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Arithmetic properties of vector‐valued Siegel
modular forms

Siegfried Böcherer

Motivated by a problem concerning congruences of vector‐valued Siegel mod‐
ular forms, we aim at showing that (at least for sufficiently large scalar
weight) vector‐valued modular forms always arise from scalar‐valued forms
on groups of higher rank (more precisely, from Siegel Eisenstein series)
From this we will also get results on the arithmetic nature of Fourier co‐
efficients of vector‐valued modular forms. The main idea is similar to the

one in Garrett’s paper [7]: Using the doubling method, one shows how to
use well‐known properties of Fourier coefficients of Siegel Eisenstein series
of higher rank. The new point here is how to use differential operators of
the type investigated by Ibukiyama (see e.g. [9]) to extend everything to the
vector‐valued case and to emphasize integrality properties.

1 Generalities

Let \mathbb{H}_{n} be the Siegel upper half space of degree  n with the usual action of the
group  Sp(n, \mathbb{R}) , given by  (M, Z)\mapsto M<Z>:=(AZ+B)(CZ+D)^{-1} For
a polynomial representation  \rho :  GL(n, \mathbb{C})arrow Aut(V) on a finite‐dimensional
vector space  V=V_{\rho} we define an action of  Sp(n, \mathbb{R}) on  V‐valued functions
on  \mathbb{H}_{n} by

 (f, M)\mapsto(f|_{\rho}M)(Z)=\rho(CZ+D)^{-1}f(M<Z>) .

We choose the smallest nonnegative integer  k such that  \rho=\det^{k}\otimes\rho_{0} with
 \rho_{0} is still polynomial and we call this  k the weight of  \rho ; if  \rho itself is scalar‐
valued, we often write  k instead of  \det^{k} For a congruence subgroup  \Gamma of
 \Gamma^{n}  :=Sp(n, \mathbb{Z}) we define  M_{\rho}^{n}(\Gamma) as the space of Siegel modular forms for
 \rho w.r.t.\Gamma , i.e. the set of all holomorphic functions  F :  \mathbb{H}_{n}arrow V satisfying
 F|_{\rho}M=F for all   M\in\Gamma ; in the case  n=1 the usual condition in cusps
must be added. The subspace of cusp forms will be denoted by  S_{\rho}^{n}(\Gamma) .
For purposes of congruences it is convenient to realize  V=V_{\rho} as  \mathbb{C}^{m} in such
a way that

 \rho(GL(n, \mathbb{Z}))\subset GL(m, \mathbb{Z}) . (1)
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This is always possiblel) and we will consider this realization throughout.
The Fourier expansion of  F is then of type

 F(Z)= \sum_{T}a_{F}(T)e^{2\pi itrace(TZ)},
where the Fourier coefficients  a_{F}(T) are in  \mathbb{C}^{tn} and  T runs over the set  \Lambda_{\geq}^{n} of

all symmetric half‐integral matrices of size  n , which are positive‐semidefinite.
It makes sense then to define integral modular forms by integrality of all
components of all Fourier coefficients:

  \lambda I_{\rho}^{n}(\mathbb{Z}):=\{F=\sum_{T}a_{F}(T)q^{T}\in \mathbb{J}
T_{\rho}^{n}|\forall T:a(T)\in \mathbb{Z}^{m}\}.
Remark: The condition (1) assures that the integrality of  a_{F}(T) depends
only on the  GL(n, \mathbb{Z}) ‐equivalence class of  T.

It is natural to ask, for which  \rho does

 M_{\rho}^{n}(\mathbb{Z})\otimes \mathbb{C}=M_{\rho}^{n} (2)

hold. For scalar‐valued  \rho it is a well‐known statement ; we can also ask sim‐
ilar questions for any congruence subgroup.
The aim of our work is to show that (2) always holds true. To simplify our
exposition, we will only consider the case of cusp forms of weight  k>2n

here, but we emphasize that our method allows to treat noncuspidal forms
as well and to include small weights; also we can extend everyting to congru‐
ence subgroups (substituting  \mathbb{Z} by the ring of integers in a cyclotomic field
if necessary).
Remark: The basic method is to use properties of Siegel Eisenstein series
of degree  2n , in particular to use the known rationality and integrality prop‐
erties of their Fourier coefficients together with the pullback formula. This
in not really new: In fact, Garrett [7] employed this method to prove alge‐
braicity properties in the scalar‐valued case. Our point is that this method
can be used for integrality as well, including the vector‐valued case. We em‐
phasize that we deliberately avoid any use of theta series here (the solution
of the basis problem using theta series would provide another proof of (2),
see eg. [4] for groups  \Gamma_{0}(N) with  N squarefree), but we want to use methods
applicable to arbitrary  \Gamma ).

lI thank Y.Hironaka and G.Nebe, who both indicated that the requested property may
be hidden in [8]
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2 Construction of integral cusp forms of de‐
gree  n from Eisenstein series of degree  2n

We start from an (even) weight  k>2n and consider an automorphy factor
 \rho=\rho_{0}\otimes det^{k} ’ :  GL(n, \mathbb{C})arrow GL(V) with  k'>k . Following Ibukiyama
[9], there exists a  V\otimes V‐valued holomorphic differential operator  \mathbb{D} on  \mathbb{H}_{2n},
which is a polynomial in derivatives   \frac{\partial}{\partial z_{\dot{i}j}} , evaluated on  \mathbb{H}_{n}\cross \mathbb{H}_{n}\mapsto \mathbb{H}_{2n} with
equlvariance property

 \mathbb{D}(F|_{k}\iota(M, M'))=\mathbb{D}(F)|_{\rho}^{z}M|_{\rho}^{w}M',
valid for all  C^{\infty}‐functions  F on  \mathbb{H}_{2n} and all  M,  M'\in Sp(n, \mathbb{R}) . Here  \iota denotes

the diagonal embedding of  Sp(n)\cross Sp(n) into  Sp(2n) , defined by

 \iota(  (\begin{array}{ll}
a   b
c   d
\end{array})  (  (\begin{array}{ll}
\alpha   \beta
\gamma   \delta
\end{array})):=(\begin{array}{llll}
a   0   b   0
0   \alpha   0   \beta
 c   0   d   0
0   \gamma   0   \delta
\end{array})
and the upper indices  z and  w indicate that  M (  M' respectively) have to be
applied with respect to the variable  z (and  w respectively), embedded in  \mathbb{H}_{2n}

as  (z, w)\mapsto(\begin{array}{ll}
z   0
0   w
\end{array}).
We shall apply  \mathbb{D} to Siegel’s Eisenstein series of degree  2n , defined by

 E_{k}^{2n}(Z):=  \sum \det(CZ+D)^{-k}=\sum_{\tau}b_{k}^{2n}(T)e^{2\pi 
itrace(T\cdot Z)}
 \sim\backslash (C* D*)

The arithmetic nature of the Fourier coefficients  b_{k}^{2n}(T) is well explored by
Siegel, Kitaoka, Katsurada, Shimura and others. In particular, the Fourier
coefficients are rational with bounded denominators.

To describe the Fourier expansions of  \mathbb{D}E_{k}^{2n} , we introduce a  V\otimes V‐valued
polynomial  \mathcal{P} defined on symmetric matrices  \mathcal{P} of size  2n by

 \mathbb{D}e_{T}(z, w)=\mathcal{P}(T)e^{2\pi itrace(Tz+Sw)},

where  \mathfrak{e}_{T} denotes the function  Z\mapsto e^{2\pi itrace(T\cdot Z)} on  \mathbb{H}_{2n}.

We want to normalize the differential operators  \mathbb{D} in such a way that the
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polynomial  \mathcal{P} has rational coefficients in all its components; this can always
be done: Ibukiyama’s differential operators can be chosen to have rational
coefficients and then we have to divide by an appropriate power of  2\pi i.

To handle the Fourier expansion of  \mathbb{D}E_{k}^{2n} , it is convenient to use the standard
basis

 \mathfrak{a}_{i} :=(0, \ldots, 0,1,0, \ldots 0)^{t}\in V=\mathbb{C}^{7n} (1\leq
i\leq m)

We may then write the polynomial  \mathcal{P} as a linear combination

  \mathcal{P}(T)=\sum_{i,j}\mathcal{P}_{i,j}(T)\cdot \mathfrak{a}_{i}\otimes 
\mathfrak{a}_{j}
of scalar‐valued polynomials  \mathcal{P}_{ij}.

We consider the Fourier expansion of  \mathbb{D}E_{k}^{2n} as a function of  w :

  \mathbb{D}E^{2n}(z, w)=\sum_{T\in\Lambda^{n}}\sum_{j}\Phi_{T,j}(z)\otimes 
q_{j}e^{2\pi itrace(Tw)},
where  \Phi_{T,j} is an element of  M_{\rho}^{n} , it is cuspidal because our differential operator
maps modular forms to cusp forms, if the scalar weight is increased; this is
why we imposed the condition  k'>k . The Fourier expansion of any  \Phi_{T,j}
can be written as

  \Phi_{T,j}(z)=\sum_{S\in\Lambda^{n}}\sum_{i}\sum_{R}b_{k}^{2n}(  (\begin{array}{ll}
S   R
R^{t}   S
\end{array}))\mathcal{P}_{i,j}(  (\begin{array}{ll}
S   R
R^{t}   T
\end{array}))\mathfrak{a}_{i}e^{2\pi itrace(Sz)}
The summation over  R goes over all matrices in   \frac{1}{2}\mathbb{Z}^{(n,n)} , but due to the con‐
dition on positive‐semidefiniteness, it is a finite sum. Clearly, the properties
of the  b_{k}^{2n}(T) imply

 \Phi_{T,j}\in S_{\rho}^{n}(\mathbb{Z})',
where the prime indicates that bounded denominators (i.e. bounded inde‐
pendent of  T) may occur.

3 Linearized pullback formula

Garrett [6] started to consider pullbacks of Eisenstein series. The version
we use can be found in [1] for the scalar‐valued case, the generalization to
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vector‐valued cases is in [3]. The pullback formula then implies

  \Phi_{T,j}(z)\sim\sum_{f_{t}}\frac{L(k-n,f_{t})}{<f_{t},f_{t}>}a_{f_{t}}^{(j)}
(T)f_{t}(z) . (3)

Here  f_{t} runs over an orthogonal basis of Hecke eigenforms in  S_{\rho}^{n},  <,  > de‐
notes the Petersson inner product of  S_{\rho}^{n} and  L(s, f) is the standard  L‐fUnction
attached to  f ; we do not need the exact factor of proportionality here. More‐
over, we have decomposed the Fourier coefficients  a_{f}(T) into its components:

 a_{f}(T)= \sum_{j}a_{f}^{(j)}(T)\cdot \mathfrak{a}_{j}.
To give a linear version of (3), we consider the linear map

 \Lambda:S_{\rho}^{n}arrow S_{\rho}^{n},

defined by  f\mapsto L(k-n, f)\cdot f for Hecke eigenforms. By the nonvanishing
of  L(k-n, f) , this defines an automorphism of  S_{\rho}^{n} for  k>2n . Then (3)
implies

 <f, \Phi_{T,j}>\sim c_{f}^{(j)}(T) (4)

where   \sum_{T}c_{f}(T)e^{2\pi itrace(TZ)} denotes the Fourier expansion of  \Lambda(f) .
From (4) one can see that  \{\Phi_{T,j}|T\in\Lambda^{n}, 1\leq J\leq m\} generates the full
space  S_{\rho}^{n} as a vector space and we have in this way confirmed (2), at least
for cusp forms (of large weight).

Remark: In the above, we only covered a special situation: We should
include non cusp forms, levels, low weights and half‐integral weights. The
method above, with some efforts, allows to get similar conclusions in those
more general cases. It is however important to remark that while an analogue
of (2) remains true for small weights, the stronger statement that vector‐
valued forms arise from scalar valued ones of higher degree by applying  \mathbb{D}

may no longer hold in general!

Remark One can reformulate the results above using Jacobi forms instead of
Siegel modular forms of degree  2n : Every vector‐valued Siegel modular form
(cuspidal, of large weight, level one) arises as linear combination of  \mathbb{D}^{J}(\Phi)
where  \Phi runs over scalar‐valued Jacobi forms on  \mathbb{H}_{n}\cross \mathbb{C}^{(n,n)} and  \mathbb{D}^{J} is an

obvious Jacobi version of Ibukiymama’s differential operator  \mathbb{D}.
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4 An application to congruences for vector‐
valued modular forms.

Here we report on our main motivation, which comes from  p‐adic vector‐
valued modular forms. In [2] we made some efforts to include vector‐valued
modular forms. In loc.cit. we left open, whether a vector‐valued modular
form for a congruence subgroup of type  \Gamma_{0}^{n}(p^{rn}) ) with  m\geq 2 gives rise to a
 p‐adic modular form. (Note that the case  m=1 is different and here the
standard method also works for the vector‐valued case, see [2]). The reason
was that in the scalar‐valued case the operator

 f\mapsto f^{p}|U(p)

plays a central role to decrease the level from  \Gamma_{0}^{n}(p^{m}) to  \Gamma_{0}^{n}(p^{m-1}) for  m\geq 2.

In the vector valued case a natural substitute for taking a p‐th power is to
consider a symmetric  p‐power, which however changes the representation  \rho

to  Sym^{p}(\rho) with a much larger representation space. An attempt to proceed
along these lines was described in [5] with an annoyingly complicated defi‐
nition of  p‐adic vector valued modular forms. For a geometric approach to
vector‐valued Siegel modular forms see [10].
We show now how this trouble can be avoided using the methods from above
(taking for granted that appropriate generalizations hold for congruence sub‐
groups and noncuspidal forms):

Theorem:For any  F\in M_{\rho}^{n}(\Gamma_{0}(p^{m})) with  m\geq 2 and all  N\geq 1 there exists
 k'>k and  \hat{F}\in M_{\rho}^{n},(\Gamma_{0}(p^{m-1})) with  \rho'=\rho_{0}\otimes\det^{k'} such that the congruence

 F\equiv\hat{F} mod p^{N}

holds. All vector‐valued Siegel modular forms for  \Gamma_{0}^{n}(p^{m}) are  p ‐adic modular
forms

Proof: After multiplication with a modular form congruent to 1  mod p^{N} we
may assume that the weight of  F is large. By the procedure of the previous
session, we may assume that there is a scalar‐valued  G\in M_{l}^{2n}(\Gamma_{0}(p^{\gamma n})) such
that  F can be expressed by finitely many  \Phi_{T,j} arising from  \mathbb{D}G(z, w) . We
may change  G modulo  p^{N'} to  a (again scalar‐valued)  \hat{G} of level  \Gamma_{0}(p^{m-{\imath}}) .
Then we use  \mathbb{D}\hat{G}(z, w) .

The main point is to do the change of level before using the differential
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operators. Possibly  N' has to be chosen larger than  N because the differential
operator  \mathbb{D} may have powers of  p in its denominator and the expression of  F

as a linear combination of the  \Phi_{T,j} may be not  p‐integral.
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