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A formal solvability of a coupling equation
for PDEs of Briot‐Bouquet type

By

Yasunori OKADA* Reinhard SCHÄFKE,** and Hidetoshi TAHARA***

Abstract

We study couplings for a pair of a partial differential equation of Briot‐Bouquet type in
the t variable and its model equation, without assuming the analytic dependency in  t . In this
report, we concentrate on the formal solvability —the existence of a formal solution of a special
form—of a coupling equation on one side indicated as (  \Psi ) . The precise statement concerning
the convergence, together with a similar question on the reversed equation, that is, the coupling
equation on the other side indicated as (  \Phi ) , will be published elsewhere.

§1. Introduction

The notion of coupling equations was introduced by the third author [2], for a theory
of a class of transformations between nonlinear partial differential equations of normal
form in complex domains. It was extended in [3] and [4] for partial differential equations
of Briot‐Bouquet type.

In the original coupling theory, the analytic dependency in the independent variables
of the original equations plays an important role, and the solutions to a coupling equa‐
tion were treated as formal power series of a special form in infinitely many variables,

Recently, using a functional analytic approach with the notion of infinite dimen‐

sional holomorphy, we studied the coupling equations for partial differential equations
of normal form in the  t variable, without the requirement of the analytic dependency in
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 t . (See [1]). As for couplings for partial differential equations of Brio ‐Bouquet type in
the  t variable without analytic dependency in  t , we have not succeeded to introduce a

similar functional analytic approach for the solvability result. However, as for coupling
equations for an equation and its model equation, we succeed to solve them under a

weaker assumption of the dependency in  t.

In this report, we focus to illustrate the formal solvability of a coupling equation
(  \Psi ) .

§2. Coupling equations for PDEs of Briot‐Bouquet type

Let us briefly recall the solvability results in [3], of coupling equations for PDEs of
Briot‐Bouquet type in a complex domain.

A partial differential equation of an unknown  u(t, x)

(F)  t \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x})
with a given differentiable function  F  (t, x. z_{0}, z_{1}) of four variables in a neighborhood of
the origin is said to be of Briot‐Bouquet type in the  t variable, if  F satisfies the so‐called
Briot‐Bouquet condition

(BB)  F(0, x, 0,0)=0,   \frac{\partial F}{\partial z_{1}}(0, x, 0,0)=0.
In this case, the characteristic exponent of (F) is defìned by

(CE)   \lambda(x):=\frac{\partial F}{\partial z_{0}}(0, x, 0,0) ,

and  F is written as

(2.1)  F(t, x, z_{0}, z_{1})= \sum_{k\geq 1}F_{k}(t, x, z_{0}, z_{1})=a(x)t+\lambda(x)
z_{0}+F_{\geq 2}(t_{:}x, z_{0}, z_{1}) .

Here  F_{k} denotes the homogeneous part of degree  k in the Taylor expansion of  F in
 (t, z_{0}, z_{1}) variables, and  F_{\geq 2}= \sum_{k\geq 2}F_{k}.

Among such equations sharing the same characteristic exponent  \lambda(x) , a simple ex‐
ample is

(M)  t \frac{\partial v}{\partial t}=\lambda(x)v,
which is actually a linear ordinary differential equation in  t with a parameter  x . We
call (M) a model equation of (F).

In [3], third author considered the case that  F is a holomorphic function in  (t_{:}x, z_{0}, z_{1})
in a neighborhood of the origin in  \mathbb{C}^{4} , and studied couplings between (F) and (M).
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Actually, he considered the correspondences

 \Phi :  u\mapsto v,  v(t, x)= \Phi[u](t_{:}x):=\phi(t, x, ((\frac{\partial}{\partial x})^{i}u(t, x))
_{i\in N}) ,

 \Psi :  v\mapsto u,  u(t, x)= \Psi[v](t, x):=\psi(t, x, ((\frac{\partial}{\partial x})^{i}v(t_{:}x))
_{i\in \mathbb{N}}) ,

defined via  \phi(t, x, z) and  \psi(t, x, z) with  z=(z_{i})_{i\in \mathbb{N}}=(z_{0}, z_{1}, \ldots) , which are regarded

as “holomorphic functions of infinitely many variables and studied the condition for
 \Phi to transform solutions of (F) into those to (M), and that for  \Psi to transform solutions
vice versa. Such conditions were described as coupling equations:  \phi(t, x, z) and  \psi(t, x, z)
should formally satisfy

(  \Phi )  t \frac{\partial\phi}{\partial t}+\sum_{m\in N}D^{m}F(t, x, z_{0}, \ldots, 
z_{7n+1})\cdot\frac{\partial\phi}{\partial z_{m}}=\lambda(x)\phi,
(  \Psi )  t \frac{\partial\psi}{\partial t}+\sum_{m\in \mathbb{N}}D^{7\gamma t}
(\lambda(x)z_{0})\cdot\frac{\partial\psi}{\partial z_{m}}=F(t, x, \psi, D\psi) ,

where  D denotes a formal vector field of infinitely many variables, defined by

 D= \frac{\partial}{\partial x}+\sum_{i\in N}z_{i+1}\frac{\partial}{\partial 
z_{i}}.
A notion of ’holomorphic functions of infinitely many variables” for  \phi and  \psi in this

situation was interpreted as a formal power series involving infinitely many variables

 (t, z) of form

(2.2)   \phi, \psi\in\sum_{k\geq 1}\mathcal{O}_{x}(\mathbb{D}_{R})[t, z_{0}, . . . 
z_{k-1}]_{k},
where  \mathcal{O}_{x}(\mathbb{D}_{R}) denotes the space of holomorphic functions on  \mathbb{D}_{R}  :=\{x\in \mathbb{C}||x|<R\},
and  \mathcal{O}_{x}(\mathbb{D}_{R})[t, z_{0:}\ldots, z_{k-1}]_{k} denotes the space of homogeneous polynomial of degree  k

in the  (t, z_{0}, \ldots : z_{k-1}) variables with coefficients in  \mathcal{O}_{x}(\mathbb{D}_{R}) . In other words,  \psi and  \phi

admit decompositions into homogeneous parts and into monomials in  (t, z) of form

(2.3)   \psi(t, x, z)=\sum_{k\geq 1}\psi_{k}(t, x, z_{0}, \ldots : z_{k-1})=
\sum_{k\geq 1_{(ij)\in N\cross \mathbb{N}^{k}}},  \sum \psi_{ij}(x)t^{x}z_{0}^{j0}\cdots z_{k^{k}-1}^{j-1},
 i+|j|=k

For example, the homogeneous part of degree 1 of  \psi reads

 \psi_{1}(f, x, z_{0})  =\psi ı  0(x)t+\psi_{0,1}(x)z_{0}.

By substituting these decompositions, we can reduce the coupling equations (  \Phi ) and
(  \Psi ) into recursive relations in  k\in \mathbb{N} . In fact, for example, the coupling equation (  \Psi )
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for  F of form (2.1) reads

  \{t\frac{\partial}{\partial t}+\lambda(x)(\sum_{m\in \mathbb{N}}z_{m}
\frac{\partial}{\partial z_{m}}-1)+\sum_{7n\in N}\sum_{p=0}^{m-1}\lambda_{m,p}
(x)z_{p}\frac{\partial}{\partial z_{m}}\}\psi
 =a(x)t+F_{\geq 2}(t, x, \psi, D\psi) ,

where  \lambda_{7\tau\iota,p}(x)  :=(\begin{array}{l}
m
p
\end{array})  ( \frac{d}{dx})^{rn-p}\lambda(x) , and the corresponding recursive relation for  \psi_{k}=

  \sum_{i+|j|=k}\psi_{i,j}(x)t^{i}z^{j} is

  \sum \{i+\lambda(x)(|j|-1)\}\psi_{i,j}(x)t^{i}z^{j}
 i+|j|=k

 +  \sum \sum\sum^{m-1}j_{m}\lambda_{m,p}(x)\psi_{i,j}(x)t^{i}(z_{p}/z_{m})z^{j}
 z+|j|=krn\in Np=0

 = terms determined by  F and  \{\psi_{\ell}\}_{1\leq l<k}.

We can interpret the left hand side as a linear operator with diagonal 1st term and off‐

diagonal 2nd term, applied to a family of unknowns  \psi_{i} , for  (i.j)\in \mathbb{N}\cross \mathbb{N}^{k},  i+|j|=k.
Therefore, if  i+\lambda(x)(j-1) never vanishes for any  (i_{j})\in \mathbb{N}\cross \mathbb{N}\backslash \{(0, 0), (0,1)\} and

for any  x under consideration, the coupling equation (  \Psi ) admits a formal power series
solution of form (2.3) satisfying  \psi_{0,1}(x)=\beta(x) for any holomorphic function  \beta(x) .

In [3], the coupling equation (  \Phi ) was also studied and similar formal power series
solutions were constructed. Moreover, under so‐called the Poincaré condition on the

characteristic exponent  \lambda(x) :

(P)  \exists\sigma>0, \exists R>0, \forall x\in\overline{\mathbb{D}}_{R}, \forall(i,
j) \in \mathbb{N}\cross \mathbb{N}\backslash \{(0,0), (0.1)\},
 |i+\lambda(x)(j-1)|\geq\sigma(i+j) ,

the convergence results were proved for such formal solutions  \phi and  \psi , and some appli‐
cations were obtained.

§3. A case with non‐analytic dependency in  t

We study the case that  F is not necessarily analytic in  t . Let  F(t, x, z_{0}, z_{1}) be a

continuous function defined in a neighborhood of the origin in  \mathbb{R}_{t}\cross \mathbb{C}_{(x,z_{0},z_{1})}^{3} , which is

holomorphic in  x,  z_{0} and  z_{1} . If moreover  F satisfies the Briot‐Bouquet condition (BB),
the equation (F) is similarly said to be a PDE of Briot‐Bouquet type in the  t variable
with the characteristic exponent  \lambda(x) defined by (CE). Note that we shall further pose
a differentiability assumption on  F in the  t variable in order to study the solvability
of coupling equations. However, for introducing the notion of couplings, it suffices to
assume the continuity in  t.
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Between the equation (F) and the model equation (M) sharing the same characteristic
exponent  \lambda(x) , the notion of the coupling can be introduced, and we get the same

coupling equations (  \Phi ) and (  \Psi ) , completely in the same manner as in the case of complex
analytic dependency in Section 2.

On the other hand, we can not expand  F into the Taylor series in the  (t, z_{0}, z_{1})
variables like (2.1). Moreover, we can neither expect our functions  \phi and  \psi to be a
formal power series in the  (t, z) variables like (2.2) and (2.3).

Now we pose the assumption that  F\in C_{t}^{7n+1}\mathcal{O}_{(x,z_{0},z_{1})} for a positive integer  m , and
that

 0<{\rm Re}\lambda(0)<m, \lambda(0)\not\in \mathbb{Z}.

Note that the differentiability assumption for  F can be relaxed to  F\in C_{t}^{m}\mathcal{O}_{(x,z_{0},z_{{\imath}})} by

introducing the notion of “continuous solution to the equation (  \Psi ) , while we skip it
here. Moreover, in this report, we restrict ourselves to the case  m=1 , for the sake of

simplicity. That is, we assume that  F is  C^{2} in  t , and that the characteristic exponent
 \lambda(x) satisfies  0<{\rm Re}\lambda(0)<1 . In this case,  F can be written as

(3.1)  F(t, x, z_{0}, z_{1})=a(t, x)t+ \lambda(x)z_{0}+\sum_{k\geq 2}F_{k}(t, x, z_{0}
, z_{1}) ,

(3.2)  F_{k}(t, x, z_{0}, z_{1})= \sum_{i+j_{0}+j_{1}=k}F_{t_{:}j0,j_{1}}(t.x)t^{i}
z_{0}^{j_{0}}z_{1^{1}}^{J},
instead of (2.1), with  a(t_{:}x)_{:}F_{i,j_{0j_{1}}},(t, x)\in C_{t}^{1}\mathcal{O}_{x} . Note that it is possible to take the
sum only for  i=0,1 in (3.2), and that the expansion (3.1) is not unique. As for an
example of the non‐uniqueness, a function  tz_{0}^{2} can belong to  F_{3} as a monomial  t^{1}z_{0}^{2}z_{1}^{0}
with a coefficient 1, or alternatively to  F_{2} as a monomial  t^{0}z_{0}^{2}z_{1}^{0} with a coefficient  t.

Note also that the hypothesis  0<{\rm Re}\lambda(0)<1 implies

 (RP_{1})  \exists\sigma>0,  \exists R>0,  \forall x\in\overline{\mathbb{D}}_{R} ,  \forall(i, j)\in \mathbb{N}\cross \mathbb{N}\backslash \{(0,0), (0.1)\},

 {\rm Re}\{i+\lambda(x)(j-1)\}\geq\sigma(i+j) ,

which is a stronger condition than (P).
In this situation, we want to find a solution  \psi to (  \Psi ) , of form

(3.3)   \psi(t, x_{:}z)=\sum \sum \psi_{i,j}(t, x)t^{i}z_{0}^{j0}\cdots z_{k-1}^{jk-1}
,
 k\geq 1_{(i,j)\in I\searrow\cross \mathbb{N}^{k}}

 i+|j|=k

with  \psi_{i,j}(t, x)\in C_{t}^{1}\mathcal{O}_{x} instead of (2.3).
Actually, we study the following equation:

 (\hat{\Psi})  t_{d} \frac{\partial\hat{\psi}}{\partial t_{d}}+t_{s}\frac{\partial\hat{\psi}}{
\partial t_{s}}+\sum_{\tau n\in N}D^{m}(\lambda(x)z_{0}) .   \frac{\partial\hat{\psi}}{\partial z_{n\tau}}=\hat{F}(t_{d}, t_{s}, x,
\hat{\psi}, D\hat{\psi}) ,
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with a given function

(3.4)   \hat{F}(t_{d}, t_{s}, x, z_{0}, z_{1})=a(r_{d}, x)t_{s}+\lambda(x)z_{0}+
\sum_{k\geq 2}\hat{F}_{k}(t_{d}, t_{s}, x, z_{0}, z_{1}) ,

 \hat{F}_{k}(t_{d}, t_{s}, x, z_{0}, z_{1})=   \sum  F_{i}  j0,  j ı  (t_{d}, x)t_{s}^{\dot{i}}z_{0^{0}}^{j}z_{1}^{\dot{j}_{1}}
 ?+jo+j_{1}=k

and an unknown

(3.5)   \hat{\psi}(t_{d}, t_{s}, x, z)=\sum_{k\underline{>}1}\hat{\psi}_{k}(t_{d}, 
t_{s}, x, z_{0,\ldots:}z_{k-1})
 = \sum   \sum  \psi_{i_{j}},(t_{d}, x)t_{s}^{i}z_{0}^{j_{0}} . . .  z_{k-1}^{jk-1},

 k\geq 1_{(i,j)\in N\cross N^{k}}
 i+|j|=k

where  F_{i,j_{0},j_{1}} and  \varphi_{i,j} are given in (3.1) and in (3.3), respectively. For a solution  \hat{\psi} to
the equation  (\hat{\Psi}) , we can show that  \psi(t, x, z)  :=\hat{\psi}(t, t, x, z) solves the equation (  \Psi ) .

Theorem 3.1. Let  \beta(x) be a germ of a holomorphic function in  x in a neighborhood
of  x=0 . Then, there exists a unique formal solution  \hat{\psi} of form (3.5) to the equation
 (\hat{\Psi}) , satisfying  \psi_{0,1}(t_{d}, x)=\beta(x) .

Remark. For any formal solution  \hat{\psi} of form (3.5) to the equation  (\hat{\Psi}),  \psi_{0,1}(t_{d}, x) is
necessarily independent of  t_{d}.

Let us give the idea of the proof.

The equation  (\hat{\Psi}) reads, for the homogeneous part of degree 1,

 (t_{d} \frac{\partial}{\partial t_{d}}+1-\lambda(x))\psi_{1,0}(t_{d}, x)t_{s}+
t_{d}\frac{\partial}{\partial t_{d}}\psi_{0,1}(t_{d}, x)z_{0}=a(t_{d}, x)t_{s},
or equivalently

 (t_{d} \frac{\partial}{\partial t_{d}}+1-\lambda(x))\psi_{1,0}(t_{d}, x) =
a(t_{d}, x) , t_{d}\frac{\partial}{\partial t_{d}}\psi_{0,1}(t_{d}, x) =0,
and for the higher degree parts,

  \sum_{i+|_{j}|=k}\{t_{d}\frac{\partial}{\partial t_{d}}+i+\lambda(x)(|j|-1)\}
\psi_{i,j}(t_{d}, x)t^{i}z^{j}
 + \sum_{i+|j|=k}\sum_{\tau n\in N}\sum_{p=0}^{m-1}j_{\gamma n}\lambda_{rn,p}(x)
\psi_{i,j}(t_{d}.x)t^{i}(z_{p}/z_{\tau n})z^{j}
 = terms determined by  \hat{F} and  \{\hat{\psi}_{p}\}_{1\leq\ell<k}.
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Therefore, we have  \psi_{01}(t_{d}, x)=\beta(x) for an arbitrary holomorphic function  \beta(x) , and

the other  \psi_{i,j}a\iota e determined uniquely in a recursion according to the order for  (i,j)
determined by  i+|_{j}| and   \sum_{p}(p+1)j_{p} , since  (t_{d} \frac{\partial}{\partial t_{d}}+\mu(x)) with  {\rm Re}\mu(x)>0 admits
an inverse

 f(t_{d}, x) \mapsto\int_{0}^{1}q^{\mu(x)-1}f(qt_{d}, x)dq,
for  C_{t}^{1}\mathcal{O}_{x} ‐functions.
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