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Linear continuous operators acting on the space of
entire functions of a given order

By

Takashi AoKI* Ryuichi ISHIMURA** Daniele C. STRUPPA***
and Shofu UCHIDA†

Abstract

We consider the relationship between ıinear continuous operators acting on the space of
entire functions of one variable of a given order and linear differential operators of infinite
order satisfying certain growth conditions for the coefficients. We found that these two classes
of operators are equivalent.

§1. Introduction

Let p and  c be positive numbers. We denote by  A_{p,c} the set of all entire functions  f

of one variable  z satisfying

 ||f||_{c}:= \sup_{z\in \mathbb{C}}|f(z)|\exp(-c|z|^{p})<\infty.
This set becomes a Banach space with the norin  ||  ||_{c} . If  c>c'>0 , the natural
inclusion map  A_{p,c}arrow A_{p,c'} is compact. Hence we can consider the inductive limit of

the family  \{A_{p,c}\}_{c>0} and denote it by  A_{p} :

 A_{p}:= \lim_{arrow}A_{p,c}.

This becomes a  D\Gamma S space.
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Definition 1.1. ([1], Definition 2.3., [2]) Let  p be a positive number. The set  \mathcal{D}_{p,0}
consists of differential operators of infinite order of the form

(1.1)  P(z,  \partial_{z})=\sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n}
satisfying:

(ı) The coefficients  a_{n}(z)  (n=0,1,2, \ldots) are entire functions.
(2) There exists a constant  B>0 such that for every  \varepsilon>0 one can take a constant

 C_{\varepsilon}>0 for which

 |a_{n}(z)| \leq C_{\varepsilon}\frac{\varepsilon^{n}}{(n!)^{\frac{1}{q}}}
\exp(B|z|^{p})  (n=0_{:} ı, 2, ...  )

holds, where   \frac{1}{p}+\frac{1}{q}=1 and   \frac{1}{q}=0 when  p=1.

If  P\in \mathcal{D}_{p.0},  P acts on  A_{p} as a continuous linear operator:

Theorem 1.2. ([1], Theorem 2.4., [2], Theorem 2.3.) Let  P\in \mathcal{D}_{p,0} and let  f\in A_{p}.
Then  Pf\in A_{p} and  P is continuous on  A_{p} , that is  Pfarrow 0 as  farrow 0 . Here we set

 Pf= \sum_{n=0}^{\infty}a_{n}(z)\frac{d^{n}f}{dz^{n}}
for  P of the form (1.1).

Conversely, let  F be linear continuous endomorphism in  A_{p} . Then the following
natural question arises: Does there exist an operator  P\in \mathcal{D}_{p,0} for which

 F(f)=Pf

holds for any  f\in A_{p} ? In this article, we shall show that, to give an answer to this
question, we need to introduce a new class of operators which is slightly larger than

 \mathcal{D}_{p.0} :

Definition 1.3. Let  p be a positive number. The set  D_{p} consists of differential

operators of infinite order of the form

(ı.2)  P(z,  \partial_{z})=\sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n}
satisfying:

(1) The coefficients  a_{n}(z)  (n=0,1,2, \ldots) are entire functions,
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(2) For every  \varepsilon>0 one can take constants  C_{\varepsilon}>0 and  B_{\varepsilon}>0 for which

 |a_{n}(z)|\leq C_{\varepsilon}^{\in^{n}}\exp(B_{\varepsilon}\overline{(n!)
^{\frac{1}{q}}}|z|^{p}) (n=0,1 , 2, ...)
holds, where   \frac{1}{p}+\frac{1}{q}=1 and   \frac{1}{q}=0 when  p=1.

Theorem 1.4. Let  p>1 . Let  F be a linear continuous endomorphism in  A_{p} . Th en

there exists a unique operator  P\in D_{p} such that  F(f)=Pf for all  f\in A_{p} . Conversely,
if  P belongs to  D_{p} , then  P induces a linear continuous endomorphism  f\mapsto Pf in  A_{p}.

§2. Proof of Theorem 1.4

Definition 2.1. Let  P(z,  \partial_{z})=\sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n} be a formal differential operator of

infinite order. The symbol of  P is the formal power series of  \zeta obtained by replacing  \partial_{z}

by a variable  \zeta :

 P(z,  \zeta)=\sum_{n=0}^{\infty}a_{n}(z)\zeta^{n}
Remark. Formally we have  P(z, \zeta)=e^{-z\zeta}P(z, \partial.)e^{z\zeta}.

Lemma 2.2. We asuume  p>1 . Let  P(z, \partial_{z}) be an element in  D_{p} and  P(z_{2}.\zeta) the

symbol of  P(z, \partial.) . Then  P(z, \zeta) is an entire function of  (z, \zeta) satisfying the following
condition:

For each  \varepsilon>0 , there exist  B_{\varepsilon}>0 and  C_{\in}>0 such that

 |P(z, \zeta)|\leq C_{\varepsilon}\exp(B_{\varepsilon}|z|^{p}+
\varepsilon|\zeta|^{q}) holds for all  (z_{:}\zeta) .

Conversely, if  P(z,  \zeta)=\sum_{n=0}^{\infty}a_{n}(z)\zeta^{n} is an entire function of  (z_{:}\zeta) satisfying the

above condition, then

  \sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n}
belongs to  D_{p}.

Proof. It follows from (2) of Definition 1.3 that  |P(z_{:}\zeta)| is dominated by

 |P(z,  \zeta)|\leq\sum_{n=0}^{\infty}|a_{n}(z)||\zeta|^{n}
  \leq C_{\varepsilon}\exp(B_{\varepsilon}|z|^{p})\sum_{n=0}^{\infty}
\frac{(\varepsilon|\zeta|)^{n}}{(n!)^{\frac{1}{q}}}.
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By using the inequality  (n!)^{\frac{1}{q}} \geq\Gamma(\frac{n}{q}+1) and the properties of the Mittag‐Leffler

function ([3]), we find that there exists  B'>0 and  C'>0 such that

 |P(z, \zeta)|\leq C_{\varepsilon}\exp(B_{\varepsilon}|z|^{p})
C'\exp(B'\varepsilon^{q}|\zeta|^{q})=C_{\varepsilon}\exp(B_{\in}\prime|z|^{p}+
\varepsilon'|\zeta|^{q}) .

Here we set  \varepsilon'=B'\varepsilon^{q} and  C_{\varepsilon}=C_{\varepsilon}C' . Conversely,

 | \partial_{\zeta}^{n}P(z, \zeta)|=|\frac{n!}{2\pi i}\int_{|\xi-\zeta|=
s|\zeta|}\frac{P(z,\xi)}{(\xi-\zeta)^{n+1}}d\xi|
  \leq n!\frac{C_{\varepsilon}}{(s|\zeta|)^{n}}\exp(B_{\varepsilon}|z|^{p}+
\varepsilon(s+1)^{q}|\zeta|^{q})
  \leq n!\frac{C_{\varepsilon}}{(s|\zeta|)^{n}}\exp(B_{\varepsilon}|z|^{p})
\exp(2^{q}\varepsilon|\zeta|^{q})\exp(2^{q}\varepsilon s^{q}|\zeta|^{q})

for all  s>0 . Taking the minimum of the right‐hand side of the above estimate with
respect to  s , we get

(2.1)  | \partial_{\zeta}^{n}P(z, \zeta)|\leq n!C_{\varepsilon^{P}}xp(B_{\varepsilon}
|z|^{p})\exp(2^{q}\varepsilon|\zeta|^{q})(\frac{2^{q}\varepsilon q}{n}e)
^{\frac{n}{q}}
Hence,

 |a_{n}(z)|=| \frac{\partial_{\zeta}^{n}P(z,\zeta)}{n!}|_{\zeta=0}|\leq 
C_{\varepsilon'}\exp(B_{\varepsilon'}|z|^{p})\frac{(\varepsilon')^{n}}{(n!)
^{\frac{1}{q}}}.
 \square 

Lemma 2.3. If  F :  A_{p}arrow A_{p} is lin ear continuous operator, there exist   a_{n}(z)\in

 A_{p}(n=0,1,2, \ldots) such that  F(f)= \sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n}f holds for all  f\in A_{p}.

Proof. We define  \{a_{k}(z)\}(k=0,1,2, \ldots) recursively by

 a_{0}(z):=F(1) .

 a_{k}(z) := \frac{{\imath}}{k}(F(z^{k})-a_{0}(z)z^{k}-\cdots-(k-1)!a_{k-1}(z)z)
(k\geq 1) .

Then,

 F(1)=a_{0}(z) ,

 F(z^{k})=a_{0}(z)z^{k}+ +(k-1)!a_{k-1}(z)z+k!a_{k}(z) .

We set  A_{p} \ni f=\sum_{k=0}^{\infty}f_{k}z^{k} Since  F is a linear continuous operator, we obtain
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 F(f)= \sum_{k=0}^{\infty}f_{k}F(z^{k})
 = \sum_{n=0}^{\infty}a_{n}(z)\sum_{k=n}^{\infty}f_{k}\frac{k!}{(n-k)!}z^{k-n}
 = \sum_{n=0}^{\infty}a_{n}(z)z^{n}\sum_{k=0}^{\infty}f_{k}z^{k}

 \square 

Proof of Theorem 1.4. We assume  F :  A_{p}arrow A_{p} is a linear continuous operator.
Then, for all  c>0 there exists  c'(\geq c) , there exists  C_{c}>0 for which

 ||F(f)||_{c'}\leq C_{c}||f||_{c} (\forall f\in A_{p,c})

hold for any  f\in A_{p.c} . From Lemma 2.3, there exist  a_{n}(z)\in A_{p}(n=0,1,2, \ldots) such

that  F(f)=P(z, \partial_{z})f  := \sum_{n=0}^{\infty}a_{n}(z)\partial_{z}^{n}f holds for all  f\in A_{p} . Let  P(z, \zeta) be the symbol

of  P(z, \partial_{z}) . We regard  \zeta as a complex parameter and we take the norm  ||\cdot||_{c'} of  P(z, \zeta)
as a function of  z . Then we have

 ||P(z, \zeta)||_{c'}=||e^{-z\zeta}Pe^{z\zeta}||_{c^{f}}

 \leq||e^{-z\zeta}||_{\frac{c'}{2}}||Pe^{z\zeta}||_{\frac{c^{t}}{2}}
 \leq||e^{-z\zeta}||_{\frac{c'}{2}}C_{\frac{c}{2}}||e^{z\zeta}||_{\frac{c}{2}}

  \leq C_{\frac{c}{2}}(\sup_{z\in C}\exp(|z||\zeta|)\exp(-\frac{c'}{2}|z|^{p}))(
\sup_{z\in \mathbb{C}}\exp(|z||\zeta|)\exp(-\frac{c}{2}|z|^{p}))
  \leq C_{\frac{c}{2}}\exp(\frac{2}{q}(\frac{2}{pc})^{\frac{1}{p-1}}|\zeta|^{q}) .

For any  \varepsilon>0 , we take  c so that   \frac{2}{p}(\frac{2}{\varepsilon q})^{p-1}\leq c holds and write  C_{\varepsilon}=C_{\frac{\varepsilon}{2}} . Then we

have

 ||P(z,  \zeta)||_{c'}\leq C_{\frac{c}{2}}\exp(\frac{2}{q}(\frac{2}{pc})
^{\frac{1}{p1}}|\zeta|^{q})\leq C_{\varepsilon}\exp(\varepsilon|\zeta|^{q})
If we write  B_{\varepsilon}=c' , then we get

 |P(z, \zeta)|\leq C_{\varepsilon}\exp(\hat{c}|\zeta|^{q}+c'|z|^{p})=C_{\in}\exp
(\varepsilon|\zeta|^{q}+B_{\varepsilon}|z|^{p})

Then implies  P\in D_{p}.

5



6 TAKASHI AOKI, RYUICHI ISHIMURA, DANIELE STRUPPA. SHOFU UCHIDA

References

[ı]

[2]

[3]

[4]

Aoki, T., Colombo, F., Sabadini, I. and Struppa, D.C., Continuity theorems for a class of
convolution operators and applications to superoscillations, submitted,
Aoki, T.. Colombo, F. Sabadini, I. and Struppa, D.C., Continuity of some operators
arising in the theory of super oscillations, to appear in Quantum Studies: Mathematics
and Foundations, 2018, DOI: https://doi.org/10.1007/s40509‐018‐0159‐9.
Bateman, H., Erdélyi, A., Magnus; W., Oberhettinger, F. and Tricomi, F.G., Higher
Transcendental Fuctions Vol.3, McGraw‐Hill BOOK COMPANY,INC, 1955.
Berenstein, C.A. and Gay, R., Complex Analysis and Special Topics in Harmonic  Analysis_{i}
Springer, 1995.

6


