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Hyperfunctions and Čech‐Dolbeault cohomology in
the microlocal point of view

By

Naofumi HONDA*

Abstract

In this note, we explain how to construct the boundary value map  b_{\Omega} :  \mathscr{O}(\Omega)arrow \mathscr{B}(M) of
Sato  s hyperfunction in the framcwork of Čech‐Dolbeault cohomology.

§1. Introduction

The boudnary value map  b_{\Omega} is the most important morphism in the hyperfunction

theory, by which we can understand a hyperfunction to be the sum of boundary values

of holomorphic functions defined on wedges along a real analytic manifold. As was

explained in [2] of this volume, the theory of Čech‐Dolbeault cohomology brings several
benefits to the treatment of a hyperfunction, and as such an important example, we

here explain how to construct the boundary value morphism in our framework. For an

application to the theory of Laplace hyperfunctions, see [3] in this volume.
This is a joint work with Takashi Izawa and Tatsuo Suwa.

§2. Boundary value morphism

Let  M be a real analytic manifold assumed to be orientable and countable at infin‐

ity, and let  X be its complexification. Note that, through the note, we use the same

notations as those in [2] of this volume.
Let  \Omega be an open subset in  X , for which we introduce the following two conditions:

(B1)  \overline{\Omega}\supset M.

(B2) The inclusion  (X\backslash \Omega)\backslash M\mapsto X\backslash \Omega gives a homotopy equivalence.
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For example, a usual convex wedge  \Omega along  M like a left shape in Fig. 1 satisfies the

condition  (B_{2}) . However, the right shape in the same figure that is a wedge along  M

in which the smaller one is removed violates  (B_{2}) because  (X\backslash \Omega)\backslash M consists of two

connected components while   X\backslash \Omega is connected.

 N  e^{\prime^{e\backslash }}..\ovalbox{\tt\small REJECT}.-\ovalbox{\tt\small 
REJECT}\backslash .
 \prime^{\prime^{\prime^{\prime^{t}}\backslash }}..--\sim_{s_{\backslash }}.  l^{\prime^{\prime^{\prime'}}},

’

 \Omega  \prime\prime 1
1

  M\bullet\prime.\prime l..\prime'l\prime\prime'\prime l\prime\prime..
\Omega\prime\prime\prime,i\prime'\prime^{\prime'}\prime
’

Figure 1. A good case (left) and bad case (right).

Set  \mathcal{W}=\{V_{0}=X\backslash M_{:}V_{1}=X\} and  \mathcal{W}'=\{V_{0}\} . We also set  V_{01}=V_{0}\cap V_{1} as usual.

In what follows, we always assume that  \Omega satsifies the above two conditions. Then we

will define the following boundary value map

 b_{\Omega} :  \mathscr{O}(\Omega)arrow \mathscr{B}(M)=H_{M}^{n}(X;\mathscr{O})\otimes_{Z_{M}
(Af)}or_{II/X}(M)

 \simeq H_{\frac{0}{\vartheta'}}^{n}(\mathcal{W}, \mathcal{W}')
\otimes_{Z_{\Lambda I}(M)}or_{M/X}(M)

using Čech‐Dolbeault cohomology.
As  M is orientable, we can take a global section fl in  or_{M/X}(M) which generates

each stalk of the sheaf  or_{M/X} over  \mathbb{Z} . We fix such a section ]  \lfloor hereafter.

The canonical sheaf morphism  \mathbb{Z}_{X}arrow \mathbb{C}_{X} induces the morphism of  \mathbb{Z}‐modules

 or_{M/X}(JI)=H_{M}^{n}(X;\mathbb{Z}_{X})\mapsto H_{\Lambda I}^{n}(X;\mathbb{C}_
{X})=H_{D}^{n}(\mathcal{W}, \mathcal{W}') ,

which is clearly injective. The image in  H_{M}^{n}(X;\mathbb{C}_{X}) of If by this morphism is still

denoted by the same symbol in what follows. The following lemma is crucial to our
construction of  b_{\Omega}.

Lemma 2.1. Under the conditions  (B_{1}) and  (B_{2}) , the  1\in H_{D}^{n}(\mathcal{W}, \mathcal{W}') has a rep‐
resentative

 (\nu_{1}. \nu_{01})\in \mathscr{E}^{(n)}(V_{1})\oplus \mathscr{E}^{(n-1)}
(V_{01})=\mathscr{E}^{(n)}(\mathcal{W}, \mathcal{W}')

which satisfies  Supp_{V_{1}}(\nu_{1})\subset\Omega and  Supp_{V_{01}}(\nu_{01})\subset\Omega (see Fig. 2 also).
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.

 N

 \prime\backslash \prime\backslash :^{r}\backslash i^{1}
’

 \prime\backslash _{\backslash }\prime\prime\backslash i^{1}\backslash 
 1 M^{\bullet}\prime I..- V_{1} M

Figure 2. The support of  \nu_{01} and  \nu_{1} indicated by black regions.

The canonical sheaf morphism  \iota :  \mathbb{C}_{X}arrow \mathscr{O} induces the canonical morphisms of
 \mathbb{C}‐vector spaces:

 H^{k}(\iota):H_{M}^{k}(X\prime:\mathbb{C}_{X})arrow H_{M}^{k}(X;\mathscr{O}) .

Its counterpart in the relative de Rham and relative Dolbeault cohomologies is, as was

explained in Section 5 in [2], given by

 \rho^{k} :  \mathscr{E}^{(k)}(\mathcal{W}, \mathcal{W}')arrow \mathscr{E}^{(0,k)}
(\mathcal{W}, \mathcal{W}') given by (  \omega_{1} ,  \omega0ı)  \mapsto(\omega_{1}^{(0,k)}, \omega_{01}^{(0,k-1)}) ,

Hereafter we often write  \rho instead of  \rho^{n} . We give an example of a  \nu in the above lemma

for a typical case.

Figure 3. The typical picture of  n=2.

Example 2.2. Let  M=\mathbb{R}^{n},  X=\mathbb{C}^{n} and  \Omega=M\cross\sqrt{-1}\Gamma , where  \Gamma is an open

proper convex cone in  \mathbb{R}^{n} . We first take  n linearly independent unit vectors  \eta_{1} , . . . ,  \eta_{n}

in  \mathbb{R}_{y}^{n} so that

  \bigcap_{1\leq k\underline{<}n}H_{k}\subset\Gamma
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holds, where we set  H_{k}=\{y\in \mathbb{R}_{y}^{n}|\{y\backslash \eta_{k}\}>0\} . We also set

 \eta_{n}+{\imath}=-(\eta_{1}+\cdots+\eta_{n}) .

Then, let  \varphi_{k} ,  k=1 , . . . ,  n+1 , be   c\propto ‐functions on  X\backslash M which satisfy

(1)  Supp_{X\backslash M}(\varphi_{k})\subset M\cross\sqrt{-1}H_{k} for any  k=1 , . . . ,  n+1.

(2)   \sum_{k=1}^{n+1}\varphi_{k}=1 on  X\backslash M.

Set

 \nu_{01}=(-1)^{n}(n-1)!\hat{\chi}_{H_{n+1}}d\varphi_{1}\wedge\cdots\wedge 
d\varphi_{n-1:}

where  \hat{\chi}_{H_{n+1}} is the anti‐characteristic function of the set  H_{n+1} , that is,

 \hat{\chi}_{H_{n+1}}(z)=\{\begin{array}{ll}
0   z\in H_{n+{\imath}},
1   otherwise.
\end{array}
Then we can easily confirm that  \nu_{01}\in \mathscr{E}^{(n-{\imath})}(X\backslash M) and

  Supp_{X\backslash M}(\nu_{01})\subset\lambda I\cross\sqrt{-1}\bigcap_{1\leq 
k\underline{<}n}H_{k}\subset\Omega.
Furthermore,

 \nu= (  0,  \nu0ı)  \in \mathscr{E}^{(n)}(V_{1})\oplus \mathscr{E}^{(n-1)}(V_{01})=\mathscr{E}^{(n)
}(\mathcal{W}, \mathcal{W}')

gives the image of a positively oriented generator of  or_{M/X}(M) under the standard

orientations on  M and  X . Note that, by the definition of  \rho , we have

 \rho(\nu)=(0, (-1)^{n}(n-1)!\hat{\chi}_{H_{r\iota+1}}\overline{\partial}
\varphi_{1}\wedge \cdot \cdot \cdot \wedge\overline{\partial}\varphi_{n-1})\in 
\mathscr{E}^{(0,n)}(\mathcal{W}.\mathcal{W}') .

Let us construct the boundary value map. We first take, thanks to Lemma 2.1,

 \nu=(\nu_{1}, \nu_{01})\in \mathscr{E}^{n}(\mathcal{W}_{:}\mathcal{W}') which is a representative of  1\in or_{M/X}(M) and satisfies

 Supp_{X}(\nu_{1})\subset\Omega_{:} Supp_{X\backslash M}(\nu_{01})\subset\Omega.

By tracing the image of fl in the diagram below, we obtain  \rho(\nu) in  H_{\frac{0}{\vartheta'}}^{n}(\mathcal{W}, \mathcal{W}') .

 H^{n}(\iota)
 or_{M/X}=H_{M}^{n}(X;\mathbb{Z}_{X})arrow H_{M}^{n}(X;\mathbb{C}_{X})arrow 
H_{M}^{n}(X;\mathscr{O})

1?  | ?

 H_{D}^{n}(\mathcal{W}_{\cap}.\mathcal{W}') arrow^{\rho} H_{\frac{0}{\vartheta'}
}^{n}(\mathcal{W}, \mathcal{W}') .

u)  1\lrcorner)  u

 1L \nu \rho(\nu)
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Then, using  \rho(\nu) , we define the boundary map

(2.1)  b_{\Omega} :  \mathscr{O}(\Omega)arrow H_{\frac{0}{\vartheta'}}^{n}(\mathcal{W}, \mathcal{W}
')  \otimes  or_{M/X}(M)=\mathscr{B}(l1I)
 \mathbb{Z}(M)

by, for  f\in \mathscr{O}(\Omega) ,

(2.2)  b_{\Omega}(f) :=[f\rho(\nu)]\otimes 1\in H_{\frac{0}{\vartheta'}}^{n}
(\mathcal{W}, \mathcal{W}') \otimes or_{M/X}(M) .
 \mathbb{Z}(\Lambda I)

Lemma 2.3. The above  b_{\Omega} is well‐defined. That is,  b_{\Omega} does not depend on the
choice of ] [ and  \nu.

Remark. Thus constructed  b_{\Omega}(\bullet) coincides with the original boundary value map by
Sato‐Kawai‐Kashiwara [1].

The proposition below immediately comes from the definition:

Proposition 2.4. Let  \Omega'\subset\Omega be an open subset in X. Assume that  \Omega' also satisfies
the conditions (Bı) and  (B_{2}) . Then we have

 b_{\Omega'}(f|_{\Omega^{f}})=b_{\Omega}(f) , f\in \mathscr{O}(\Omega) .

We can easily estimate the microlocal analyticity of the hyperfunction  b_{\Omega}(f) . Be‐

fore stating the estimate, we give the characterization of microlocal analyticity of a
hyperfunction in our framework. For an open subset  V in  X , we set

 \mathcal{W}_{V}=\{V_{0}=V\backslash M, V_{1}=V\} and  \mathcal{W}_{V}'=\{V_{0}\}.

Proposition 2.5. Let  u be a hyperfunction at  x_{0}\in\Lambda I . Then  u is microlocally
analytic at  p_{0}=(x_{0}, \sqrt{-1}\xi_{0})\in\sqrt{-1}T^{*}M if and only if there exist a closed cone  G\subset \mathbb{R}^{n}

with the condition

 G\backslash \{0\}\subset\{y\in \mathbb{R}^{n}|{\rm Re}(\sqrt{-1}y, \sqrt{-1}
\xi_{0}\rangle>0\}=\{y\in \mathbb{R}^{n}|\langle y, \xi_{0}\}<0\},

an open neighborhood  V of  x_{0} and a representative

 (\tau_{1}, \tau_{01})\in \mathscr{E}^{(0,n)}(V_{1})\oplus \mathscr{E}^{(0,n}1)
(V_{01})=\mathscr{E}^{(0,n)}(\mathcal{W}_{V}, \mathcal{W}_{V}')

of  u near  x_{0} which satisfies  \tau_{1}=0 and  Supp_{VMI}(\tau_{01})\subset \mathbb{R}_{x}^{n}\cross\sqrt{-1}G.

Then it follows from the above two propositions that we have:

Theorem 2.6. Let  M be an open subset in  \mathbb{R}_{x}^{n} and  X=iM\cross\sqrt{-1}\mathbb{R}_{y}^{n} . Assume that

 \Omega\cap(\{x_{0}\}\cross\sqrt{-1}\mathbb{R}_{y}^{n}) is a non‐empty convex cone for any  x_{0}\in M. Then we have

SS  (b_{\Omega}(f))\subset\Omega^{\circ}  f\in \mathscr{O}(\Omega) ,

where  \Omega^{\circ} is the polar set of  \Omega defined by

 x\in M\lfloor\rfloor\{\sqrt{-1}\xi\in(T_{l\backslash I}^{*}X)_{x}|\{\xi,  y\rangle\geq 0 for any  y with  (x, \sqrt{-1}y)\in\Omega\}\subset T_{M}^{*}X.
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