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An attempt to compute holonomic systems for
Feynman integrals in two‐dimensional space‐time

By

TOSHINORI OAKU*

Abstract

We present some examples of holonomic systems for Feynman integrals associated with
Feynman diagrams by using integration algorithms for D‐modules,

§1. Introduction

We consider Feynman integrals associated with Feynman diagrams (see e.g., [1]).
Microlocal analysis of Feynman integrals was initiated by M. Sato, T. Kawai, H.P. Stapp,

M. Kashiwara, T. Oshima, and others in the  1970^{i}s . See e.g., [13], [7], [5], [6]. In their
investigation, thc theory of microfunctions and (holonomic systcms of) microdifferential
equations played a decisive role.

Recently, N. Honda and T. Kawai studied the geometry of Landau‐Nakanishi surfaces
systematically and discovered interesting phenomena in the 2‐dimensional space‐time

in a series of papers, e.g., [2], [3], [4]. Inspired by their work, we will report on actual
computation of holonomic systems for Feynman integrals associated with very simple
Feynman diagrams by computer.

Let  G be a connected Feynman graph (diagram); i.e.,  G consists of
 e vertices  V_{1},  \cdots,  V_{n'},
 e oriented line segments  L_{1} , . . . ,  L_{N} called internal lines,
 \bullet oriented half‐lines  L_{1}^{e} , . . . ,  L_{71}^{e} called external lines.

The end‐points of each internal line   L\iota are two distinct vertices, and each external line
has only one end‐point, which coincides with one of the vertices.
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We associate  \nu‐dimensional vector  p_{r}=(p_{r0}, p_{r,1}, \ldots, p_{r,\nu-1}) to each external line

 L_{r}^{e}(1\leq r\leq n'); a  \nu‐dimensional vector  k_{l}=(k_{l0}, k_{l,1}, \ldots, k_{l,\nu-1}) and a positive real
number   m\iota to each internal line  L_{l}(1\leq l\leq N) . For a vertex  V_{j} and an internal or

external line  L_{l} , the incidence number  [J : l] is defined as follows:

 [j : l]=1 if  L_{i} ends at  V_{j},

 [j : l]=-1 if  L_{l} starts from  V_{j},

 [j : l]=0 otherwise.

The Feynman integral associated with  G is defined to be

 F_{G} ( p_{1}, . . . p_{n})=\int_{\mathbb{R}^{\nu N}}\frac{\prod_{=1}
\prime\delta^{U}(\sum_{r--1}^{n}[j:r]p_{r}+\sum_{l--1}^{N}[j:l]k_{l})}{\prod_{l=
{\imath}}^{N}(k_{l}^{2}-m_{l}^{2}+\sqrt{-1}0)}\prod_{l=1}^{N}d^{\nu}k_{l}.
Here  \delta^{\nu} denotes the  \nu‐dimensional delta function,

 k_{l}^{2}:=k_{l0}^{2}-k_{l,1}^{2}-\cdots-k_{l,\nu-1}^{2}

is the Minkowski norm of  k_{l}=  (k_{l,0_{\grave{t}}}k_{l1}, \cdots : k_{l,\nu-1}) , and  d^{\nu}k_{l} is the  \nu‐dimensional
volume element.

However, the Feynman integral is not necessarily well‐defined since it involves the

product and the integral of generalized functions. In order to bypass this difficulty
without what is called renormalization or compactification of the domain of integration,
we consider it as a microfunction defined on a certain subset of the cotangent space
following the work by M. Sato and others mentioned above. This point of view has a
close connection with what is caıled the Landau‐Nakanishi variety associated with  G as
is explained in [6].

Our purpose is to compute a holonomic system which the Feynman integral satisfies,
in the two‐dimensional space‐time, by using algorithms and computer programs for
 D‐modules. We also compute the Landau‐Nakanishi variety for comparison with the
holonomic system.

I would like to thank Professors Takahiro Kawai and Naofumi Honda for helpful sug‐
gestions and comments. In actual computation, I made use of a computer algebra system
 Risa/Asir [8] developed by Masayuki Noro, originally at Fujitsu Laboratories Limited.
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In particular, the integration of a  D‐module was computed by using a  Risa/Asir library
file  tnk‐restriction.rr‘ coded by Hiromasa Nakayama; decomposition of a variety into
irreducible components was done by using a library file noro‐pd. rr coded by Noro.

§2. A recipe for computing a holonomic system for the Feynman integral

In what follows, we assume that for each vertex  V_{j} , there exists a unique external
line, which we may assume to be  L_{f}^{e} , that ends at  V_{J} and that no external line starts

from  V_{g} . Then  n=n' holds and the Feynman integral is given by

(2.1)  F_{G}( p_{1}, \ldots , p_{n})=\int_{\mathbb{R}^{U}}N\frac{\prod_{j=1}^{n}
\delta^{\nu}(p_{j}+\sum_{l=1}^{N}[j:l]k_{l})}{\prod_{\iota=1}^{N}(k_{l}^{2}-
m_{l}^{2}+\sqrt{-1}0)}\prod_{l=1}^{N}d^{\nu}k_{l}.
§2.1. Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral (2.1) correspond to the
linear equations (momentum preservation)

 p_{j}+ \sum_{l=1}^{N}[j:l]k_{l}=0 (1\leq j\leq n)
for indeterminates  p_{j} and   k\iota which correspond to the vectors  p_{j} and  k_{l} . These equations
define an  N‐dimensional linear subspace of  \mathbb{R}^{n+N} , which is contained in the hyperplane
 p_{1}+\cdots+p_{n}=0 since   \sum_{\dot{j}=1}^{n}[j : l]=0.

Lemma 2.1. Let  A be the  n\cross N matrix whose  (j, l) ‐element is  [j : l] . Then the

rank of  A is  n-1.

In view of this lemma, we can choose a set of indices

 J=\{l_{1}, . . . l_{N-n+1}\}\subset\{1\ldots, N\}

and integers  a_{l_{\Gamma}} and  b_{lj} so that the system

 p_{j}+ \sum_{l=1}^{N}[j:l]k_{l}=0 (1\leq j\leq n)
of linear equations is equivalent to

  \sum_{j={\imath}}^{n}p, =0, k_{l}-\psi_{l}(p_{1}, \ldots, p_{n-1}, k_{l_{1}}
\ldots., k_{l_{N-n+1}})=0 (l\in J^{c})
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with

 \psi_{l}  (p_{1} : . . . , p_{n-1}, k_{l_{1}} : . . . : k_{l_{N-n+1}})  =nr \sum^{}=ı1  a_{lr}p_{r}+ \sum_{j=1}^{N-n+1}b_{l_{j}}k_{l_{j}}
and that the  (n-1)\cross(n-1)‐matrix  (a_{Ir}) is non‐singular. These data can be computed
by row operations on the matrix  A augmented by  t(p_{1}, \ldots, p_{n}) , which produce a matrix
with a row  (0,  \ldots,  0 , pı  +\cdot\cdot\cdot  +p_{n}) .

Then the Feynman integral is written in the form

 F_{G}  ( p_{1}, . . . , p_{n})=\int_{\mathbb{R}^{N\nu}}\delta(p_{1}+ \cdot \cdot \cdot
+p_{n})\prod_{l\in J^{c}}\delta(k_{l}-\psi_{l} (p_{1}, . . . , p_{n-1}, k_{l_{1}
} , . . . , k_{l_{N-n+1}}))
  \cross\prod_{l=1}^{N}(k_{l}^{2}-m_{l}^{2}+\sqrt{-1}0)^{-1}\prod_{l=1}^{N}
dk_{l}

 =\delta (p_{1}+ \cdot \cdot \cdot +p_{n})\overline{F}_{G}(p_{1}, . . . p_{n-1})

with the amplitude function

 \overline{F}_{G}  ( p_{1}, . . . p_{n-1})=\int_{\mathbb{R}^{(N-n+1)\nu}}\prod_{l\in J}(k_{l}^{2}-
m_{l}^{2}+\sqrt{-1}0)^{-1}
  \cross\prod_{l\in J^{c}} (\psi_{l} (p_{1}, . . . , p_{n-1}.k_{l_{1}} , . . . ,
k_{l_{N-n+1}})^{2}-m_{l}^{2}+\sqrt{-1}0)^{-1}\prod_{l\in J}dk_{l}.

Note that the functions  F_{G} and  \overline{F}_{G} are invariant under the action of the Lorentz

group: Let  T be a  \nu\cross\nu matrix such that

 tT  (\begin{array}{llll}
1   0   \cdots   0
0   -1   \cdots   0
0   0   \cdots   -1
\end{array})  T=(\begin{array}{llll}
1   0   \cdots   0
0   -1   \cdots   0
0   0   \cdots   -1
\end{array})
Then one has

 F_{G}(Tp_{1}, \ldots, Tp_{n-}{}_{1}Tp_{n})=F_{G}(p_{1}, \ldots, p_{n-1}, p_{n}) ,

 \overline{F}_{G}(Tp_{1}, \ldots, Tp_{n-1})=\overline{F}_{G} (pı, . . .  p_{n-1} ).

§2.2. Holonomic systems for integrands

In general, since  dk_{l}(l\in J) and  d\psi_{l}(l\in J^{c}) are linearly independent, the integrand

 \Phi(p_{1}, \ldots.p_{n-1}, k_{l_{1}}, \ldots, k_{l_{N}} n+{\imath})

 = \prod_{l\in J}(k_{I}^{2}-m_{l}^{2}+\sqrt{-1}0)^{-1}\prod_{l\in J^{c}}
(\psi_{l} (p_{1} . . , p_{n-1}, k_{l_{1}}, \ldots, k_{I_{\Lambda-n+1}})^{2}-
m_{l}^{2}+\sqrt{-1}0)^{-1}
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of the amplitude  \overline{F}_{G} is well‐defined as a hyperfunction on  \mathbb{R}^{N} , represented as the bound‐
ary value of the rational function

 \overline{\Phi}(p_{1}, \ldots, p_{n-1}, k_{l_{1}}, \ldots, k_{l_{N-n+1}})

 = \prod_{l\in J}(k_{l}^{2}-m_{l}^{2})^{-1}\prod_{l\in J^{c}}(\psi_{l} (pı, . . .  p_{n-1},  k_{l_{1}},  \ldots,  k\iota_{N-n+1})^{2}-m_{l}^{2})^{-1}

defined on

 \{(p_{1} . )p_{n-1},  k_{l_{1}} , . . .  k_{l_{N-n+1}})\in \mathbb{C}^{\nu N}|{\rm Im} k_{l}^{2}>0(l\in J) ,

 {\rm Im}\psi_{l}(p_{1}, \ldots, p_{n-1}, k_{l_{1}}, \ldots, k_{l_{N-n+1}})^{2}
>0(l\in J^{c})\},

whose closure contains  \mathbb{R}^{\nu N} in view of the linear independence above; here the assump‐
tion  m_{l}>0 is essential.

Let  D_{\nu N} be the ring of differential operators with polynomial coefficients in  p_{1},

. . . ,  p_{n-1},  k_{l_{1}} , . . . ,  k\iota_{N-n+1} , and  \mathcal{B}_{\mathbb{R}^{\nu N}} the sheaf of hyperfunctions on  R^{\nu N} . Then the

annihilator (left ideal of  D_{\nu N} )

 Ann_{D_{\nu N}}\Phi= {  P\in D_{\nu N}|P\Phi=0 in  \mathcal{B}_{\mathbb{R}^{\nu N}}(\mathbb{R}^{\nu N}) }

of  \Phi coincides with the annihilator

 Ann_{D_{\nu N}}\overline{\Phi}= {  P\in D_{\nu N}|P\overline{\Phi}=0 as rational function}

of  \overline{\Phi} by virtue of the injectivity of the boundary map in the theory of hyperfunctions.
There exists a general algorithm to compute the annihilator of an arbitrary rational

function. However, since the denominator of  \overline{\Phi} is the product of polynomials whose
differentials are linearly independent at each point, the annihilator of  \overline{\Phi} is generated by
first order differential operators, which are much easier to compute.

§2.3. Landau‐Nakanishi varieties for amplitudes

Let  u_{r}=  (u_{r,0}, u_{r_{:}1:}\ldots : u_{r,\nu-1}) be a  \nu‐dimensional vector and set

 \Lambda(G)=\{(p_{1}, \ldots, p_{n-1_{\backslash }}.k_{l_{1}}, \ldots, k_{l_{N-n
+1^{\backslash }}}\cdot u_{1}, \ldots, u_{n-1};\alpha_{1}, \ldots, \alpha_{N})
 \in \mathbb{R}^{\nu N}\cross \mathbb{R}^{\nu(n-1)}\cross \mathbb{R}^{N}|

 \alpha_{l_{j}}(k_{l_{j}}^{2}-m_{l_{J}}^{2})=0(1\leq j\leq N-n+1) , \alpha_{l}
(\psi_{l}^{2}-m_{l}^{2})=0(l\in J^{c}) ,

  \alpha\iota_{j}^{k_{l_{j}}}+\sum_{l\in J^{c}}\alpha_{l}b_{l_{j}}\psi_{l}=
0(1\leq j\leq N-n+1) .

  u_{\Gamma}=\sum_{l\in J^{c}}\alpha_{l}a_{l_{\Gamma}}\psi_{l}(1\leq r\leq n-1) 
, \alpha_{l}\geq 0 ({\imath} \leq l\leq N)\}
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and

 \Lambda_{+}(G)=\{(p_{1}, \ldots, p_{n-1}, k_{l_{1}}, \ldots, k\iota_{N-n+
{\imath}};u_{1}, \ldots, u_{n-1}:\alpha_{1}, \ldots, \alpha_{N})
 \in \mathbb{R}^{\nu N}\cross \mathbb{R}^{\nu(n-1)}\cross \mathbb{R}^{N}|

 \alpha_{i_{j}}(k_{l_{J}}^{2}-m_{l_{f}}^{2})=0(1\leq j\leq N-n+1) , \alpha_{l}
(\psi_{l}^{2}-m_{l}^{2})=0(l\in J^{c}) ,

  \alpha_{l},k_{l_{j}}+\sum_{l\in J^{c}}\alpha_{l}b_{l_{j}}\psi_{l}=0(1\leq 
j\leq N-n+1) ,

  u_{r}=\sum_{l\in J^{c}}\alpha_{l}a\iota_{r}\psi_{l}(1\leq r\leq n-1) , \alpha_
{l}>0(1\leq l\leq N)\}.
Let

 \sqrt{-1}T^{*}\mathbb{R}^{\nu(n-1)}=\{ (p_{1}, . . . p_{n-{\imath}};\sqrt{-1}u_
{1}dp_{1}+ \cdot \cdot \cdot +\sqrt{-1}u_{n-1}dp_{n-1})\}

be the (purely imaginary) cotangent bundle of  \mathbb{R}^{\nu(tL-{\imath})} and let  \varpi be the natural pro‐
jection of  \Lambda(G) to  \sqrt{-{\imath}}T^{*}\mathbb{R}^{\nu(n-1)} . Here we set

 u_{j}dp_{j}=u_{j0}dp_{j0}-n_{j,1}dp_{j.1}-\cdots-u_{j,\nu-1}dp_{j,\nu-{\imath}}

in accordance with the Minkowski norm.

The amplitude  \overline{F}_{G} is well‐defined as a microfunction on the set

 \sqrt{-1}T^{*}\mathbb{R}^{\nu(n-1)}\backslash \varpi(\Lambda(G)\backslash 
\Lambda_{+}(G))
and its support is contained in  \varpi(\Lambda+(G)) . This fact follows from the theory of integra‐

tion of microfunctions (see e.g., Chapter 3 of [6]) and the non‐singularity of the matrix
 (a_{lr}) .

In practice, we can compute the complexifications  \Lambda^{C}(G) and  \Lambda_{+}^{\mathbb{C}}(G) of  \Lambda(G) and

 \Lambda+(G) respectively allowing  k\iota_{f} and  \alpha\iota to be complex and replacing the condition  \alpha_{l}>0

by  \alpha_{l}\neq 0 . This can be done by using Gröbner bases in the polynomial ring.

§2.4. Holonomic systems for amplitudes

Let   M=D_{\nu N}/Ann_{D_{\nu N}}\Phi be the holonomic system for the integrand  \Phi of the Feyn‐

man integral (2.1). Let us denote by  D_{\nu(n-1)} the ring of differential operators with
polynomial coefficients in the variables  p_{1} . . . .  p_{n-1} . Then the integral   \int_{\varpi c}M of  M

along the fibers of the projection  \varpi_{C} :  \mathbb{C}^{\nu N}arrow \mathbb{C}^{\nu(n-1)} is defined to be the left  D_{\nu(7L-1)^{-}}
module

  \int_{\varpi_{\mathbb{C}}}j_{1}lI=M/(\partial_{k_{l_{1}}\lrcorner}\mathfrak{h}
I+\cdots+\partial_{k\iota_{N-n+1}}M)
with the notation

 \partial_{k_{l}}l1I=\partial_{k_{l0}}M+\partial_{k_{l1}}M+\cdots+\partial_{k_{l
\nu-1}}M.

This is a holonomic  D_{\nu(n-1)} ‐module since  M is holonomic. Moreover, there is an

algorithm for computing   \int_{\varpi_{\mathbb{C}}}M given a presentation of  JI (see [11], [12], [9]).
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Theorem 2.2. The Feynman amplitude  \overline{F}_{G} satisfies the system   \int_{\varpi c}M of linear
partial differential equations as a microfunction on the set

 \sqrt{-1}T^{*}\mathbb{R}^{\nu(n-1)}\backslash \varpi(\Lambda(G)\backslash 
\Lambda_{+}(G)) .

In order to prove this theorem, we change the notation in the sequel and set  x=

 (x', x") with  x'=(x_{1}, \ldots, x_{n-d}) and  x"=(x_{n-d+1}, \ldots, x_{n}) for the coordinate of the

base space  \mathbb{R}^{n} , and likewise  \xi=(\xi', \xi") for the cotangential coordinate. Let  C_{\mathbb{R}^{n}} be the
sheaf on  \sqrt{-1}T^{*}\mathbb{R}^{n} of microfunctions (see [14], [6]). Let

 \varpi :  \sqrt{-1}T^{*}\mathbb{R}^{n}\ni (  x, −ı  \xi dx )  \mapsto(x', \sqrt{-1}\xi'dx')\in\sqrt{-1}T^{*}\mathbb{R}^{n}d

be the projection and  W be an open set of  \sqrt{-1}T^{*}\mathbb{R}^{n-d} . Let us denote by  \mathcal{F}_{W} the set
of the microfunctions  u on  \varpi^{-1}(W) such that the restriction of  \varpi to the set

supp u  \cap\varpi^{-1}(W)\cap\{(x, \sqrt{-1}\xi'dx')|\xi'\in \mathbb{R}^{d}\}

is proper.

Then for any  u\in \mathcal{F}_{W} , the integral   \int_{\mathbb{R}^{d}}u(x)dx" is well‐defined as a microfunction on
 W . We adopt a concrete definition by using defining functions following the arguments
in Chapter 3 of [6].

Proposition 2.3. Let  u be an element of  \mathcal{F}_{W} . Then the integral   \int_{\mathbb{R}^{d}}\partial_{x},  u(x)dx"
vanishes as a microfunction on  W for any  j such that  n-d+1\leq j\leq n.

Proof. Let  p'= (xÓ; ‐l  \xiÓdx’) be a point of  W . We may assume that  W is a
sufficiently small neighborhood of  p' . If thc support of an element of  \mathcal{F}_{W} is disjoint
from  \{(x, \sqrt{-1}\xi'dx')|\xi'\in \mathbb{R}^{d}\} , then its integral vanishes on  W in view of the theory
of integration of microfunctions. Hence we may assume that  u is the spectrum of the
hyperfunction defined as the boundary value  F(x+\sqrt{-1}V0) of a holomorphic function
 F(z) on  (U\cross \mathbb{R}^{d})+\sqrt{-1}V0 , where  U is an open neighborhood of xÓ and  V is an open
convex cone of  \mathbb{R}^{n} with vertex at the origin such that  V'=V\cap(\mathbb{R}^{n-d}\cross\{0\}) is not

empty. By the assumption, there exists  R>0 such that  F(z) continues analytically to
 U\cross(\mathbb{R}^{d}\backslash (-R/2, R/2)^{d}) if we take  U to be small enough.

Then   \int_{\mathbb{R}^{d}}\partial_{x_{n}}u(x)dx" is the spectrum of the boundary value  G(x'+\sqrt{-1}V'0) of

 G(z')= \int_{[-R,R]^{d}}\partial_{x_{n}}F(z'.x")dx"
 = \int_{[-R,R]^{d-1}}F(z_{;}'x_{n-d+1} . . . .  :^{x_{n-1},R)dx_{n-d+1}} . . .  dx_{n-1}

 - \int_{[-R,R]^{d-1}}F  (z', x_{n-d+1}, . . . x_{n-1}, -R)dx_{n-d+{\imath}} . . .  dx_{n-1}.
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Hence  G(z') is real analytic on  U . This implies that  u(x)=sp(F(x+\sqrt{-1}V0))=0 on
a neighborlLood of  p'.  \square 

Now let  D_{7L} and  D_{n-d} be the rings of differential operators with polynomial coeffi‐
cients in  x and in  x' respectively. Theorem 2.2 is a special case of the following theorem,
which follows immediately from the proposition above:

Theorem 2.4. Let  u be an element of  \mathcal{F}_{W} and let I be a left ideal of  D_{n} such that
 Pu=0 as microfunction on  \varpi^{-1}(W) for any  P\in I. Let  Q be an element of

 (\partial_{x_{n-d+1}}D_{n}+ \cdot \cdot \cdot +\partial_{x_{n}}D_{n}+I)\cap 
D_{n-d}.

Then  Q annihilates   \int_{R^{n-d}}u(x)dx" as microfunction on W. More generally, the inte‐
gration induces a linear map

 Hom_{D_{n}}(M, \mathcal{F}_{W})arrow Hom_{D_{n-d}}(M', \Gamma(W, C_{R^{n-d}}))

with  M=D_{n}/I and  M'=M/(\partial_{x_{n-d+1}}M+\cdots+\partial_{x_{n}}M) .

§3. Some examples in the two‐dimensional space‐time

In the sequel, we set  \nu=2 and consider FeynInan integrals associated with some
simple Feynman diagrams. In general, for a two‐dimensional vector  p=(p_{0}, p_{1}) , we
denote  p^{2}=p_{0}^{2}-p_{{\imath}}^{2} for the Minkowski norm and  dp=dp_{0}dp_{1} for the volume element.

In actual computation in the sequel, we used a library file nk‐restriction. rr of
 Risa/Asir [8] for integration of  D‐modules, and noro‐pd. rr for decomposition of char‐
acteristic varieties into irreducible components.

We remark that holonomic systems for Cutkosky‐type phase space integrals associ‐
ated with the following Feynman diagrams are presented in [10].

Example 3.1. Let us study the Feynman diagram  G below:

The associated Feynman integral is written in the form

 F_{G}( p_{1}, p_{2})=\int_{\mathbb{R}^{4}}\delta(p_{1}-k_{1}-k_{2})\delta(-
p_{2}+k_{1}+k_{2})
 \cross(k_{1}^{2}-m_{1}^{2}+\sqrt{-1}0)^{-1}(k_{2}^{2}-m_{2}^{2}+\sqrt{-1}0)^{-
1}dk_{1}dk_{2}

 =\delta(p_{1}-p_{2})\tilde{F}_{G}(p_{1})
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with the amplitude

 \overline{F}_{G} (pı)  = \int_{\mathbb{R}^{2}}(k_{1}^{2}-m_{1}^{2}+\sqrt{-1}0)^{-1}((p_{1}-k_{1})^{2}-
m_{2}^{2}+\sqrt{-1}0)^{-1}dk_{1}.
The amplitude  \overline{F}_{G}(p_{1}) is well‐defined as a microfunction on  \sqrt{-1}T^{*}\mathbb{R}^{2}\backslash \mathbb{R}^{2} , i.e.,

the whole cotangent bundle with the zero section removed. In other words,  \tilde{F}_{G}(p_{1}) is

well‐defined as a section of the sheaf  \mathcal{B}_{R^{2}}/\mathcal{A}_{R^{2}} on  \mathbb{R}^{2} with  \mathcal{A}_{\mathbb{R}^{2}} being the sheaf of real
analytic functions.

By the integration algorithm for  D‐modules, we know that  \overline{F}_{G}(p_{1}) satisfies a holo‐

nomic systetn  M=D_{2}/I with the left ideal  I generated by three operators

 p_{11}\partial_{p_{10}}+p_{10}\partial_{p_{11}},

(pıo  -m_{1}-m_{2} )  (p_{10}-m_{1}+m_{2})(p_{10}+m_{1}-m_{2})(p_{10}+m_{1}+m_{2})\partial_{p_{10}}
 + plıp10  (2p_{10}^{2}-p_{11}^{2}-2m_{1}^{2}-2m_{2}^{2})\partial_{p_{11}}+2p_{10}^{3}+(-
2p_{11}^{2}-2m_{1}^{2}-2m_{2}^{2})p_{10}.

 (p_{10}^{2}-p_{11}^{2}-(m_{1}+m_{2})^{2})(p_{10}^{2}-p_{11}^{2}-(m_{1}-m_{2})
^{2})\partial_{p_{11}}
 -2p_{11}p_{{\imath} 0}^{2}+2p_{11}^{3}+(2m_{1}^{2}+2m_{2}^{2})p_{11}.

The characteristic variety of  M is

Char  (M)=\{(p_{10},p_{11} ; −ı(u10  dp_{10}+u_{11}dp_{11} )  |u_{10}=u_{11}=0 }

 \cup\{p_{10}^{2}-p_{1{\imath}}^{2}-(m_{1}+m_{2})^{2}=u_{11}p_{10}+u_{10}p_{11}=
0\}
 U {p210—p2ı1—(m1—m2)2  =u_{l1}p_{10}+ uı0p11  =0 }

with each component of multiplicity one if  m_{1}\neq m_{2} and

Char  (M)=\{(p_{10}, p_{11};\sqrt{-1}(u_{10}dp_{10}+u_{11}dp_{11})|u_{10}=u_{11}=0 }

 \cup\{p_{10}^{2}-p_{11}^{2}-4m^{2}=u_{11}p_{10}+u_{10}p_{11}=0\}

 \cup\{p_{10}-p_{11}=u_{10}+\iota\iota_{11}=0\}\cup {  p_{10}+p_{11}= uı0  -u_{11}=0 }

 \cup\{p_{10}=p_{11}=0\}

with each component of multiplicity one if  m_{1}=m_{2}=m.

In view of the invariance under Lorentz transformations, let us set  p_{1}=(x, 0) with

 x\neq 0 . Then  \overline{F}_{G}(x, 0) satisfies

 \{(x-m_{1}-m_{2})(x-m_{1}+m_{2})(x+m_{1}-m_{2})(x+m_{1}+m_{2})\partial_{x}

 +2x(x^{2}-m_{1}^{2}-m_{2}^{2})\}\overline{F}_{G}(x, 0)=0.

Hence the support of the microfunction  \overline{F}_{G}  (x, 0) is contained in the set

 \{(x;\sqrt{-1}udx)|x=\pm(m_{1}+m_{2}), \pm(m_{1}-m_{2})\}
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and one has, for example

 \overline{F}_{G}((x_{:}0))=C(x-m_{1}+m_{2})^{-1/2}(x+m_{1}-m_{2})^{-1/2}
 \cross(x+m_{{\imath}}+m_{2})^{-1/2}(x-m_{1}-m_{2}+\sqrt{-1}0)^{-1/2}

with a constant  C as a lllicrofunction at  (m_{1}+m_{2};\sqrt{-1}dx) if  m_{1}\neq m_{2}.

If  m_{1}=m_{2}=m , then the support of  \overline{F}_{G}((x, 0)) is contained in  \{x=0, \pm 2m\} and
one has

 \overline{F}_{G} ((x, 0))=Cx^{-1}(x+2m)^{-1/2}(x-2m+\sqrt{-1}0)^{-{\imath}/2}

at  (2m, -ldx) .

Example 3.2. The Feynman integral associated with the graph  G below

 k_{1}

is given by

 F_{G}(p_{1}, p_{2})=\delta(p_{1}-p_{2})\overline{F}_{G}(p_{1})

with

  \tilde{F}_{G}(p_{1})=\int_{\mathbb{R}^{4}}(k_{1}^{2}-m_{1}^{2}+\sqrt{-1}0)^{-
1}(k_{2}^{2}-m_{2}^{2}+\sqrt{-1}0)^{-1}
 \cross((p_{1}-k_{1}-k_{2})^{2}-m_{3}^{2}+\sqrt{-1}0)^{-1}dk_{1}dk_{2}.

We can confirm that  \overline{F}_{G}(p_{1}) is well‐defined as a microfunction on  \sqrt{-1}T^{*}\mathbb{R}^{2}\backslash \mathbb{R}^{2}
and its support (singularity spectrum) is contained in

{  p_{10}^{2}-p_{11}^{2}-(-m_{1}+m_{2}+m_{3})^{2}= uıl  p_{10}+u_{10}p_{11}=0 }

 \cup\{p_{10}^{2}-p_{11}^{2}-(m_{1}-m_{2}+m_{3})^{2}=u_{11}p_{10}+u_{10}5p_{11}=
0\}
 \cup {  P_{10}^{2}-P_{11}^{2}-(m_{1}+m_{2}-m_{3})^{2}= ulı  p_{10}+ u10p1ı  =0 }

 \cup\{p_{10}^{2}-p_{11}^{2}-(m_{1}+m_{2}+m_{3})^{2}=u_{11}p_{10}+u_{10}p_{11}=0
\}

for generic  m_{1} ,  m_{2} ,  m_{3}.

We compute holonomic systems for  \tilde{F}_{G}((x_{\backslash }0)) by assigning some special values to
 m_{1},  m_{2},  m_{3} since the computation for general  m_{1},  m_{2},  m_{3} (as parameters) is intractable.
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First let us set  m_{1}= ı,  m_{2}=2,  m_{3}=4 so that  (-m_{{\imath}}+m_{2}+m_{3})^{2},  (m_{1}-m_{2}+m_{3\backslash })^{2},
 (m_{1}+m_{2}-m_{3})^{2} are distinct. Then  \overline{F}_{G}((x, 0)) is annihilated by the differential operator

 P=30x(x-1)(x+1)(x-3)(x+3)(x-5)(x+5)(x-7)(x+7)\partial_{x}^{3}

 +(-2x^{{\imath} 2}+191x^{10}-5340x^{8}+35954x^{6}+273082x^{4}-2071305x^{2}+
661500)\partial_{x}^{2}
 +(-10x^{11}+675x^{9}-12108x^{7}+15454x^{5}+936462x^{3}-2692665x)\partial_{x}
 -8x^{10}+372x^{8}-3300x^{6}-36028x^{4}+457932x^{2}-356760.

The singular points  x=0,  \pm 1,  \pm 3,  \pm 5,  \pm 7 of  P are all regular and the indicial equations
are all  s^{2}(s-1) . This implies, e.g.,  \overline{F}_{G}( (x, 0))=U\log(x+i0) at  (1, \sqrt{-1}dx) with a

microdifferential operator  U of order zero by virtue of Lemma 4.2.6 (p. 425) of Sato‐
Kawai‐Kashiwara [14].

Next set  m_{1}=m_{2}=m_{3}=1 . Then  \overline{F}_{G}((x, 0)) is annihilated by

 Q=x(x-1)(x+1)(x-3)(x+3)\partial_{x}^{2}+(5x^{4}-30x^{2}+9)\partial_{x}+4x^{3}-
12x.

The points  0,  \pm 1,  \pm 3 are regular singuıar points of  Q and its indicial equations at these

points are all  s^{2} . This implies  \overline{F}_{G}((x. 0))=U\log(x-1+i0) e.g., at (1, −ldx) with a
microdifferential operator  U of order zero.

Example 3.3. The Feynman integral associated with the graph  G=T{\imath} below

is given by

 F_{G}(p_{1}, p_{2}, p_{3})=\delta(p_{1}-p_{2}-p_{3})\tilde{F}_{G}(p_{1}, p_{2})

with

  \overline{F}_{G}(p_{1}, p_{2})=\int_{\mathbb{R}^{2}}(k_{1}^{2}-m_{1}^{2}+\sqrt
{-1}0)^{-1}
 \cross((p_{1}-k_{1})^{2}-m_{2}^{2}+\sqrt{-1}0)^{-1})^{-1}((p_{2}-k_{1})^{2}-
m_{3}^{2}+\sqrt{-1}0)^{-1}dk_{1}.

Computation for general  m_{1}m_{2} ,  m_{3} is intractable. So let us set  m_{1}=m_{2}=m_{3}=

 1 in the sequel. In this situation, the Landau‐Nakanishi variety was investigated by
N. Honda and T. Kawai ([2],[3]) in detail.
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The amplitude  \overline{F}_{G}  ((x, 0). (y, z)) is well‐defined on

 \{(x, y, z;\sqrt{-1}(udx+vdy+wdz)|(u, v, w)\neq(0,0,0)\}

 \backslash (\{(x-y)^{2}-z^{2}-4=wx-wy+vz=u+v=0\}
 \cup\{x-y=z=u+v=0\}\cup\{y^{2}-z^{2}-4=wy-vz=u=0\}

 \cup\{x^{2}-4=v=w=0\}\cup\{x=v=w=0\}\cup\{y=z=u=0\})
as a microfunction and its support is contained in

 \sqrt{-1}T_{\{f=0\}}^{*}\mathbb{R}^{3}\cup\sqrt{-1}T_{\{x=y=z=0\}}^{*}
\mathbb{R}^{3}\cup\sqrt{-1}T_{\{x=y^{2}-z^{2}-4=0\}}^{*}\mathbb{R}^{3}
with

 f=(y-z)(y+z)x^{2}-2(y-z)(y+z)yx+(y-z)^{2}(y+z)^{2}+4z^{2},

where we denote by  T_{S}^{*}\mathbb{R}^{3} the closure of the conormal bundle of the regular part of a
real analytic set  S of  \mathbb{R}^{3}.

We can compute a holonomic system  M=D_{3}/I for  \overline{F}_{G}  ((x, 0), (y, z)) , which is too
complicated to show here. The characteristic variety of  \mathbb{J}I is

 \mathbb{C}^{3}\cup T_{\{f=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x=\int=0\}}^{*}
\mathbb{C}^{3}\cup T_{\{(x-y)^{2}-z^{2}-4=0\}}^{*}\mathbb{C}^{3}\cup T_{\{y^{2}-
z^{2}-4=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x-y-z=0\}}^{*}\mathbb{C}^{3}
 \cup T_{\{x-y+z=0\}}^{*}\mathbb{C}^{3}\cup T_{\{y-z=0\}}^{*}\mathbb{C}^{3}\cup 
T_{\{y+z=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x-2=0
\}}^{*}\mathbb{C}^{3}\cup T_{\{x+2=0\}}^{*}\mathbb{C}^{3}
 \cup T_{\{x=y^{2}-z^{2}-4=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x=y-z=0\}}^{*}\mathbb
{C}^{3}\cup T_{\{x=y+z=0\}}^{*}\mathbb{C}^{3}\cup T_{\{x-y=z=0\}}^{*}\mathbb{C}^
{3}\cup T_{\{y=z=0\}}^{*}\mathbb{C}^{3}
 \cup T_{\{x=y=z=0\}}^{*}\mathbb{C}^{3},

where we denote by  T_{Z}^{*}\mathbb{C}^{3} the closure of the conormal bundle of the regular part of an
analytic set  Z of  \mathbb{C}^{3}.

In order to guess the multiplicity and the exponent (order) of  \tilde{F}_{G} along the conormal
bundle of  f=0 at a non‐singular point, we compute the restriction of the holonomic

system  M to a generic line. For example, we can take  L=\{(x, y\backslash z)|y=1, z=2\}.
Thc rcstriction of  f to  L is  -3x^{2}+6x+25=-(3x^{2}-6x-25) , which have two real roots
 \alpha and   2-\alpha . Then  F(x)  :=\overline{F}_{G}((x, 0), (1,2)) is annihilated by a 5th order differential
operator

 P=147316552073926635122538062595769976812320x(x-3)

 \cross(x-2)(x+1)(x+2)(x^{2}-2x-7)(3x^{2}-6x-25)\partial_{x}^{5}
 +(2871432833964372040345167998282243508711x^{19}+\cdots)\partial_{x}^{4}+

The indicial polynomial at  \alpha is  s(s-1)(s-2)(s-3)(s+1) . Hence we have

 \overline{F}_{G} ((x, 0), (1_{:}2))=U(x-\alpha+\sqrt{-1}0)^{-{\imath}}

at  (\alpha, \sqrt{-1}dx) with a microdifferential operator  U of order  0.
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§4. Landau‐Nakanishi surface associated with Tı for general  m_{1},  m_{2} ,  m_{3}

Let  \overline{F}_{G}((x, 0), (y, z)) be the amplitude function associated with the triangle diagram
 T_{1} with general  m_{1},  m_{2},  m_{3} . As a microfunction, the support of  \overline{F}_{G}((x, 0). (y, z)) is

contained in, outside of  x=0 , the conormal bundle of the (Landau‐Nakanishi) surface
 f(x_{:}y, z)=0 with

 f=(y^{2}-z^{2})x^{4}+(-2y^{3}+(2z^{2}-2m_{1}^{2}+2m_{3}^{2})y)x^{3}
 +(y^{4}+(-2z^{2}+4m_{1}^{2}-2m_{2}^{2}-2m_{3}^{2})y^{2}+z^{4}
 +(2m_{2}^{2}+2m_{3}^{2})z^{2}+m_{1}^{4}-2m_{3}^{2}m_{1}^{2}+m_{3}^{4})x^{2}
 +((-2m_{1}^{2}+2m_{2}^{2})y^{3}+((2m_{1}^{2}-2m_{2}^{2})z^{2}-2m_{{\imath}}^{4}
 +(2m_{2}^{2}+2m_{3}^{2})m_{1}^{2}-2m_{3}^{2}m_{2}^{2})y)x

 +(m_{1}^{4}-2m_{2}^{2}m_{1}^{2}+m_{2}^{4})y^{2}+(-m_{1}^{4}+2m_{2}^{2}7n_{1}
^{2}-m_{2}^{4})z^{2}

By the coordinate transformation  (y+z, y-z)arrow(y, z),  f becomes

 f=zyx^{4}-(y+z)(zy+m_{1}^{2}-m_{3}^{2})x^{3}

 +\{(z^{2}+m_{1}^{2})y^{2}+2(m_{1}^{2}-m_{2}^{2}-m_{3}^{2})zy+m_{1}^{2}z^{2}+(m_
{1}^{2}-m_{3}^{2})^{2}\}x^{2}
‐  (m_{1}-m_{2})  (m{\imath}+m_{2})  (y+z)(zy+m_{1}^{2}-m_{3}^{2})x+(m_{1}-m_{2})^{2}(m_{1}+m_{2})^{2}zy.

The set of the singular points of  f=0 is given by

 \{f=f_{x}=f_{y}=f_{z}=0\}=\{y-z=-zx^{2}+(z^{2}+m_{1}^{2}-m_{3}^{2})x+(-m_{1}
^{2}+m_{2}^{2})z=0\}
 \cup\{x=m_{1}-m_{2}=0\}.

For example, if  m_{1}=1 ,  m_{2}=2,  m_{3}=3 (probably a generic case), then the local
 b‐function  b_{fp}(s) of  f at

 p=\pm(1,1,1), \pm(1, -2, -2), \pm(3, -1, -1), \pm(3,2,2)

is  (s+1)^{2}(2s+3) , which is the same as that of the Whitney umbrella  x^{2}-y^{2}z=0.
On the other hand, if  m_{1}=2,  m_{2}=m_{3}=1 , then the local  b‐function  b_{f,p}(s) of  f at

 p=\pm(\sqrt{3}, \sqrt{3}/2, \sqrt{3}/2) is  (s+1)^{3}(2s+3) in contrast to the  b‐function  (.s+1)^{2}(2s+3)
of the Whitney umbrella. This implies that the singularity at  p of  f is not analytically

equivalent to the Whitney umbrella. The local  b‐functions above were computed by

using a library file nn‐ndbf. rr of  Risa/Asir [  8].
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