Linear continuous operators acting on the space of entire functions of a given order

By

Takashi AOKI, Ryuichi ISHIMURA,
** Daniele C. STRUPPA*** and Shofu UCHIDA †

Abstract

We consider the relationship between linear continuous operators acting on the space of entire functions of one variable of a given order and linear differential operators of infinite order satisfying certain growth conditions for the coefficients. We found that these two classes of operators are equivalent.

§1. Introduction

Let p and c be positive numbers. We denote by $A_{p,c}$ the set of all entire functions f of one variable z satisfying

$$||f||_c := \sup_{z \in \mathbb{C}} |f(z)| \exp(-c|z|^p) < \infty.$$

This set becomes a Banach space with the norm $|| \cdot ||_c$. If c > c' > 0, the natural inclusion map $A_{p,c} \hookrightarrow A_{p,c'}$ is compact. Hence we can consider the inductive limit of the family $\{A_{p,c}\}_{c>0}$ and denote it by A_p :

$$A_p := \lim A_{p,c}.$$

This becomes a DFS space.

**Department of Mathematics, Chiba University, Chiba 263-8522, Japan.

²⁰¹⁰ Mathematics Subject Classification(s): Primary 47B38; Secondary 30D15.

Key Words: Linear continuous operators, Linear differential operators

^{*}Department of Mathematics, Kindai University, Osaka 577-8502, Japan.

^{***}Schmid College of Science and Technology, Chapman University, Orange 92866, CA, USA.

[†]Department of Mathematics, Kindai University, Osaka 577-8502, Japan.

Definition 1.1. ([1], Definition 2.3., [2]) Let p be a positive number. The set $\mathcal{D}_{p,0}$ consists of differential operators of infinite order of the form

(1.1)
$$P(z,\partial_z) = \sum_{n=0}^{\infty} a_n(z)\partial_z^n$$

satisfying:

(1) The coefficients $a_n(z)$ (n = 0, 1, 2, ...) are entire functions.

(2) There exists a constant B > 0 such that for every $\varepsilon > 0$ one can take a constant $C_{\varepsilon} > 0$ for which

$$|a_n(z)| \le C_{\varepsilon} \frac{\varepsilon^n}{(n!)^{\frac{1}{q}}} \exp(B|z|^p) \qquad (n = 0, 1, 2, ...)$$

holds, where $\frac{1}{p} + \frac{1}{q} = 1$ and $\frac{1}{q} = 0$ when p = 1.

If $P \in \mathcal{D}_{p,0}$, P acts on A_p as a continuous linear operator:

Theorem 1.2. ([1], Theorem 2.4., [2], Theorem 2.3.) Let $P \in \mathcal{D}_{p,0}$ and let $f \in A_p$. Then $Pf \in A_p$ and P is continuous on A_p , that is $Pf \to 0$ as $f \to 0$. Here we set

$$Pf = \sum_{n=0}^{\infty} a_n(z) \frac{d^n f}{dz^n}$$

for P of the form (1.1).

Conversely, let F be linear continuous endomorphism in A_p . Then the following natural question arises: Does there exist an operator $P \in \mathcal{D}_{p,0}$ for which

$$F(f) = Pf$$

holds for any $f \in A_p$? In this article, we shall show that, to give an answer to this question, we need to introduce a new class of operators which is slightly larger than $\mathcal{D}_{p,0}$:

Definition 1.3. Let p be a positive number. The set D_p consists of differential operators of infinite order of the form

(1.2)
$$P(z,\partial_z) = \sum_{n=0}^{\infty} a_n(z)\partial_z^n$$

satisfying:

(1) The coefficients $a_n(z)$ (n = 0, 1, 2, ...) are entire functions.

(2) For every $\varepsilon > 0$ one can take constants $C_{\varepsilon} > 0$ and $B_{\varepsilon} > 0$ for which

$$|a_n(z)| \le C_{\varepsilon} \frac{\varepsilon^n}{(n!)^{\frac{1}{q}}} \exp(B_{\varepsilon}|z|^p) \qquad (n = 0, 1, 2, ...)$$

holds, where $\frac{1}{p} + \frac{1}{q} = 1$ and $\frac{1}{q} = 0$ when p = 1.

Theorem 1.4. Let p > 1. Let F be a linear continuous endomorphism in A_p . Then there exists a unique operator $P \in \mathbf{D}_p$ such that F(f) = Pf for all $f \in A_p$. Conversely, if P belongs to \mathbf{D}_p , then P induces a linear continuous endomorphism $f \mapsto Pf$ in A_p .

§2. Proof of Theorem 1.4

Definition 2.1. Let $P(z, \partial_z) = \sum_{n=0}^{\infty} a_n(z) \partial_z^n$ be a formal differential operator of infinite order. The symbol of P is the formal power series of ζ obtained by replacing ∂_z by a variable ζ :

$$P(z,\zeta) = \sum_{n=0}^{\infty} a_n(z)\zeta^n.$$

Remark. Formally we have $P(z,\zeta) = e^{-z\zeta}P(z,\partial_z)e^{z\zeta}$.

Lemma 2.2. We assume p > 1. Let $P(z, \partial_z)$ be an element in D_p and $P(z, \zeta)$ the symbol of $P(z, \partial_z)$. Then $P(z, \zeta)$ is an entire function of (z, ζ) satisfying the following condition:

For each
$$\varepsilon > 0$$
, there exist $B_{\varepsilon} > 0$ and $C_{\varepsilon} > 0$ such that
 $|P(z,\zeta)| \leq C_{\varepsilon} \exp(B_{\varepsilon}|z|^p + \varepsilon|\zeta|^q)$ holds for all (z,ζ) .

Conversely, if $P(z,\zeta) = \sum_{n=0}^{\infty} a_n(z)\zeta^n$ is an entire function of (z,ζ) satisfying the above condition, then

$$\sum_{n=0}^{\infty} a_n(z) \partial_z^n$$

belongs to D_p .

Proof. It follows from (2) of Definition 1.3 that $|P(z,\zeta)|$ is dominated by

$$P(z,\zeta)| \le \sum_{n=0}^{\infty} |a_n(z)||\zeta|^n$$
$$\le C_{\varepsilon} \exp(B_{\varepsilon}|z|^p) \sum_{n=0}^{\infty} \frac{(\varepsilon|\zeta|)^n}{(n!)^{\frac{1}{q}}}.$$

By using the inequality $(n!)^{\frac{1}{q}} \ge \Gamma\left(\frac{n}{q}+1\right)$ and the properties of the Mittag-Leffler function ([3]), we find that there exists B' > 0 and C' > 0 such that

$$|P(z,\zeta)| \le C_{\varepsilon} \exp(B_{\varepsilon}|z|^p) \ C' \exp(B'\varepsilon^q |\zeta|^q) = C''_{\varepsilon'} \exp(B_{\varepsilon'}|z|^p + \varepsilon' |\zeta|^q).$$

Here we set $\varepsilon' = B' \varepsilon^q$ and $C''_{\varepsilon'} = C_{\varepsilon} C'$. Conversely,

$$\begin{aligned} \left|\partial_{\zeta}^{n} P(z,\zeta)\right| &= \left|\frac{n!}{2\pi i} \int_{|\xi-\zeta|=s|\zeta|} \frac{P(z,\xi)}{(\xi-\zeta)^{n+1}} d\xi\right| \\ &\leq n! \frac{C_{\varepsilon}}{(s|\zeta|)^{n}} \exp(B_{\varepsilon}|z|^{p} + \varepsilon(s+1)^{q}|\zeta|^{q}) \\ &\leq n! \frac{C_{\varepsilon}}{(s|\zeta|)^{n}} \exp(B_{\varepsilon}|z|^{p}) \exp(2^{q}\varepsilon|\zeta|^{q}) \exp(2^{q}\varepsilon s^{q}|\zeta|^{q}) \end{aligned}$$

for all s > 0. Taking the minimum of the right-hand side of the above estimate with respect to s, we get

(2.1)
$$\left|\partial_{\zeta}^{n}P(z,\zeta)\right| \leq n! \ C_{\varepsilon} \exp(B_{\varepsilon}|z|^{p}) \exp(2^{q}\varepsilon|\zeta|^{q}) \left(\frac{2^{q}\varepsilon q}{n}e\right)^{\frac{n}{q}}.$$

Hence,

$$|a_n(z)| = \left| \frac{\partial_{\zeta}^n P(z,\zeta)}{n!} \right|_{\zeta=0} \le C_{\varepsilon'} \exp(B_{\varepsilon'}|z|^p) \frac{(\varepsilon')^n}{(n!)^{\frac{1}{q}}}.$$

Lemma 2.3. If $F : A_p \to A_p$ is linear continuous operator, there exist $a_n(z) \in A_p$ (n = 0, 1, 2, ...) such that $F(f) = \sum_{n=0}^{\infty} a_n(z) \partial_z^n f$ holds for all $f \in A_p$.

Proof. We define $\{a_k(z)\}$ (k = 0, 1, 2, ...) recursively by

$$a_0(z) := F(1),$$

$$a_k(z) := \frac{1}{k} \Big(F(z^k) - a_0(z) z^k - \dots - (k-1)! a_{k-1}(z) z \Big) \qquad (k \ge 1).$$

Then,

$$F(1) = a_0(z),$$

$$F(z^k) = a_0(z)z^k + \dots + (k-1)!a_{k-1}(z)z + k!a_k(z)$$

We set $A_p \ni f = \sum_{k=0}^{\infty} f_k z^k$. Since F is a linear continuous operator, we obtain

$$F(f) = \sum_{k=0}^{\infty} f_k F(z^k)$$

=
$$\sum_{n=0}^{\infty} a_n(z) \sum_{k=n}^{\infty} f_k \frac{k!}{(n-k)!} z^{k-n}$$

=
$$\sum_{n=0}^{\infty} a_n(z) z^n \sum_{k=0}^{\infty} f_k z^k.$$

Proof of Theorem 1.4. We assume $F : A_p \to A_p$ is a linear continuous operator. Then, for all c > 0 there exists $c' \ (\geq c)$, there exists $C_c > 0$ for which

$$||F(f)||_{c'} \le C_c ||f||_c \qquad (\forall f \in A_{p,c})$$

hold for any $f \in A_{p,c}$. From Lemma 2.3, there exist $a_n(z) \in A_p$ (n = 0, 1, 2, ...) such that $F(f) = P(z, \partial_z)f := \sum_{n=0}^{\infty} a_n(z)\partial_z^n f$ holds for all $f \in A_p$. Let $P(z, \zeta)$ be the symbol of $P(z, \partial_z)$. We regard ζ as a complex parameter and we take the norm $|| \cdot ||_{c'}$ of $P(z, \zeta)$ as a function of z. Then we have

$$\begin{split} ||P(z,\zeta)||_{c'} &= ||e^{-z\zeta}Pe^{z\zeta}||_{c'} \\ &\leq ||e^{-z\zeta}||_{\frac{c'}{2}}|Pe^{z\zeta}||_{\frac{c'}{2}} \\ &\leq ||e^{-z\zeta}||_{\frac{c'}{2}}C_{\frac{c}{2}}^{c}||e^{z\zeta}||_{\frac{c}{2}} \\ &\leq C_{\frac{c}{2}}\left(\sup_{z\in\mathbb{C}}\exp\left(|z||\zeta|\right)\exp\left(-\frac{c'}{2}|z|^{p}\right)\right) \left(\sup_{z\in\mathbb{C}}\exp\left(|z||\zeta|\right)\exp\left(-\frac{c}{2}|z|^{p}\right)\right) \\ &\leq C_{\frac{c}{2}}\exp\left(\frac{2}{q}\left(\frac{2}{pc}\right)^{\frac{1}{p-1}}|\zeta|^{q}\right). \end{split}$$

For any $\varepsilon > 0$, we take c so that $\frac{2}{p} \left(\frac{2}{\varepsilon q}\right)^{p-1} \leq c$ holds and write $C_{\varepsilon} = C_{\frac{\varepsilon}{2}}$. Then we have

$$||P(z,\zeta)||_{c'} \le C_{\frac{c}{2}} \exp\left(\frac{2}{q} \left(\frac{2}{pc}\right)^{\frac{1}{p-1}} |\zeta|^q\right) \le C_{\varepsilon} \exp(\varepsilon|\zeta|^q)$$

If we write $B_{\varepsilon} = c'$, then we get

$$|P(z,\zeta)| \le C_{\varepsilon} \exp(\varepsilon |\zeta|^{q} + c'|z|^{p}) = C_{\varepsilon} \exp(\varepsilon |\zeta|^{q} + B_{\varepsilon}|z|^{p})$$

Then implies $P \in \mathbf{D}_p$.

References

- [1] Aoki, T., Colombo, F., Sabadini, I. and Struppa, D.C., Continuity theorems for a class of convolution operators and applications to superoscillations, submitted.
- [2] Aoki, T., Colombo, F., Sabadini, I. and Struppa, D.C., Continuity of some operators arising in the theory of super oscillations, to appear in Quantum Studies: Mathematics and Foundations, 2018, DOI: https://doi.org/10.1007/s40509-018-0159-9.
- [3] Bateman, H., Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Fuctions Vol.3, McGraw-Hill BOOK COMPANY, INC, 1955.
- [4] Berenstein, C.A. and Gay, R., Complex Analysis and Special Topics in Harmonic Analysis, Springer, 1995.