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POWERS OF THE DEDEKIND ETA FUNCTION AND HURWITZ

POLYNOMIALS

BERNHARD HEIM

ABSTRACT. In this talk, we study the vanishing properties of Fourier coefficients
of powers of the Dedekind eta function. We give a certain type of classification
of this property. Further we extend the resuıts of Atkin, Cohen, and Newman for
odd powers and a list Serre presented in 1985. The topic is intimately related with
Hurwitz polynomials. We also indicate possible generalization of the Lehmer con‐
jecture. This talk contains joint work with Florian Luca, Atsushi Murase, Markus
Neuhauser, Florian Rupp and Alexander Weisse.

1. INTRODUCTION

This survey is an extension of a talk given at the RIMS Workshop: Analytic
and Arithmetic Theory of Automorphic Forms (15.01‐19.01.2018 in Kyoto). Recent
approaches and results towards the vanishing properties of the Fourier coefficients of
powers of the Dedekind eta function had been presented. This contains joint work
with Florian Luca, Atsushi Murase, Markus Neuhauser, Florian Rupp and Alexander
Weisse [HMII, He16, HNR17, HLN18, HNR18, HN18a,  HN18b , HNW18].

In his celebrated paper [Se85] Serre proved that the r‐th power of the Dedekind
eta function  \eta (  r even) is lacunary iff  r\in S_{even}  :=\{2,4,6,8,10,14,26\} . For  r=24

Lehmer conjectured that the Fourier coefficients of the discriminant function  \triangle  :=\eta^{24}
never vanish. It has always been a challenge in mathematics to understand the
correspondence between multiplicative and additive structures.

In this paper we put these results and conjectures in a wider picture allowing
 r\in \mathbb{C} . We further connect the underlying structure with a family of recursively
defined polynomials  P_{n}(x) . The roots of these polynomials dictate the vanishing of
the n‐th Fourier coefficients.

Euler and Jacobi already found remarkable identities,

(1. ı)   \prod_{n=1}^{\infty}(1-X^{n})  =   \sum_{n=-\infty}^{\infty}(-1)^{n}x\frac{3n^{2}+n}{2}
(1.2)   \prod_{n=1}^{\infty}(1-X^{n})^{3} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)X\frac{n^
{2}+n}{2}
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It is useful to reformulate these results in terms of the Dedekind eta function  \eta,

studied first by Dedekind. This makes it possible to apply the theory of modular
forms, which includes the Hecke theory. Let  \tau be in the upper half space  \mathbb{H}  :=\{\tau\in
 \mathbb{C}|{\rm Im}(\tau)>0\} and  q  :=e^{2\pi i\tau} . Dedekind introduced in 1877 the modular form of

half‐integral weight 1/2:

(1.3)   \eta(\tau) :=q^{\frac{{\imath}}{24}}\prod_{n=1}^{\infty}(1-q^{n}) ,

We are interested in the vanishing properties of the Fourier coefficients  a_{r}(n) defined
by

(1.4)   \eta(\tau)^{r}:=q^{\frac{r}{24}}\prod_{n=1}^{\infty}(1-q^{n})^{7}. =
q^{\frac{r}{24}}\sum_{n=0}^{\infty}a_{r}(n)q^{n}
Note  r=1 and  r=3 are given by the examples of Euler and Jacobi. Hence the  a_{1}(n)
and  a_{3}(n) vanish, if  n is not represented by a given quadratic form (this can be made
more precise) for each case. Such forms are denoted superlacunary [OS95]. Actually
 \eta^{r}(r\in \mathbb{Z}) is superlacunary iff  r\in S_{odd}  :=\{1,3\} (see [OS95]). For  (-r)\in \mathbb{N} all
coefficients  a_{r}(n) are positive integers. In particular aı(n)  =p(n) are the partition
numbers. Even and odd powers of  \eta lead to modular forms of integral and half‐
integral weight. Hence we study them separately (see also [HNW18] introduction).
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2. EVEN POWERS

Let  r be even, then Serre [Se85] proved that  \eta(\tau)^{r} is lacunary, i.e.

(2.1)   \lim_{Narrow\infty}\frac{|\{n\in \mathbb{N}|n\leq N,a_{r}(n)\neq 0\}|}{N}=0,
if and only if  r\in S_{even}  :=\{2,4,6,8,10,14,26\} . Lehmer conjectured that the coeffi‐
cients  \tau(n) of the discriminant function never vanish,

(2.2)   \triangle(\tau) :=q\prod_{n=1}^{\infty}(1-q^{n})^{24}=\sum_{n=1}^{\infty}
\tau(n)q^{n}
Note that  \tau(n)  :=a_{24}(n-1) is called the Ramanujan function. Ono [On95] indicated
that  \eta^{12} has similar properties as  \triangle . This covers more or less the results covered
in the literature, based on our knowledge. For example since  \eta^{48} is not any more
an Hecke eigenform it is not clear what to expect. Nevertheless we obtained the
following recent result.
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Theorem 2.1. [HNW18]
Let  r be an even positive integer. Let  r\not\in S_{even} . Let  12\leq r\leq 132 . Then  a_{r}(n)\neq 0
for  n\leq 10^{8} Let  124\leq r\leq 550 . Then  a_{r}(n)\neq 0 for  n\leq 10^{7}.

The result is obtained by numerical computations. The result suggest the predic‐
tion that there exists an  n\in \mathbb{N} such that  a_{r}(n)=0 iff  r\in S_{even}=\{2,4,6,8,10,14,26\}.
This would include the case  r=24 , known as the Lehmer’s conjecture [Le47]. Hence
the Lehmer conjecture would only be the tip of an iceberg. We also show in the
following that the case  r=48 , the square of the discriminant function  \triangle , is closely
connected to a conjecture by Maeda, although in this case we are not dealing with
an Hecke eigenform.

Maeda’s conjecture and  \triangle^{2}.

We extended our calculations and obtained:

Theorem 2.2. Let  a_{48}(n) be the Fourier coefficients of  \triangle^{2} Let

(2.3)   \triangle^{2}(\tau)=\eta^{48}(\tau)=q^{2}\sum_{n=0}^{\infty}a_{48}(n)q^{n}
Then for  n\leq 5\cdot 10^{9} all coefficients are different from zero.

Maeda’s conjecture [HM97], [GM12]: Let  S_{k}=S_{k}(SL_{2}(\mathbb{Z})) be the space of modular
cusp form of weight integral weight  k for the full modular group. We consider the
action of the Hecke operator  T_{m}(m>1) on the finite dimensional vector space  S_{k}.

Then the characteristic polynomial is irreducible over  \mathbb{Q} . Further the Galois group of
the splitting field is the full symmetric group of the largest possible size. In particular
all eigenvalues are different.

The following observation seems to be worth mentioning.

Lemma 2.3. The Fourier coefficients of  \triangle^{2} are non‐vanishing if and only if the
eigenvalues of the eigenforms of  S_{24}(\Gamma) are different.

See also [DG96, KK07, HNW18]. Hence Maeda’s conjecture supports the non‐
vanishing of all Fourier coefficients of  \triangle^{2} . The record for checking Maeda’s conjecture
in this case has been  n\leq 10^{5} ([GM12]). Our result implies  n\leq 5  10^{9}.

3. ODD POWERS

In the odd case Serre [Se85] published a table, based on results of partly unpub‐
lished results of Atkin, Cohen and Newman

Atkin, Cohen  r=5  n=1560 , 1802, 1838, 2318, 2690, . . .
Atkin  r=7  n=28017

Newman [Ne56]  r=15  n=53
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For these pairs  (r, n) one has  a_{r}(n)=0 . It is not mentioned how many pairs  (r, n)
were studied.

In [HNR17], we showed that for  r=9,11,13,17,19,21 , 23 that  a_{r}(n)\neq 0 for
 n\leq 50000 . Cohen and Strömberg ([CS17] ask among other things if  \eta^{5},  \eta^{15} and
 \eta^{7} have infinitely many vanishing coefficients and also ask about their vanishing
asymptotic.

In the following we report on an extended version of Serre’s table in the  r and  n

aspect. In [HNW18] we gave an extension of the conjecture of Cohen and Strömberg
and asymptotics for

 |\{n\leq N|a_{r}(n)\neq 0\}|
Throughout this section, let  r be an odd positive integer. We briefly introduce the
concept of sources based on the Hecke theory for modular forms of half‐integral
weight, before we state our results.

Let  f_{7}(\tau)  :=\eta(24\tau)^{r} with Fourier expansion

 f_{r}( \tau) = \sum_{D=1}^{\infty}b_{r}(D)q^{D}
  \eta(\tau)^{r} = \sum_{n=0}^{\infty}a_{r}(n)q^{7t}.

Proposition 3.1. Let  1\leq r<24 be an odd integer. Let  n_{0}\in \mathbb{N} be given, such that
 D_{0}  :=24n_{0}+r satisfies  p^{2} \int D_{0} for all prime numbers  p\neq 2,3 . Let

(3.1)  \mathcal{N}_{r}(n_{0}) :=\{n_{0}l^{2}+r(l^{2}-1)/24|l\in \mathbb{N}, (l, 2\cdot
3)=1\}.
Let  a_{r}(n_{0})=0 . Then  a_{r}(n)=0 for all  n\in \mathcal{N}_{r}(n_{0}) . We call such  n_{0} ’s sources.

Let further  3|r and  27\parallel D_{0} for the source  n_{0} . Then  a_{r}(n)=0 is already true for
all elements of

(3.2)  \{n_{0}l^{2}+r(l^{2}-1)/24|l\in \mathbb{N}, (l, 2)=1\}.
We refer to [HNR17] for more details. Note for  r=15 (since 27  \sqrt{}'D_{0} ), we obtain

  \mathcal{N}_{15}(53)=\{53+429\frac{1(l+1)}{2}|l\in \mathbb{N}_{0}\}.
Theorem 3.2. [HNW18] Let  r=7,9,11 and let  n\leq 10^{10} Then there exists among
all possible pairs  (r, n) with  a_{r}(n)=0 exactly one source pair (7, 28017). Let   13\leq

 r\leq 27 odd and  n\leq 10^{9} . Then there is exactly one source pair (15, 53).

Theorem 3.3. [HNW18] Let  r be odd and  29\leq r<550 and  n\leq 10^{7} . Then there
exists no pair  (r, n) such that  a_{r}(n)=0.
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Serre’s table extented

For  r=5 we have the following distribution of sources.

3.1. Questions of Cohen and Strömberg. Cohen and Strömberg ([CS17], Exer‐
cise 2.6) made the following conjectures: The Fourier expansion of  \eta^{5} and of  \eta^{15} have
infinitely many zero coefficients and perhaps even more than  X^{\delta} up to  X for some
 \delta>0 (perhaps any  \delta<1/2 ). The Fourier expansion of  \eta^{7} has infinitely many zero
coefficients, perhaps of order  \log(X) up to  X . We also refer to Ono ([On03], Problem
3.51).

The  \eta^{r} for  r=5,7,15 are Hecke eigenforms. Further in all cases sources exist.
Hence there are infinitely pairs  (r, n) such that  a_{r}(n)=0.

We can answer both problems of Cohen and Strömberg in the following way.
For a function  X\mapsto f(X) we use the Landau notation that it is  \Omega(g(X)) if

  \lim\sup_{Xarrow\infty}|f(X)/g(X)|>0.

Proposition 3.4. The Fourier expansions of  \eta^{r} for  r=5,7,15 have  \Omega(X^{1/2}) coef‐
ficients which are zero.

More precisely the following holds.

 (1)(2)(3)Forr=15therearemorethan \sqrt{X}coeffi_{Ci}entszeroifXForr=
7therearemorethan\frac{{\imath}}{50\frac{111981}{15}}\sqrt{X}coefficients z eroifXForr=5therearemorethan \frac{}{}\sqrt{X}coeffi_{Ci}entszeroifX\geq 
10^{10}\geq 3161.51\geq 96157.0466
Remark. The numerical data up to  n=10^{10} for  r=5 seems to suggest that there is
even a  \delta larger than 1/2 such that  \Omega(X^{\delta}) coefficients are zero.
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3.2. Question of Ono. Ono ([On03], Problem 351. Ono asked the opposite ques‐
tion in terms of Cohen and Strömberg. He inquired about the amount of non‐
vanishing coefficients for  r odd and  r\geq 5.

4. ROOTS OF POLYNOMIALS AND THE DEDEKIND  ETA FUNCTION

We introduce polynomials  P_{n}(x) . The roots of these polynomial dictate the vanish‐
ing properties of the n‐th Fourier coefficients of the attached power’s of the Dedekind
eta function. Gian‐Carlo Rota (1985) said already:

“The one contribution of mine that I hope will be remembered has consisted in point‐
ing out that all sorts of problems of combinatorics can be viewed as problems of the
location of the zeros of certain polynomials

We start with the definition

(4.1)   \sum_{n=0}^{\infty}P_{n}(z)q^{n}=\prod_{7,\geq 1}(1-q^{n})^{-z} (z\in 
\mathbb{C}) .

Hence  P_{0}(x)=1 and  P_{1}(x)=x . Let  P_{n}(x)= \frac{x}{n!}\overline{P}_{n}(x) . Then  \overline{P}_{n}(x)\in \mathbb{Z},  a

normalized polynomial of degree  n-1 with strictly positive coefficients. We also
observe that  P_{n}(x) is integer‐valued. In addition we recall the useful and well‐known
identity

(4.2)   \prod_{n\geq 1}(1-q^{n})=\exp(-\sum_{n=1}^{\infty}\sigma(n)\frac{q^{n}}{n})
Here  \sigma(n)  := \sum_{d|n}d . This essentially says that the logarithmic derivative of the
Dedekind eta function is equal to the holomorphic Eisenstein series of degree 2.

Definition. Let  g(n) be an arithmetic function. Let  P_{0}^{g}(x)  :=1 . Then we define the
polynomials  P_{n}^{g}(x) by:

(4.3)  P_{n}^{g}(x)= \frac{t}{n}(\sum_{k=1}^{n}g(k)P_{n-k}^{g}(X)) , n\geq 1.
Then  P_{n}^{\sigma}(x)=P_{n}(x) . Since  \sigma(n) is a complicated function, one may use other

arithmetic functions  g(n) to interpolate  P_{n}(x) by  P_{n}^{g}(x) .
The first ten polynomials  P_{n}(x) appeared the first time in the work of Newman

[Ne55] and Serre [Se85] (in a different notation). Let for example  n=6 , then

 P_{5}(x)=x(x+3)(x+6)R(x) ,

where  R(x) is irreducible over  \mathcal{Q} . This implies that only the 5‐th Fourier coefficient
for  \eta^{r},  (r\in \mathbb{Z}) is vanishing iff  r=3 or  r=6 . It was already known by Newman that
for  n<5 all roots of  P_{n}(x) are integral, but not for  5\leq n\leq 10.
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4.1. Root Distribution. The following result [HNR18] displays the distribution of
the roots for  n\leq 50 . We record the amount of roots which are integral, irrational
and in  \mathbb{C}\backslash \mathbb{R} upto  n\leq 50 . For  n=10 the first time non‐real roots appear. Since
 P_{n}(x)\in \mathbb{R} , with  z aıso the complex conjugate of  z is a root.

4.2. Stable Polynomials. We discovered that the polynomials  P_{n}(x)(n\leq 700)
are stable [HNR18, HNW18]. More precise all the roots of  \overline{P}_{(}x ) for  n\leq 700 have
the property that the real part is negative. By abuse of notation we also call  P_{n}(x)
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stable. Stable polynomials are also denoted Hurwitz polynomials. This property
in general would impıy that the real parts of the roots of  P_{n}(x) are bounded from
above by  3n(n-1)/2 , since the real parts would have the same sign (for  n\leq 2 ).
This observation makes it also possible to study the roots of the polynomials with
methods from the theory of dynamic systems and automatic control theory, where
the stability of the underlying characteristic polynomial implies the stability of the
system. Let  Q(x)\in \mathbb{R}[x] . Then  Q(x) stability implies that all coefficients of

 P(x)= \sum_{k=0}^{n}a_{k}x^{k} (a_{n}\neq 0)
are positive. The converse is not true.

It is remarkable that already 150 years ago, Maxwell ([Ma68, Ga05]) asked for a
criterion to check the stability without calculating the roots. This has been given by
Routh and Hurwitz independently We state the Routh‐Hurwitz criterion [Hu95].  A

polynomial is stable if and only if the following matrix

 H=(\begin{array}{lllll}
a_{n-l}   a_{n-3}   a_{n-5}   a_{n-7}   \cdots
 a_{n}   a_{n-2}   a_{n-4}   a_{n-6}   \cdots
 0   a_{n-1}   a_{n-3}   a_{n-5}   \cdots
 0   a_{n}   a_{n-2}   a_{n-4}   \cdots
            
\end{array})
has positive leading principal minors. Let  H=(h_{i,j}) . Then the lth leading principal
minor is given by  \triangle_{l}  :=\det(H_{l}) , where

 H_{l}=(h_{i,j})_{i,j=1}^{l}
It would be interesting to know if any roots (besides  0 ) are on the imaginary axes

[HNR18].
Using algebraic methods and some analytic number theory gives

Theorem 4.1. [HLN18] Let  P_{n}(x) be given. Let  \xi be a root of unity and let  P_{n}(\xi)=0.
Then  \xi=-1.

This implies for example that  P_{n}(i)\neq 0.

4.3. Simple roots. It is not clear if the roots of  P_{n}(x) are simple, although our
numerical calculations suggest that this true. Nevertheless we have the following
results. Our first result on the derivatives of  P_{n}(x) is the following.

Theorem 4.2.  [HN18a] Let  n=p^{m} , where  p is a prime and  m\in \mathbb{N} . Then

(4.4)  P_{n}'(x_{0})\in \mathbb{Q}\backslash \mathbb{Z}

for any integer  x_{0}.

This implies that for  n equal to powers of primes, every integral root is simple.
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4.4. Further examples for  g(n) .
Let us fix some notation,

 P_{n}^{g}(X)= \frac{X}{n!}\sum_{k=0}^{n-1}A_{k}^{n}(q)X^{k}
Let  \varphi_{1}(n)=n and  \varphi_{2}(n)=n^{2} In the following we study the properties of

the associated polynomials  P_{n^{1}}^{\varphi}(X) and  P_{n^{2}}^{\varphi}(X) . Their properties are related to
 P_{n}(X)=P_{n}^{\sigma}(X) , since  \varphi_{1}(n)<\sigma(n)<\varphi_{2}(n) . for  n>1 . We obtain  A_{n-1}^{n}(\varphi_{1})=
 A_{n-1}^{n}=A_{n-1}^{n}(\varphi)=1 . Let further  0\leq k\leq n-2 , then

(4.5)  A_{k}^{n}(\varphi_{1})<A_{k}^{n}<A_{k}^{n}(\varphi_{2}) .

Theorem 4.3. Let  \varphi_{1}(n)=n . Then the coefficients of  P_{n^{1}}^{\varphi}(X) are given by

(4.6)  A_{k}^{n}( \varphi_{1})=\frac{n!}{(k+1)!}  (\begin{array}{ll}
n   -1
   k
\end{array}) .

Although the binomial coefficients are twisted by  1/(k+1)! they keep the log‐
concavity.

Corollary 4.4. The sequence of the coefficients of  P_{n^{1}}^{\varphi}(X)

 \{A_{k}^{n}(\varphi_{1})\}_{k=0}^{n-1}
is strongly log‐concave and hence unimodal.

Theorem 4.5. Let  \varphi_{2}(n)=n^{2} . Then the coefficients of  P_{n}^{\varphi_{2}}(X) are given by

(4.7)  A_{k}^{n}( \varphi_{2})=\frac{n!}{(k+1)!}  (\begin{array}{l}
n+k
2k+1
\end{array})
Corollary 4.6. The sequence of the coefficients of  P_{n}^{\varphi_{2}}(X)

 \{A_{k}^{n}(\varphi_{2})\}_{k=0}^{n-1}
is strongly log‐concave and hence unimodal.

5. DISCRETE DYNAMIC SYSTEMS APPROACH

Work in progress with Markus Neuhauser. Numerical calculations [HNR18] in‐
dicate that the root distribution of  P_{n}^{g} for  g(n)=n,  \sigma(n),  n^{2} is quite complicated.
Although these polynomials are stable for  n\leq 700 a general proof seems to be far
of reach. It is obvious that real roots are negative, but the general pattern is not
understood yet. Even it is not clear yet that for infinitely many  n non‐real roots
appear. Note that for example for  n=10 the first time non‐real roots appear, but
for  n=33 all roots are real. Hence we believe it is worth studying the polynomials
 P_{n}^{g}(x) also via methods from discrete dynamic systems.
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FIGURE 1. Basins of attraction associated to the Newton fractal of the

polynomial  \overline{P}_{5}^{\varphi_{1}}(X) .

6. CHARACTERIZATION OF POWERS OF THE DEDEKIND  ETA FUNCT1ON As

BORCHERDS PRODUCTS

The Dedekind eta function is the simplest Borcherds product in the sense that the
divisor is trivial on is characterizes units, and for the full modular group powers of
the Dedekind eta function.

Theorem 6.1. Let  f be a modular form for  SL_{2}(\mathbb{Z}) of half‐integral or integral weight
 k and possible multiplier system. Let  f satisfy the functional equation

(6.1)  f(p \tau)\prod_{a=1}^{p}f(\frac{\tau+a}{p})=f(\tau)^{p+1}
for one prime number  p then  f is proportional to  \eta^{2k}.

See [He16] for more results and proofs.
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