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Experimental observation on k‐summability of
divergent solutions of the heat equation with  k>1

By

Kunio ICHINOBE*and Masatake MIYAKE**

Abstract

The Borel summability (or 1‐summability) problem of divergent solution of the heat equa‐
tion with locally holomorphic Cauchy data is completely characterized in the paper by Lutz,
Miyake and Schäfke [7]. In this paper, we shall discuss the  k‐summability problem of  k>1

when the Cauchy data is an entire function with the exponential growth estimate of order
 d>2 . An experimental observation will be shown after reviewing some related results on this
problem.

§1. Introduction

We consider the following Cauchy problem for the complex heat equation

(H)  \begin{array}{l}
\partial_{t}u(t.x)=\partial_{x}^{2}u(t, x) ,
u(0, x)=\varphi(x)\in \mathcal{O}_{x},
\end{array}
where  t,  x\in \mathbb{C} and  \mathcal{O}_{\mathcal{I}} denotes the set of holomorphic functions in a neighborhood of
 x=0 . This Cauchy problem has a unique formal power series solution of the form

(1.1) û  (t, x)= \sum_{n\geq 0}\frac{\varphi^{(2n)}(x)}{n!}t^{n}
This solution û(t, x) is divergent in general. Exactly, we say that û(t: x) is the formal
power series of Gevrey order 1 and we denote û  (t. x)\in \mathcal{O}_{x}[[t]]_{1} , which means that for
any  n , we have

(1.2)   \max_{|\cdot|\leq r}|\varphi^{(2n)}(x)/n!|\leq CK^{n}r/!,
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14 ICHINOBE AND MIYAKE

with some positive constants  C,  K and  r . For the divergent solution, the problem of
 k‐summability with  k=1 was proved by Lutz, Miyake and Schäfke [7], where the
definition of  k‐summability will be given in next section.

Theorem 1.1 ([7]). Let  S(0, \pi;\varepsilon)=S(0;\varepsilon)\cup S(\pi;\varepsilon) , where  S(\theta\hat{\prime})  :=\{x\in \mathbb{C};\arg x-
 \theta|<\varepsilon/2\} and  \varepsilon>0 . Then the formal solution û(t, x) of the Cauchy problem (H) is 1‐
summable in  0 direction if and only if the Cauchy data  \varphi(x)\in \mathcal{O}_{x} satisfies the following
conditions.

(i) The Cauchy data  \varphi(x) can be analytically continued on a region  S(0, \pi;\varepsilon) .
(ii) The Cauchy data has the exponential growth estimate of order at most 2 there, that

is,  |\varphi(x)|\leq Ce^{\delta|x|^{2}} for  x\in S(0, \pi;\in) and some positive constants  C and  \delta.

In this case,  l ‐sum of û(f, x) in  0 direction is obtained by

(1.3)  u^{0}(t, x)= \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{+\infty}\varphi(x+y)e^{-
y^{2}/4t}dy
with  |t-c_{0}|<c_{0} and  |x|\leq r for some positive  c_{0} and  r.

We remark that 1‐sum in a sector  S(0_{\ovalbox{\tt\small REJECT}}.\alpha, \rho) for some  \alpha>\pi and  \rho>0 is obtained

by making analytic continuation in  t‐variable by rotating the integral path  \mathbb{R} to  e^{i\theta}\mathbb{R}

with  |\theta|<\varepsilon/2.
In the following, we write the conditions (i) and (ii) by

 \varphi(x)\in Exp^{2}(S(0, \pi;\varepsilon))

and we call the condition 1‐summability condition” or  1-S-C for short.

As mentioned above we have a complete characterization of the ı‐summability for the
formal solution of the Cauchy problem (H) when the Cauchy data  \varphi(x) is holomorphic
in a neighborhood of the origin. Therefore we consider the case when the Cauchy data
 \varphi(x) is an entire function with the exponential growth estimate of finite order since we

can regard the locally holomorphic functions as the entire functions with the exponential
growth estimate of infinite order.

It is known that the formal solution û  (t, x) of the Cauchy problem (H) is convergent
in both variables if and only if  \varphi(x) is an entire function with the exponential growth
estimate of order at most 2, that is,  \varphi(x)\in Exp^{2}(\mathbb{C}) . Therefore we consider the case

when the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C}) with  d>2 . In this case, the formal solution

 \hat{u}(t, x) is divergent. Exactly, let  k=1/(1-2/d)=d/(d-2)(>1) . Then we have

û  (t_{:}x)\in \mathcal{O}_{x}[[t]]_{1/k},

which means that for any  n , we have

  \max_{|x|\leq r}|\varphi^{(2n)}(x)fn!|\leq CK^{n}\Gamma(1+n/k)
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EXPERIMENTAL OBSERVATION ON  k‐SUMMAHILITY 15

with some positive constants  C,  K and  r which are independent of  n . In fact, we get
the above estimates since we have the following estimates

  \max|\varphi^{(n)}(x)|\leq C_{r}K_{r}^{n}n!^{1-1/d}
 |_{L}|\leq r

for positive constants  C_{r} and  K_{r} depending on  r>0 by the condition  \varphi(x)\in Exp^{d}(\mathbb{C}) .
Here when   d=\infty for the above inequality, we can get the estimates for the locally
holotnorphic functions.

In this paper, we ask a condition for the  k‐summability of the formal solution û(t, x)
of the Cauchy problem (H) with the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C})(d>2) .

After we give the definition of  k‐summability in section 2 and related results in
section 3, we will give our result in section 4. In section 5, we will give a proof of
Lemma 4.2 which is needed for proving our result.

§2. Deflnition of  k‐summability

In this section, we give some notation and definitions in the way of Ramis or Balser

(cf. W. Balser [1] for the details).
For  d\in \mathbb{R},  \beta>0 and  \rho(0<\rho\leq\infty) , we define a sector  S=S(d, \beta, \rho) by

(2.l)  S(d, \beta, \rho) :=\{t\in \mathbb{C};|d-\arg t|<\beta/2,0<|t|<\rho\},

where  d,  \beta and  \rho are called the direction, the opening angle and the radius of  S , respec‐
tively. We write  S(d, \beta_{:}\infty)=S(d:. \beta) for short.

For  k>0 , we define that   \hat{v}(t, x)=\sum_{n=0}^{\infty}v_{n}(x)t^{n}\in \mathcal{O}_{x}[[t]]_{1/k} (we say  \hat{?J}(t, x) is a
formal power series of Gevrey order  1/k ) if  v_{n}(x) are holomorphic on a common closed
disk  B(\sigma)=\{x\in \mathbb{C};|x|\leq\sigma\} for some  \sigma>0 and there exist some positive constants  C

and  K such that for any  n,

(2.2)   \max_{|x|\leq\sigma}|v_{n}(x)|\leq CK^{n}\Gamma(1+\frac{n}{k}) .

Here when  v_{7\iota}(x)\equiv v_{r\iota} (constants) for all  n , we use the notation  \mathbb{C}[[t]]_{1/k} instead of

 \mathcal{O}_{x}[[t]]_{1/k} . In the following, we use the similar notation.

Let  k>0, \hat{v}(t, x)=\sum_{n=0}^{\infty}v_{n}(x)t^{n}\in \mathcal{O}_{x}[[t]]
_{1/k} and  v(t, x) be an analytic function
on  S(d, \beta, \rho)\cross B(\sigma) . Then we define that

(2.3)  v(t, x)\cong_{k}\hat{v}(t, x) in  S=S(d, \beta, \rho)_{:}

if for any closed subsector  S' of  S , there exist some positive constants  C and  K such

that for any  N\geq 1 , we have

(2.4)   \max_{|x|\leq\sigma}|v(t, x)-\sum_{n=0}^{N-1}v_{n}(x)t^{n}|\leq CK^{N}|t|^{N}
\Gamma(1+\frac{N}{k}) , t\in S'.
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16 ICHINOBE AND  l\backslash IIYAKE

For  k>0,  d\in \mathbb{R} and  \hat{v}(t, x)\in \mathcal{O}_{x}[[t]]_{1/k} , we say that  \hat{v}(t, x) is  k ‐summable in  d

direction, and denote it by  \hat{v}(t, x)\in \mathcal{O}_{x}\{t\}_{k,d} , if there exist a sector  S=S(d.\beta, \rho) with

 \beta>\pi/k and an analytic function  v(t, x) on  S\cross B(\sigma) such that  u(t, x)\cong k\hat{v}(t, x) in  S.

In the paper, we consider the direction as  0 direction only for simplicity. Therefore
we use the notation  \mathcal{O}_{x}\{t\}_{k}.

We remark that the function  v(t, x) above for a  k ‐summable  \hat{v}(t, x) is unique if it
exists. Therefore such a function  v(f, x) is called the  k ‐sum of  \hat{v}(f, x) in  0 direction and

we write it  v^{0}(t, x) .

§3. Related results

In this section, we give related results.

§3.1. Related result by W. Balser [2]

W. Balser studied the same problem in the paper [2], that is, he studied the k‐
summability of the formal solution û(t, x) of the Cauchy problem (H) for the heat
equation with the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C})(d>2) and gave the necessary and

sufficient condition for the  k‐summability of û(t, x)

Proposition 3.1. Let  k=1/(1-2/d) and û  (t, x)= \sum_{n\geq 0}\varphi^{(2n)}(x)t^{n}/n!\in \mathcal{O}_{x}[[t]]_{1/k}
be the formal solution of the Cauchy problem (H) with the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C})
 (d>2) . Let

(3.1)  \hat{\psi}_{j}(t)  :=\partial_{x}^{\dot{j}} û  (t, 0)= \sum_{n>0}\varphi^{(2n+j)}(0)t^{n}/n!\in \mathbb{C}[[t]]_{1/k}.
Then û  (t, x)\in \mathcal{O}_{x}\{t\}_{k} if and only if  \hat{\psi}_{j}(t)\in \mathbb{C}\{t\}_{k} for  j=0_{\dot{\tau}}1.

This result has been extended by many mathematicians (cf. [3], [4], [9], [10] and [11]).
We remark that in the above proposition, the conditions for  \hat{\psi}_{j}(t) are not explicitly

understood as conditions for the Cauchy data  \varphi(x) . We want to know the conditions

for the Cauchy data  \varphi(x) in an explicit form as  1-S-C in Theorem 1.1 by [7].

§3.2. Related results by Miyake‐Ichinobe

We consider the following Cauchy problem

(CP)  \{\begin{array}{l}
\partial_{t}^{p}u(t, x)=\partial_{x}^{q}u(t, x) ,
u(0, x)=\varphi(x)\in \mathcal{O}_{x},
\partial_{t}^{j}u(0, x)=0(1\leq \mathcal{J}\leq p-1) ,
\end{array}
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FXPERIMENTAL OBSERVATION ON  k‐SUMMABILITY 17

where  p,  q\in \mathbb{N} with  p<q . This Cauchy problem has a unique formal power series
solution of the form

(3.2) û  (t, x)= \sum_{n\geq 0}\frac{\varphi^{(qn)}(x)}{(pn)!}t^{pn}
which belongs to  \mathcal{O}_{x}[[t]]_{(q-p)/p}.

We put  k(0)  :=p/(q-p) . Then we obtained the following results of  k(0) ‐summability
and  k(0) ‐sum for the formal solution û  (t, x) .

Theorem 3.2 ([5], [8]). Let û(t, x) be the formal solution of (CP). Then û  (t, x)\in
 \mathcal{O}_{x}\{t\}_{k(0)} if and only if the Cauchy data satisfies the following condition

 (k(0)-S-C)   \varphi(x)\in Exp^{\frac{q}{q-p}}(\bigcup_{m=0}^{q-1}S(\frac{2\pi m}{q}
\grave{t}\varepsilon))
In this case,  k(0) ‐sum is obtained by

(3.3)  u^{0}(t, x)= \int_{0}^{\infty}\sum_{m=0}^{q-1}\varphi(x+ye^{2\pi mi/q})\cross E
(t, y;p, q)dy,
where the kernel function of the integral is given in terms of Meijer  G ‐function

(3.4)  E(t, y;p, q)=C \cross\frac{1}{y}\cross G_{pq}^{q0}(\frac{p^{p}}{q^{q}}
\frac{y^{q}}{t^{p}};1/p,2/p,..\cdot\cdot. \cdot p/p1/q,2/q,\cdot;q/q) ,

where the constant  C= \prod_{j=1}^{p}\Gamma(j/p)/\prod_{j=1}^{q}\Gamma(j/q) . Here Meijer  G ‐function is given by
the following integral

(3.5)  G_{pq}^{q0}(z;1/p,2/p1/q,2/q',  \cdots,q/qP/P)=\frac{1}{2\pi i}\int_{I}
\frac{\prod_{J^{={\imath}}}^{q}\Gamma(\dot{j.}/q+\tau)}{\prod_{j=1}^{p}
\Gamma(j/p+\tau)}z^{-\tau}d\tau,
where the path I runs from  -i\infty to  +i\infty (see [6]).

As mentioned above we have a complete characterization of the  k(0) ‐summability

of the formal solution for the Cauchy problem (CP) when the Cauchy data  \varphi(x) is
holomorphic in a neighborhood of the origin. Therefore we consider the case when the

Cauchy data  \varphi(x) is an entire function with the exponential growth estimate of finite
order.

In the paper [8], he gave the result that the formal solution û(t, x) of the Cauchy
problem (CP) is convergent in both variables if and only if  \varphi(x) is an entire function
with the exponential growth estimate of order at most  q/(q-p) . Therefore we consider

the case when the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C}) with  d>q/(q-p) . In this case, the

17



18 ICHINOBE AND MIYAKE

formal solution û  (t, x) is divergent. Exactly, let  k=p/(q-p-q/d)(>k(0)=p/(q-p)) .
Then we have

 \hat{u_{:}}(t_{:}x)\in \mathcal{O}_{x}[[t]]_{1/k}.
When  d satisfies   d\leq q/\ell for  \ell\in \mathbb{N} and  1\leq P\leq q-p-1 , we put

(3.6)  k( \ell) :=\frac{p}{q-p-\ell}.
Then we can regard that the formal solution û(t, x) belongs to  \mathcal{O}_{x}[[t]]_{1/k(\ell)}(\supset \mathcal{O}_{x}[[t]]_{1/k})
instead of  \mathcal{O}_{x}[[t]]_{1/k} . In this case, we have the following result,

Theorem 3.3 ([9]). We assume  q-p>1 . Let û(t, x) be the formal solution of the
Cauchy problem (CP) with the Cauchy data  \varphi(x)\in Exp^{d}(\mathbb{C}) , where   q/(q-p)<d\leq q/\ell
for  1\leq\ell\leq q-p-1 and  \ell\in \mathbb{N} . Then û  (t. x)\in \mathcal{O}_{x}\{t\}_{k(\ell)} if the Cauchy data  \varphi(x)
satisfies the same condition  (k(0)-S-C) as in Theorem 3.2.

In this case,  k(P) ‐sum is just same as  k(0) ‐sum.

We remark that from the assumption  q-p>1 , this theorem does not contain the

case of (H).

§4. Result

In this section, we shall give our result. We recall our problem.

The Cauchy problem of the heat equation

(H)  \{\begin{array}{l}
\partial_{t}u(t, x)=\partial_{x}^{2}u(t, x) ,
u(0, x)=\varphi(x)\in Exp^{d}(\mathbb{C})
\end{array}
with  d>2 has a unique formal solution of the form

(4.1) û  (t, x)= \sum_{n\geq 0}\frac{\varphi^{(2n)}(x)}{n!}t^{n},
which belongs to  \mathcal{O}_{x}[[t]]_{{\imath}/k} , where  k=1/(1-2/d)=d/(d-2)> ı. Our problem is

to ask a condition for the  k‐summability of the formal solution  \hat{u}(t_{T}.x) . Our result is
stated as follows.

Proposition 4.1. We assume the following estimates for any  n

(A)  |\varphi^{(n)}(x)|\leq CKnn! ı‐l/de  \delta lxl2  x\in S(0, \pi;\varepsilon)

with some positive constants  C,  K and  \delta which are independent of  n . Then the formal
solution û  (t, x)\in \mathcal{O}_{x}\{t\}_{k}.

In this case,  k ‐sum is given by 1‐sum.

(4.2)  u^{0}(t, x)= \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{+\infty}\varphi(x+y)e^{-
y^{2}/4t}dy.

18



FXPERIMENTAL OBSERVATION ON  k‐SUMMABILITY 19

Proof. The proof is done by substituting in the expression of 1‐sum the following
Taylor formula for  \varphi(x) .

(4.3)   \varphi(x+y)=\sum_{j=0}^{n-1}\frac{\varphi^{(j)}(x)}{j!}y^{j}+\int_{0}^{y}
\frac{(y-s)^{n-1}}{(n-1)!}\varphi^{(n)}(x+s)ds.
We put

 u^{0}(t, x)= \frac{1}{\sqrt{4\pi t}}\sum_{j=0}^{n-1}\frac{\varphi^{(j)}(x)}{j!}
\int_{-\infty}^{+\infty}e^{-\frac{y^{2}}{4t}}y^{j}dy
 + \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{+\infty}e^{-\frac{y^{2}}{4t}}\int_{0}^
{y}\frac{(y-s)^{n-1}}{(n-1)!}\varphi^{(n)}(x+s)dsdy

 =:I_{n}(t, x)+R_{n}(t, x) .

Then we can easily get

 I_{n}(t, x)= \sum_{j=0}^{[(n-{\imath})/2]}\frac{\varphi^{(2_{J})}(x)}{\dot{j}!}
t^{j}.
Moreover, it is easily shown that under the assumption (A) we can prove the desired
asymptotic estimates

  \max_{|x|\leq\sigma}|R_{n}(t, x)|  \leq Cı  K^{\frac{n}{12}}|t|^{\frac{n}{2}} \Gamma(1+\frac{n/2}{k})
with some positive constants  \sigma,  C_{1} and  K_{1} for  t\in S(0, \alpha, \rho) with  \pi/k<\alpha<\pi , where

 k=1/(1-2/d)>1 and  \rho is sufficiently small.  \square 

At the end of this section, we give a remark on the class of functions which satisfy

the condition (A)

(A)  |\varphi^{(n)}(x)|\leq CK^{n}n! l‐ı/de  \delta lxl2  x\in S(0_{:}\pi;\varepsilon) .

For any entire function  \varphi(x)\in Exp^{d}(\mathbb{C}) the following estimates hold.

 |\varphi^{(n)}(x_{0})|\leq C_{0}K_{0}^{n}n!^{1-1/d} n\in \mathbb{N}

by some positive constants  C_{0} and  K_{0} depending on  x_{0} . However we have to notice

that in the condition (A), the constants  C and  K are independent of the position of  x.

Let  d=2m(m\geq 1) and  p(x)= \sum_{j=0}^{2m}a_{j}x^{2_{7\gamma}\iota-j} with  {\rm Re} a_{0}<0 . Then we put

 \varphi_{1}(x):=\exp(p(x))_{:}

 \varphi_{2}(x):=q(x)\exp(p(x)) , q(x)\in Exp^{2}(\mathbb{C}) .

In this case, we can prove that these functions satisfy the condition (A). The following
formula is crucial to get the estimates (A), whose proof is done by induction and will
be given in the next section.

19



20 ICHINOBE AND MIYAKE

Lemma 4.2. Let  f(x)=\exp(g(x)) with a polynomial  g(x) of the degree  d>1.

Then we have

(4.4)  f^{(n)}(x)=f(x) \sum_{k_{1}\ldots,k_{d}}B_{k_{{\imath}}}^{n},  k_{d}(g')^{k_{1}}(g")^{k_{2}} . . .  (g^{(d)})^{k_{d}},

where the sum is taken over all  k_{1} , . . . ,  k_{d}\in \mathbb{N} such that

(4.5)  k_{1}+2k_{2}+3k_{3}+\cdots+dk_{d}=n,

and

(4.6)  B_{k_{1}}^{n} k_{d}= \frac{n.!}{k_{1}!(2!^{k_{2}}k_{2}!)\cdot\cdot(d!^{k_{d}}k_
{d}!)}.
We first show that  \varphi_{1}(x) satisfies (A). Let  \varphi_{1}(x)=\exp(p(x)) and  p(x)=-x^{2m},   m\geq

 1 for simplicity. By using Lemma 4.2, we have

  \varphi_{1}^{(n)}(x)=\varphi_{1}(x)\sum_{k_{1}\ldots.,k_{2m}}B_{k_{1}}^{n} {}_
{k_{2m}}P_{k_{1}\ldots.,k_{2m}}^{n}(x) ,

where  k_{1}+2k_{2}+3k_{3}+\cdots+2mk_{2\tau n}=n and  P_{k_{1}}^{n}  k_{2m}(x)=(p')^{k_{1}}(p")^{k_{2}}\cdots(p^{(2m)})^{k_{2m}}.
We put  k_{1}+k_{2}+k_{3\iota}+\cdots+k_{2m}=\ell(<n) . Then since

 P_{k_{1}\ldots,k_{2m}}^{n}(x)=(-1)^{\ell}(2m)^{k_{1}}(2m(2m-1))^{k_{2}}
\cdots((2m)!)^{k_{2m-1}}((2m)!)^{k_{2\tau n}}x^{2m\ell-n},

we have

 |P_{k_{1}}^{n} k_{2m}(x)|\leq(2m)^{n}|x|^{2rr\iota\ell-n}
Let  a be a parameter. Then for  c>0 , we have

  \max_{r>0}r^{a}e^{-cr^{2m}}\leq C_{1}K_{1}^{a/2m}(a/2m) !

for some positive constants  C_{1} and  K_{1} , where the notation  b! for  b\not\in \mathbb{N} means the

Gatntna function  \Gamma(1+b) . Therefore, we obtain for  x\in S(0, \pi;\varepsilon)

 | \varphi_{1}(x)P_{k_{1},\ldots,k_{2m}}^{n}(x)|\leq C_{2}K_{2}^{n}(\ell-n/2m) !
\leq C_{3}K_{3}^{n}\frac{n!^{{\imath}-1/2m}}{(n-\ell)!},
where  C_{i} and  K_{i} are some positive constants for  i=2,3 . Moreover, we have

 | \sum_{k_{1},\ldots,k_{2m}}\frac{B_{k_{1}\ldots,k_{2\mathfrak{m}}}^{n}}{(n-
\ell)!}|\leq\sum_{\Sigma_{f}^{2}\ell={\imath} m}^{n}\sum_{-{\imath}^{k_{J}=\ell}
}\frac{n!}{\prod_{j^{=}}^{2\gamma n_{1}}k_{j}!(n-\ell)!}=n(2m+1)^{n}
By summing up the above inequalities, we obtain for  x\in S(0, \pi_{:}\cdot\varepsilon)

 |\varphi^{(n)}(x)|\leq C_{4}K_{4}^{n}n!^{1-1/2rr\iota}
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EXPERIMENTAL OBSERVATION ON  k‐SUMMABILITY 21

for some positive constants  C_{4} and  K_{4}.

We next show that  \varphi_{2}(x) satisfies (A). For  q(x)\in Exp^{2}(\mathbb{C}) , we put  \varphi_{2}(x)=
q(x)  \varphi ı  (x) , where  \varphi_{1}(x) is the function given above. Then we have

 |q^{(rL)}(x)|\leq C_{5}K_{5}^{n}e^{\delta|x|^{2}}n!^{1/2}

for some positive constants  C_{5} and  K_{5} . Therefore we get

 | \varphi_{2}^{(n)}(x)|=|\sum_{i=0}^{n}  (\begin{array}{l}
n
\dot{i}
\end{array})  q^{(n-i)}(x)\varphi_{1}^{(x)}(x)|
  \leq\sum_{i=0}^{n}  (\begin{array}{l}
n
i
\end{array})  C_{5}K_{5}^{n-i}e^{\delta|x|^{2}}(n-i) !  1/2C_{4}K_{4}^{l}i !  1-1/2m

 \leq C_{6}K_{6}^{n}n!^{1-{\imath}/2m}e^{\delta|x|^{2}}

for some positive constants  C_{6} and  K_{6} . Here we use the inequality  (n-i)!i!\leq n! and

the equality   \sum_{i}  (\begin{array}{l}
n
\dot{i}
\end{array})=2^{n}.
§5. Proof of Lemma 4.2

We give a proof of Lemma 4.2 by induction.

When  n=1 , it is trivial.

We assume that the expression (4.4) holds for  n-1 , that is, we assume the following
equation.

(5.1)  f^{(n-1)}(x)=f(x) \sum_{k_{1},\ldots.k_{d}}B_{k_{1},..,k_{d}}^{n-.1}(g')^{k_{1}
}(g")^{k_{2}}\cdots(g^{(d)})^{k_{d}}=:f(x)\cross G(x) .

where the sum is taken over  k_{1} , . . . ,  k_{d} such that  k_{1}+2k_{2}+  \cdot\cdot\cdot  +dk_{d}=n- ı. By
multiplying  f^{(n-1)}(x) by the both side after the logarithmic derivative for the both

side, we have

 f^{(n)}(x)=f^{(n-1)}(x) \cross\{\frac{f'(x)}{f(x)}+\frac{G'(x)}{G(x)}\}=f(x)\{G
(x)\cross g'(x)+G'(x)\},
where we use  f'/f=g' . Therefore we have

(5.2)  f^{(n)}/f= \sum B_{k_{1\backslash }..,k_{d}}^{n-.1}(g')^{k_{1}+} ı  (g")^{k_{2}} . . .  (g^{(d)})^{k_{d}}

(5.3)  + \sum\sum^{d}i=‐ı1  k_{i}B_{k_{1\backslash }..,k_{d}}^{n-.1}(g')^{k_{1}}(g")^{k_{2}} . . .  (g^{(i)})^{k_{1}-1}(g^{(i+1)})^{k_{i+1}+1} . . .  (g^{(d)})^{k_{d}}.
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22  ICHI_{I}\backslash OBE AND  \beta_{\}} IIYAKE

We put  k_{1}+1=\ell_{1} and  k_{j}=\ell_{j} for  j\geq 2 in the right side of (5.2). For each term of
(5.3) we put  k_{i}-1=\ell_{i} ,  k_{z+1}+1=\ell_{i+1} and  k_{j}=\ell_{j} for  j\neq i,  i+1 . Then we get

 f^{(n)}/f= \sum_{:}\ell_{1}\ldots,\ell_{d}\{B_{\ell_{1}-1,\ell_{2}\ldots.p_{d}}
^{n-1}+\sum_{i=1}^{d-1}k_{i}B_{p_{1}}^{n-.1}. ,P_{i}+1,p_{i+1}-1,\cdots,P_{d}\}
(g')^{\ell_{{\imath}}}\cdots(g^{(d)})^{\ell_{d}},
where the sum is taken over  \ell_{1} , . . . ,  \ell_{d} such that  \ell_{1}+2\ell_{2}+\cdots+d\ell_{d}=n . Finally we
obtain the following desired expression.

  B_{\ell_{1}-1,P_{2},\ldots,\ell_{d}}^{n-1}+ \sum_{i=1}^{d-1}k_{i}B_{\ell_{1}
\cdot\cdot,\ell_{i}+1,\ell_{x+1}-1}^{n-.1}, \ell_{d}^{=B_{\ell_{1}..p_{d}}^{n}},
.,\cdot
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