H^{1}(\Gamma, V_{k-2}(R)) where  \Gamma is a congruence
subgroup of  SL_{2}(\mathbb{Z}) .

The link with modular forms comes from the Eichler‐Shimura isomorphism

 H^{1}(\Gamma, V_{k-2}(\mathbb{C}))\cong S_{k}(\Gamma;\mathbb{C})\oplus\overline
{S_{k}(\Gamma;\mathbb{C})}\oplus Eis_{k}(\Gamma;\mathbb{C}) ,

where the bar indicates complex conjugation and  Eis_{k} is the space spanned by the Eisen‐
stein series of weight  k.

We now focus on the case where the ring of coefficients  R=\mathbb{F}_{p} . Consider the element
 \theta(x, y)=x^{p}y-xy^{p}\in V_{p+1}(\mathbb{F}_{p}) . Multiplication by  \theta induces a map in cohomology

 H^{1}(\Gamma, V_{k-2}(\mathbb{F}_{p}))arrow H^{1}(\Gamma, V_{k+p+{\imath}-2}
(\mathbb{F}_{p}))

that commutes with the Hecke operator  T_{\ell} up to multiplication by  \ell . The point is that  \theta

is a polynomial semi‐invariant of the finite group  GL_{2}(\Gamma_{p}) .
Despite the fact that the relation between group cohomology and modular forms is less

clear‐cut in the case of  mod p coefficients than for complex coefficients, there is a Hecke
action and there is value in studying Hecke eigenclasses in group cohomology in their own
right. The foundations were laid by Ash and Stevens in  [AS86a] and pursued by them in
the  GL_{2} case in  [AS86b] , which includes the description of the group cohomological theta
operator we gave above.

There has been a significant amount of work done in generalising this to higher  GL_{n},
mostly by Ash and his collaborators4. This was motivated by their success in performing
explicit computations5 with  GL_{3} and  GL_{4} , but also by the fact that, in sharp contrast to
the classical case  GL_{2} , for  n>2 there is no direct link between automorphic representa‐
tions and the algebraic‐geometric framework of Shimura varieties that plays such a central
role in the Langlands program. Indeed, they formulated precise conjectures positing the
existence of  n‐dimensional  mod p Galois representations attached to Hecke eigenclasses
in the cohomology of  GL_{n} with  \mathbb{F}_{p} ‐coefficients, see [ Ash92a,  Ash92b , ADP02]. Recent
breakthroughs duc to Scholze resulted in the proof of a large part of these conjectures;
we refer the interested reader to [Sch15], as well as the survey [Mor16] and the recent
improvements [  CGH^{+}18 , NT16].

There are group‐cohomological approaches to the study of modular forms on other
groups as well, for instance:

 e Hilbert modular forms [Red15] (dedicated to “weight shiftings the cohomological
analogues of theta operators), see also the computational framework in [GY08];

 e Bianchi modular forms, see [ST09, §enll, §en14,  DSGG^{+}16];

 \bullet Siegel modular forms [Bue96].

4At the risk of omitting names, these include Doud, Gunnells, McConnell, D. Pollack, Sinnott, Stevens.
5For an exposition of the computational methods used to study the cohomology of arithmetic groups

such as  GL_{n} , see [Gun14].
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5 Modular forms on other groups

We return to the task of generalising Figure 1 to groups other than  GL_{2}/\mathbb{Q} . In order
to describe the effect of (some of) the operators defined in the previous sections on the
corresponding Galois representations, we need to introduce some of the representation‐
theoretic foundations of modular forms on algebraic groups. To keep the exposition clean,
we restrict our attention to groups over  \mathbb{Q} ; the correct level of generality is to work over
number fields  F , and we invite interested readers to consult [TV16, BG14] for the more
general setup.

Let  G be a connected reductive algebraic group over  \mathbb{Q} . We will take it for granted
that there is a notion of modular form  (mod p) on the group  G . This may, for instance,
come from a Shimura variety attached to  G , and is known to be the case for the various
specific types of modular forms we consider in this paper, as summarised in Table 1.

Fixing subgroups  T\subset B\subset G where  T is a maximal torus and  B is a Borel subgroup,
we have the root datum

 (X^{\cdot}, \triangle., X., \triangle.) ,

where

 \bullet  X^{\cdot}=Hom(T, \mathbb{G}_{m}) is the group of characters of  T ;

 \bullet  X.  =Hom(G.., T) is the group of cocharacters of  T ;

 \bullet  \triangle is the set of simple roots, with corresponding simple coroots  \triangle..

Thcre is a natural pairing

 \{\cdot, \cdot\}: X^{\cdot} \cross X. arrow Hom(\mathbb{G}_{7n}, \mathbb{G}_{m}
)=\mathbb{Z}

given by composition:  \langle\alpha,  \lambda\rangle=k where  (\alpha 0\lambda)_{\wedge}(z)=z^{k} for all  z\in \mathbb{G}_{m}.
The dual group  \hat{G} has subgroups  \hat{T}\subset\hat{B}\subset G and root datum

 (X., \triangle., X^{\cdot}, \triangle.) .

In other words, the character  \alpha:Tarrow \mathbb{G}_{m} of  T is identified with the cocharacter  \hat{\alpha} :  \mathbb{G}_{m}arrow
 \hat{T} of  \hat{T}.

type of modular form algebraic group

classical  GL_{2}
Siegel  GSp_{2g}
Hilbert  {\rm Res}_{F/\mathbb{Q}}GL_{2},  F totally real
Bianchi  {\rm Res}_{K/\mathbb{Q}}GL_{2},  K imaginary quadratic
Picard  GU_{2,1}
hermitian  GU_{n,n}

Table 1: Some types of modular fornts with the corresponding algebraic gtoups over  \mathbb{Q}
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Given a prime  P , the local Hecke algebra at  \ell is

 \mathcal{H}_{p}(G)=\mathcal{H}(G(\mathbb{Q}_{p}), G(\mathbb{Z}_{p}))=\{t:
G(\mathbb{Q}_{\ell})arrow \mathbb{Z} locally constant, compactly

supported and  G(\mathbb{Z}_{\ell})-bi‐invariant}.

This is a free  \mathbb{Z}‐module with a basis of characteristic functions

 t_{\ell,\lambda}= char  (G(\mathbb{Z}_{\ell})\lambda(P)G(\mathbb{Z}_{\ell}))

indexed by  \lambda\in P^{+} , the cone of dominant coweights of  G :

 P^{+}= {  \lambda\in X.  |\{\alpha,  \lambda\}\geq 0 for all  \alpha\in\triangle }.

Since  P^{+} is identified with the dominant weights of  \hat{G} , it also indexes the irreducible
representations of  \hat{G}.

This relation is made more explicit by the Satake isomorphism [Gro98, Proposition 3.6]

 S_{\mathbb{Z},\ell}:\mathcal{H}_{\ell}(G)\otimes \mathbb{Z}[\ell^{\pm 1/2}]
arrow R(\hat{G})\otimes \mathbb{Z}[\ell^{\pm 1/2}].
We tensor this with  \overline{F}_{p} for   p\neq\ell to get an isomorphism

 S_{\ell}:\mathcal{H}_{\ell}(G)\otimes\overline{\mathbb{F}}_{p}arrow R(\hat{G})
\otimes\overline{\mathbb{F}}_{p}.

Suppose that we are given a Hecke module, that is a finite‐dimensional  \overline{\mathbb{F}}_{p}‐vector space
 V endowed with an action of   \prod_{\ell\neq p}\mathcal{H}_{\ell}(G) . (The examples we have in mind are spaces of
modular forms  (mod p) attachcd to the group  G. ) Given a Hecke eigenform  f\in V , we
get the commutative diagram

 \mathcal{S}_{\ell}

 \mathcal{H}_{p}(G)\otimes\overline{\mathbb{F}}_{p} R(\hat{G})
\otimes\overline{\mathbb{F}}_{p}

 \Psi_{f,l}\downarrow \omega_{f}
 L

 \overline{\Gamma}_{p}

where

 e the vertical arrow  \Psi_{f,\ell}:\mathcal{H}_{l}(G)\otimes\overline{\mathbb{F}}_{p}arrow\overline{
\mathbb{F}}_{p} is the local Hecke eigensystem attached to
 f , that is the algebra homomorphism that maps a Hecke operator  t to its eigenvalue:
 tf=\Psi_{f^{p}},(t)f for all  t\in \mathcal{H}_{\ell}(G)\otimes\overline{\mathbb{F}}_{p} ;

 \bullet the diagonal arrow  \omega_{f}:R(\hat{G})\otimes\overline{\Gamma}_{p}arrow\overline{\mathbb{F}}_{p} is the character of the representation group
defined by  \omega_{f}  :=\Psi_{f,\ell}oS_{\ell}^{-1}

But characters of  R(\hat{G})\otimes\overline{\mathbb{F}}_{p} are in bijective correspondence with semisimple conjugacy
classes  s in  \hat{G}(\overline{\Gamma}_{p}) , via  \omega_{s}(\lambda)=\lambda(s) for all  \lambda\in X.. So the character  \omega_{f} determines a

semisimple conjugacy class  s_{f,\ell}\in\hat{G}(\overline{\mathbb{F}}_{p}) , called the Satake parameter of  f at  \ell.

Under the  mod p Langlands correspondence, there is a general expectation that, to a
 mod p Hecke eigenform  f on the group  G , one can associate a  mod p Galois representation
 \rho_{f}:Ga1(Q/\mathbb{Q})arrow\hat{G}(\overline{\mathbb{F}}_{p}) such that  \rho_{f}(Frob_{l})=s_{f\ell} for all but finitely many primes  P\neq p.

This gives the natural generalisation of the top row of the diagram in Figure 1; the
next section aims to generalise the rest of the diagram.
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6 Effect on Galois representations

Given a Hecke eigenform  f defined on some group, and its image  \vartheta f under a theta operator
of the type discussed in the previous sections, how does one relate the Galois representa‐
tion attached to  \vartheta f to that attached to  f ? In the classical case illustrated in Figure 1,
this follows easily from comparing the characteristic polynomials of Frobenius elements.
In general, such a direct calculation is not feasible, but the relation between Galois rep‐
resentations can still be deduced, as an almost formal consequence of the commutation
relation between  \vartheta and the Hecke operators.

More precisely, using the Satake isomorphism we can prove (with the notation from
Section 5):

Theorem 2 ([GM18]). Let  f be a Hecke eigenform (mod  p) on a group G. Let  \vartheta be a map
of modular forms such that  \vartheta f is a Hecke eigenform whose Hecke eigensystems satisfy

 \Psi_{\vartheta f,p}(t_{\ell,\lambda})=\eta(\lambda(\ell))\Psi_{f,\ell}
(t_{\ell,\lambda}) for all  \ell\not\in\Sigma,  \lambda\in P^{+}

where  \eta:Garrow \mathbb{G}_{m} is a character of  G and  \Sigma is a finite set of primes containing  p . Then

 \rho_{\vartheta f}\cong(\hat{\eta}\circ\chi)\rho_{f}

as Galois representations  Ga1(\overline{\mathbb{Q}}/Q)arrow\hat{G}(\overline{\Gamma}_{p}) , where  \chi is the mod  p cyclotomic character.

We illustrate this in the simplest setting:

Example 3 (Classical modular forms) Take  G=GL_{2}/\mathbb{Q}.
There are two dominant coweights  \lambda_{i}.  \mathbb{G}_{7n}arrow T to consider:

 \lambda_{1}:z\mapsto\{\begin{array}{ll}
1   0
0   z
\end{array}\} , \lambda_{2}:z\mapsto\{\begin{array}{ll}
z   0
0   z
\end{array}\}
The corresponding elements of the local Hecke algebra are the Hecke operator  T_{\ell} and
multiplication by  \ell.

We take  \eta  :=det:Garrow \mathbb{G}_{m} , and we verify easily that (over  \overline{\mathbb{F}}_{p} ) we have

 a_{\ell}(\vartheta f)=\ell a_{\ell}(f) , \ell^{(k+p+1)-1}=\ell^{2}\ell^{k-1}

Since  \hat{\eta}:\mathbb{G}..arrow\hat{G}\cong G is given by

 \hat{\eta}:z\mapsto\{\begin{array}{ll}
z   0
0   z
\end{array}\},
Theorem 2 says that

 \rho_{\vartheta f}\cong\{\begin{array}{ll}
\chi   0
0   \chi
\end{array}\} \rho_{f}\cong\chi\otimes\rho_{f},
recovering  wha\{ we already knew from the direct comparison of the characteristic poly‐
nomials of  Frob_{l}.
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