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An explicit construction of non‐tempered cusp forms on
O(1,8n+1)

Yingkun Li, Hiro‐aki Narita and Ameya Pitale

Abstract

This short note is a write‐up of the results presented by the second named author at
RIMS workshop “Analytic and arithmetic theory of automorphic forms” The main resuıt
is an explicit construction of the rcal analytic cusp forms on O  ({\imath}, 8n+1) by a lifting from
Maass cusp forms of level one. The lifting is proved to be Hecke‐equivariant. Our results
incıude an explicit formula for Hecke eigenvalues of the lifts and explicit determination of the
cusidal representations generated by them. This leads to showing the nontemperedness of
the cuspidal representations at every finite place, namely our explicit construction provides
“real analytic counterexamples to Ramanujan conjecture”.

1 Statement of the results

Let  \mathfrak{h}  :=\{u+\sqrt{-1}v\in \mathbb{C}|v>0\}and\triangle  :=v^{2}(\overline{\partial}_{u}^{\Gamma}\partial^{2}+arrow\partial\partial^{2}
v) be the hyperbolic Laplacian on  \mathfrak{h} . We
then first review the definition of Maass cusp forms on  \mathfrak{h}.

Definition 1.1 A  C^{\infty} ‐function  f :  \mathfrak{h}arrow \mathbb{C} is called a Maass cusp form (of level one) if it
satisfies the following:

1.  f(\gamma(\tau))=f(\tau)  \forall\gamma\in SL_{2}(\mathbb{Z}) ,

2.   \triangle\cdot f=-(\frac{1}{4}+\frac{r^{2}}{4})f(r\in \mathbb{R}) ,

3. The Fourier expansion of  f has no constant term:

 f( \tau)=\sum_{n\neq 0}c_{f}(n)W_{0,\frac{\sqrt{-1}r}{2}}(4\pi|n|v)
\exp(2\pi\sqrt{-1}nu)(\tau=u+\sqrt{-1}v) .

We next introduce Maass forms on real hyperbolic spaces (of higher dimension). Let  H_{n}  :=

 \{(x, y)|x\in \mathbb{R}^{n}, y>0\} be the  n+1‐dimensional real hyperbolic space, which can be identified
with  O(1, n+1)(\mathbb{R})/O(1, n+1)(\mathbb{R})\cap O(n+2)(\mathbb{R}) . For an arithmetic subgroup  \Gamma\subset O(1, n+1)(\mathbb{R})
we introduce the following:

Definition 1.2 A  C^{\infty} ‐function  F:H_{n}arrow \mathbb{C} is called a Maass form on  H_{n} with respect to  \Gamma if
it satisfies the following:

1.  F(\gamma(z))=F(z)  \forall(\gamma, z)\in\Gamma\cross H_{n}.
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2.   \Omega\cdot F=\frac{1}{2n}(\rho^{2}-\frac{r^{2}}{4})F\uparrow(\rho\in 
\mathbb{C}) ( \Omega :Casimi’r operator).

3.  F is of moderate growth.

We denote by  M(\Gamma, \rho) the space of Maass forms above.

In what foılows, let  f be a Maass cusp form of level one and  (\mathbb{Z}^{8n}, S) be an even unimodular
lattice with the quadratic form defined by a positive definite symmetric matrix  S . We further let

 O(Q)(\simeq O (1, 8n+1)) be the orthogonal group defined by  Q  :=(1   -S   1). We then see that

 \{(x, y)|x\in \mathbb{R}^{8n}, y>0\} is  8n+1‐dimensional real hyperbolic space, which can be identified
with  O(Q)(\mathbb{R})/O(Q)(\mathbb{R})\cap O(Sn+2)(\mathbb{R}) . We let  \Gamma_{S}  :=\{\gamma\in O(Q)(\mathbb{Q})|\gamma \mathbb{Z}^{8n+2}=\mathbb{Z}^{8n+2}\}.

For a Maass cusp form  f we now Introduce a function on the  8n+1‐dimensional hyperbolic
space as follows:

 F_{f}((x, y))= \sum_{\lambda\in \mathbb{Z}^{8n}\backslash \{0\}}C_{\lambda}
y^{4n}K_{\sqrt{-1}r}(4\pi|\lambda|_{S}y)\exp(2\pi\sqrt{-1}^{t}\lambda Sx) ,

where  |\lambda|s  :=\sqrt{\frac{1}{2}t\lambda S\lambda} . Here, with the greatest common divisor  d_{\lambda} of  \lambda\in \mathbb{Z}^{8n}\backslash \{0\},

 C_{\lambda}:=| \lambda|s\sum_{d|d_{\lambda}}c(-\frac{|\lambda|_{S}^{2}}{d^{2}})
d^{4n-2}
We are ready to state our first result:

Theorem 1.3 (1)  F_{f} is a Maass cusp form in  M(\Gamma_{S}, \sqrt{-1}r) , where  r\in \mathbb{R} is the parameter of
the  A ‐eigeri  1)  alue for  f.
(2)  f\not\equiv 0\Rightarrow F_{f}\not\equiv 0.
(3)  f is a Hecke  eigenform\Rightarrow so is  F_{f}.

Our next result concerns cuspidal representations generated by  F_{f} . To this end we adelized  F_{f}
as an automorphic form on  O(Q)(A) by

 F_{f}(g):= \sum_{\lambda\in \mathbb{Q}^{8n}\backslash \{0\}}A_{\lambda}(g_{f})
W_{\lambda,\infty}(g_{\infty}) (g=g_{f}g_{\infty}\in O(Q)(\mathbb{A}_{f})\cross 
O(Q)(\mathbb{R})=O(Q)(\mathbb{A}))
where

 A_{\lambda}  ( (1   h   1))=\delta(\lambda\in L_{h})|\lambda|\sum_{d|d_{\lambda}}d^{4n-2}c(-
\frac{|\lambda|^{2}}{d^{2}})\forall h\in O(S)(\mathbb{A}_{f}) ,

 A_{\lambda}  ((\alpha   h   \alpha^{-1}))=||\alpha||_{A}^{4n}A_{||\beta||_{A}^{-1}\lambda(}  (1   h   l)),  \forall(\alpha, h)\in A_{f}^{\cross}\cross O(S)(\mathbb{A}_{f}) ,

 A_{\lambda}(n(x)lk)=\Lambda(t\lambda Sx)A_{\lambda}(I)\forall(x, l, k)\in A_{f}
^{8n}\cross \mathcal{L}(\mathbb{A}_{f})\cross K_{f},
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with the Levi subgroup  \mathcal{L}\simeq \mathbb{G}_{m}xO(S) and the archimedean Whittaker function  W_{\lambda,\infty} appearing
in the non‐adelic Fourier expansion.

Let  \pi_{F_{f}} be a cuspidal representation of  O(1,8n+1)(\mathbb{A}) generated by  F_{f} . Our next result is
stated as follows:

Theorem 1.4 (1) Let  f be a Hecke‐eigen cusp form with a Hecke eigenvalue  \lambda_{p} at each prime
 p . Then  \pi_{F_{f}} is irreducible and thus decomposes into the restricted product  \otimes_{v\leq\infty}'\pi_{v} . Every  \pi_{p}

for   v=p<\infty is explicitly determined by the Satake parameter

diag  (( \frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2})^{2} , p^{4n-1} , p, 1, 1, p^
{-1} , p^{-(4n-1)}, (\frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2})^{-2})
(2) For  p<\infty,  \pi_{p} is non‐tempered while  \pi_{\infty} is tempered (i.e. counterexample to the Ramanujan
conjecture).
3) The standard  L ‐function  L (  \pi_{F_{f}} , std, s) has the following coincidence:

 L (  \pi_{F_{f}} , std,  s )  =L (sym2  (f),  s )   \prod_{i=0}^{8n-2}\zeta(s+(i-(4n-1))) .

In what follows, we overview the proofs of the two theorems above. For the detailed proof see
[3].

2 Outline of the proof for the first theorem

In this section we explain mainly of the  \Gamma_{S} ‐automorphy of  F_{f} . Our original idea was to use the
converse theorem by Maass [4] (cf. [5], [8]). A basic limitation of the Maass converse theorem is
that it provides automorphy only with respect to a discrete subgroup generated by translations
and one inversion. For the case of  n>1 , it seems difficult to determine the generators of  \Gamma_{S}.
Hence, the Maass converse theorem method, though applicable, does not give automorphy with
respect to all of  \Gamma_{S} . Instead we use the notion of a theta lifting. For this we remind the readers
that  SL_{2}xO(1, m) forms a dual pair. It is natural to expect that our lift  f\mapsto F_{f} is a theta lift
to  O(1,8n+1) . This new idea has enabled us to overcome the difficulty.

Theorem 2.1 With a suitable choice of a theta kernel  \Theta(\tau, (x, y))\mu)  e have

 F_{f}((x, y))= \int_{SL_{2}(Z)\backslash \mathfrak{h}}f(\tau)
\overline{\Theta(\tau,(x,y))}v^{4n-\frac{3}{2}}dudv,
namely,  F_{f} is a theta lift from  f.

We folıow the formulation of the theta lift by Borcherds [1]. The theta integral kernel is given
as  \Theta(\tau, \nu)  := \sum_{\lambda\in L}\exp(-\frac{\triangle_{n}}{8\pi v})P(\iota_{\nu}(\lambda_
{\nu}))e^{\pi\sqrt{-1}(q_{Q}(\lambda_{\overline{\nu}})\overline{\tau}+q_{Q}
(\lambda_{\nu}^{+})\tau)} , where

 \bullet   \triangle_{n}=\sum_{i=0}^{8n+1}arrow^{\partial x_{i}\partial_{t}^{2}} denotes the standard Laplacian on  \mathbb{R}^{8n+2},
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 \bullet  q_{Q} denotes the quadratic form defined by  Q.

 \bullet  H_{8n+1} is viewed as the Grassmanian  \mathcal{D}_{8n+1} of positive oriented lines in  (\mathbb{R}^{8n+2}, Q) . Each
 \nu\in \mathcal{D}_{8n+1}\simeq H_{8n+1} defines an isometry

 b_{\nu}:(\mathbb{R}^{Sn+2}, Q)\ni\lambda\mapsto(t\lambda Q\nu, \lambda_{\nu}^{-
})\in \mathbb{R}^{10_{\oplus l/}\perp}\simeq \mathbb{R}^{1,8n+1}

with  \lambda_{\nu}^{-}  :=\lambda-\lambda_{\nu}^{+} with  \lambda_{\nu}^{+}  :=(t\lambda Q\nu)\cdot\nu.

 eP  (x_{0}, x_{1}, \cdots , x_{8n}, x_{8n+1})  :=2^{-n/4-3}x_{0}^{4n} , which is a non‐harmonic homogeneous polyno‐
mial.

Since  \Theta(\tau, (x, y)) is  \Gamma_{S}‐invariant, the automorphy of  F_{f} follows. As the Fourier expansion of  F_{f}
indicates,  F_{f} is a cusp form. Recaıl now that there has been the assertion of non‐vanishing of
 F_{f} . We verify this by the argument similar to [5, Theorem 4.4]. For this, note that the set of
the  \Gamma_{S}|‐cusps are in bijection with the equivalence classes of even unimodular lattices of rank
 8n . To show the non‐vanishing, we use the Fourier expansion of the  \Gamma_{S}‐cusp corresponding to
 E_{8}^{n} , where  E_{8} denotes the even unimodular lattice of rank 8 called the  E_{8}‐lattice. It is worth
whiıe to remark that the representability of every integer by the  E_{8}1‐lattice is one essential point
for the proof of the non‐vanishing.

3 Outline of the proof for the second theorem

We discuss the Hecke theory of our lifting, which leads to overview of the proof for the second
theorem. In fact, we will show that if  f is a Hecke eigenform then so is the lift  F_{f} . We can
compute the Hecke eigenvalues of  F_{f} explicitly in terms of those of  f , which yields the theorem.
The method is to use the non‐archimedean local theory by Sugano [11, Section 7] for the Jacobi
form formulation of the Oda‐Raılis‐Schiffmann lifting [7], [9].

To review the setting of Sugano’s local theory we first introduce the notation on groups and
lattices:

 \bullet  F:non‐archimedean local field of char.  \neq 2 with integer ring  0.

 eQ_{m}  :=(J_{m}   S_{0}   J_{m}) with

 J_{m}  :=  (1   1) ,  S_{0} : anisotropic part (rank  (S_{0})=n_{0}\leq 4).

 \bullet  O(Q_{m}) : the orthogonal group defined by  Q_{m} over  F.

 \bullet  L_{n\iota}  :=0^{2m+n_{0}} : assumed to be a maximal lattice w.r.  t.  Q_{\eta t}.

 eG_{7n}  :=O(Q_{7n})(F)\supset K_{rr\iota}  :=\{k\in G_{m}|kL_{m}=L_{7n}\}.
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We now review the non‐archimedean local “Whittaker functions” (nowadays known as “Special
Bessel model”) studied by Sugano [11, Section 7]. To this end we need further notation. Let
 G_{m}\supset P=LN be the standard maximal parabolic subgroup with the Levi subgroup  L of
split rank one and the abelian unipotent radical  N . For a “reduced character”  \chi of  N put
 H_{\chi}  :=Stab_{O(2(m-1))}(\chi)\subset L , where we say that  \chi is reduced if it comes from a reduced element
in  \mathbb{Q}_{p}^{2m-2} . For the precise definition see [11, Section 7, p44, p47]. We introduce

 \mathcal{W}_{\chi}:=\{W\in C^{\infty}(O(2m)| \forall(h,n,k)\in H_{\chi}\cross N
\cross K_{2m,p}W(hngk)=\chi(n)^{-1}W(g)\}l
 \mathcal{W}_{\chi}^{\mathcal{M}}  := {  W\in \mathcal{W}_{\chi}|W satisfies the local Maass relation.}.

Here, for the definition of the local Maass relation, see [11, (7.48), (7.49)].
What is crucial for the Hecke theory of our lifting is the Hecke module structure for  \mathcal{W}_{\chi}^{\mathcal{M}}.

We now introduce the Hecke operators  \{C_{m}^{(i)}\}_{1\leq i\leq m} which form a generator of the Hecke algebra
 \mathcal{H}_{m} for  (G_{m}, K_{m}) :

 \bullet  \{C_{m}^{(\dot{i})} :=char(K_{m}c_{m}^{(i)}K_{rn})\}_{1\leq i\leq m} , where

 c_{m}^{(i)}:= diag(p, \cdot\cdot p, 1, \cdots, 1,)\tilde{i}. ,\frac{p^{-1},
\cdots,p^{-1}}{i}.
To describe the Hecke module structure of  \mathcal{W}_{\chi}^{\mathcal{M}} explicitly we need the following:

 \bullet  q  :=\# k_{F} (  k_{F}  :=0/p: residue field of  F )

 \bullet  \partial  :=\dim_{k_{F}}(L_{m-1}'/L_{m-1}),  L_{m-1}'  := \{\lambda\in L_{7\gamma\iota-1}^{\wedge}|\frac{1}{2}t\lambda S\lambda\in p^{
-1}\} (  L_{7/x-1}^{\wedge} : dual ıattice).

 R_{m}^{(i)} := \#(K_{7n}/c_{m}^{(i)}K_{m}(c_{m}^{(i)})^{-1}\cap K_{m})=\prod_{i
=1}^{m}f_{m,i},
 f_{rn,\uparrow} \cdot:=\frac{q^{i-1}(q^{m-i+1}-1)(q^{m-i+n0}+q^{\partial})
\prime}{q^{\dot{i}}-1}.

Proposition 3.1 (Sugano) (1) The Whittaker spaces  \mathcal{W}_{\lambda} and  \mathcal{W}_{\lambda}^{\mathcal{M}} are  \mathcal{H}_{m} ‐stable.
(2) On  \mathcal{W}_{\lambda} the Hecke operators  C_{rn}^{(i)} for  i\geq 3 acts by

 C_{m}^{(i)}=R_{nx-2}^{(i-2)}(C_{rn}^{(2)}- \frac{q^{i-2}-1}{q^{i-1}-1}\cdot 
f_{nz-2},{}_{1}C_{m}^{(1)}+\frac{q^{i-2}-1}{q(q^{i}-1)}f_{m-2,1}f_{n\tau+2,2}) .

(3) On  \mathcal{W}_{\lambda}^{\mathcal{M}} the Hecke operator  C_{m}^{(i)}s satisfies

 C_{m}^{(2)}=J_{\gamma n-2},{}_{1}C_{m}^{(1)}+q^{4}f_{m-4,1}f_{m-42}+q^{3}f_{m-
4,1}^{2}
 -q^{2}(q^{n\tau-4}-(q-2)q^{\partial})f_{m-4,1}+(q-1)q^{\partial}f_{\gamma n-2,
1}-q(q^{n\tau-4}+q^{\partial})^{2}.

Though the Hecke modulc structure  \mathcal{W}_{\lambda}^{\mathcal{M}} looks coinplicated as we have seen just above it turns
out to be quite simple as follows:
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Proposition 3.2 On  \mathcal{W}_{\lambda}^{\mathcal{M}},

 C_{rn}^{(i)}=R_{7n-1}^{(i-1)}(C_{m}^{(1)}- \frac{q^{i-1}-1}{q^{i}-1}f_{m,1}) (i
\geq 2) .

We apply the above results to the situation as follows:

 F=\mathbb{Q}_{p}, m=4n+1 , n_{0}=\partial=0,

for which note that  O(Q) is isomorphic to  O(8n+2) over  \mathbb{Q}_{p} . It can be shown that the adeıic
Fourier coefficient  A_{\lambda} can be viewed as a local Whittaker functions on  O(8n+2)(\mathbb{Q}_{p}) for each

prime  p . With the notation above we thus have the results on the Hecke theory stated as follows:

Proposition 3.3 (1) If  f is a Hecke eigenform,  F_{f} is also a Hecke eigenfunction.
(2) Let  \lambda_{p} be the Hecke eigenvalue of  f at   p<\infty . Then  C_{4n+1}^{(i)} .  F_{f}=\mu_{i}F_{f} , where

 \mu_{i}=\{\begin{array}{ll}
p^{4n} (\lambda_{p}^{2}+p^{4n-1}+ \cdot \cdot \cdot +p+p^{-1}+ \cdot \cdot \cdot
+p^{-(4n-1)})   (i=1) ,
R_{4n}^{(i-1)}(\mu_{1}-\frac{p^{i-1}-1}{p^{i}-1}f_{4n+1,1})   (i>1) .
\end{array}
As a corolıary to this proposition we have the following consequence on the cuspidal represen‐
tation  \pi_{F_{f}}.

Corollary 3.4 Suppose that  f is a Hecke eigenform.
(1) The cuspidal representation  \pi_{F_{f}} is irreducible and decomposes into  \pi_{F_{f}}\simeq\otimes_{v\leq\infty}'\pi_{v}.
(2) Wíth  \beta_{p}  := \frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2} , the Satake parameter of  F_{f} at   p<\infty is

diag  ((\beta_{p}^{2},p^{4n-1} p, 1,1,p^{-1}, \cdots, p^{-(4n-1)}, \beta_{p}^{-2}) ,

which means the explicit determination of  \pi_{p} of  \pi_{F_{f}}.
(3) The local components  \pi_{p} is non‐tempered at every   v=p<\infty while  \pi_{\infty} is tempered at
 v=\infty.

To show the irreducibility of  \pi_{F} we prove that  \pi_{\infty} is given explicitly as an irreducible spherical
principal series representation, and can then apply [6, Theorem 3.1] to  \pi_{F_{f}} in order to show
its irreducibility. The second assertion is a consequence from Proposition 3.3. For the third
assertion we remark that the Satake parameter at   v=p<\infty include that for the trivial
representation of  G_{4n}=O(Sn)(\mathbb{Q}_{p}) . We can deduce the non‐temperedness of  \pi_{p} from this. The
temperedness of  \pi_{\infty} is verified by the explicit description of  \pi_{\infty} mentioned above.

4 Concluding remarks

1. Sugano’s non‐archimedean local theory [11] is originally motivated by studying the non‐
archimedean local aspect of Oda‐Rallis‐Schiffimann lifting [7], [9]. One therefore naturally
expects that the results similar to our two theorems hold also for this lifting. In the
appendix of [3] we have included such results on the Oda‐Rallis‐Schiffmann lifting for the
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orthogonal group  o(2,8n+2) defined by  (1   1   -S   1   1) , where  S denotes an even

unimodular matrix.

2. Our non‐archimedean local theory needs the theory of unramified principal series represen‐
tations of  p‐adic reductive groups. For this we should note that many relevant references
assume the connected‐ness of the reductive groups. For the orthogonal groups in our set‐
ting, we have justified the useful‐ness of the known theory on the unramified principal
series based on [10] and [2] though the orthogonal group is not connected.
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