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A method for computing generic Lé numbers
associated with non-isolated hypersurface singulrities

By

Shinichi TAJIMA*

Abstract

Lé cycles and Lé numbers introduced by D. Massey are considered in the context of symbolic
computation. A method for computing generic Lé numbers is proposed. Keys of the proposed
method are the use of parametric saturations in polynomial rings and of parametric local
cohomology systems.

1. Introduction

In 1991, D. Massey studied non-isolated hypersurface singularities and introduced
the concept of Lé cycles and that of Lé numbers ([8], [9]). The Lé numbers are gener-
alization of the Milnor number. D. Massey showed, among other things, in particular
that the alternating sum of Lé numbers is equal to the reduced Euler characteristic of
the Milnor fibre. He also gave in [8], [9], a method for computing Lé cycles and Lé
numbers. However, as Lé numbers depend on the choice of coordinate systems used in
computation, they are not invariants of singularities. In contrast, generic Lé numbers
are complex analytic invariants of singularities (remark 9.1 in [10]). A problem comes
from fact that no effective way for computing generic Lé numbers is known.

In a series of papers, by using the langage of derived category and the theory of
perverse sheaf and micro-support, D. Massey has developed and generalised the theory
of Lé cycles and Lé numbers in more general context. Nowadays, Lé cycles and Lé
numbers are extensively studied by several authors ([1], [2], [4], [6]). Note in particular,
as T. Gaffney pointed out, that Lé cycles and generic Lé numbers are closely related
with holonomic D-modules associated with hypersurface singularities ([3], [10]) Tt is
therefore desirable to establish an effective method for computing generic Lé numbers.
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We propose in this paper an effective method for computing generic Lé numbers.
The main idea of our approach is the use of a familly of coordinate systems. Key tools
are parametric Grobner systems [13], [19] and parametric local cohomology systems
[15]. We show that these two tools allow us to compute generic Lé numbers without
choosing a generic coordinate system.

§2. DPolar variety and Lé cycle

In this section, we recall some basics on polar varieties and Lé cycles.

Let X be an open neighbourhood of the origin O in C**!. Let h be a holomorphic
function defined on X, S the hypersurface S = {x € X | h(z) = 0} defined by h. Let
Y denote the singular set of S :

Bh =z € 5| hle) = 5-(0) = (@) = -+ = 2 () = 0}

Let s be the dimension at O of the singular set .

Now let us breafly recall a method given by D. Massey for computing Lé cycles and
Lé numbers. Suppose that a system of coordinates z = (21, 21, ..., 2,) is given. Assume
that it is generic enough.

Remark D. Massey introduced in [8] several notion of genericity. We refer the
reader to [8], [9] for details.

For s <k <n, set
oh  Oh Oh | (k)

) I =g c ox

(k)
JHR) = ,
me = G B 92

k k k k
Zi =V, T =20

For k = s, set
s Oh s+1 s s oo .
J,(li = (a,ll(-:z ", Il(‘;.),, = J,(l; - I . (saturation)
ZL =V, T =vag))
and

L) = Jne(s)  (I5) ), AL = V().
For 0 < k < s, set

k oh k+1 k k 00
5 = (B
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(k k k
Z v, o =va® )

and
k k k k
LY = T (k) ()=, AL = V().
For k =0, set
O _ (Oh )y S0 _ (0
h,z = (820 th) h,z ( )7
and

0 0 0
L) = Jn2(0), AL = VI,
Fh’fl and A;i are called polar variety and Lé cycles (or Lé variety) respectively.

Under the genericity condition, we have

Proposition 2.1. (/8], [9])
0o k

(i) dlmAg; =k _

(i) I‘Efjl) = Uz‘SkAs,)z

(lll) X = UkSSA(k)

h,z

The intersection numbers at the origin O

’y}(,_kz) (V(Z()vzla" Zk— 1) F(k)) O, )\Elk:l:(V(ZO,Z]_,...,Z}C_:[)'Aglk:i)(j,

are called polar multiplicity and Lé number respectively.
Note that if we define

:?Z = (V(20, 21y s 2k—1) - foi)o

then we have
Proposition 2.2. (/10])
(7’) Chz_’yhz_*_/\ﬁlki’ ISk‘
0
(ii) Gt =Ny,

The result above will be used in the next section for computing generic Lé numbers.
The following example is taken from a paper of A. Zaharia [20].

Example 2.3.

Let h(zx1,22,y1,y2) = ¥i(y1 + 23 + 23) + y3 and set S = {z € C* | h(2) = 0}, where
z = (21,Z2,Y1,y2). The singular locus £y , of the hypersurface S is

She = {(z1,72,0,0) | 1,7, € C} = C? c CL

The dimension s of ¥y .. is equal to 2.
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oh
T = (50 = ). 215 = V).
Y2

11(‘?:) = (y2), T}) = {(z1.22.91,0) | 21,2251 € C}.
Since . oh
Ihw = (5;7?!2) = (2(2F + 23)y1 + 31, v2),
we have
]I(‘i).f = ‘]i(fl I = (2(2} + 23) + 3y1. v2), If(lQZ = (y1,¥2),
and

Uy = {(r1,22,1,0) | 223 +23) + 3y = 0}, A}2) = {(21,22,0,0) | 21,22 € C}.

2 2
($1,$2,11(~h)'1) = (Il,Iz,ylvyz), (1171’2,11(1;) = (33171’27?!171/2)’
the polar multiplicity 'y,(fi and the Lé number /\5121 are

Fyi(l?i = dimc(ox/($17$27y17y2) =1, )‘Eil = dimC(OX/(Il,IQ,yl,yg) =1.

1 2
As ‘]i(L,:?c = ((?_3?2’ Il("h)m> = (Z2y%v 2(“’“% + .L%) + 3y1,y2),

I =g = a3y za,), L) =00 (1) )% = (2234223431, 13, v2).

h,

From
(1517$272I§+3y1792) = (117127y17y2)7 (-E172'L?+‘Eg+3yl7y%v y2) = ($1»2$§+3y17y%:y2)7

we have

’Y}(:i = dimC(OX/(fhm%yla 92) = ]-7 /\glll = dlmC(OX/(II,QIg + 3y1y?,y2) = 4.

r(l)

h,x

= {(z1,0,41,0) | 223 + 3y; = 0}, ALY = {(z1,22,0,0) | 23 4+ 22 = 0}.

h.x

Finally, J\) = (2, 25,20% + 3y1,2) = (239}, 02,223 + 3y1,32) and 1)) = J\°),

311’

we have
Ay =8
by direct computation.

Lé numbers A;ﬁi, /\511; )\510’1 are 1,4,8. Note that since (,(121 C,(lli and C}(L(.);’ are equal
to 2.5 and 8, it follows from (’y}(lzi,ﬂ/}(lli) = (1,1) that ()\;1225, )\511;)\20;) = (1,4, 8) imme-
' ' )

NXp.

diately. Note also, as a set we have Aglll = I’;fz
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For a relation with holonomic D-modules associated with b-functions, we refer the
readers to [18].

§3. algorithm

We give an outline of an algorithm for computing generic Lé numbers. The main idea
of the proposed method is the use of a family of linear change of coordinate systems.
Key tools utilized to realise the idea above are parametric Grobner systems [13], [14]
and parametric local cohomology systems [15], [17], [19].

For a given system of coordinates, z = (zq, z1,... 7,) in C"*! weset 2 = (29, 21, ..., 2n)
by

To =20+ to,121 +lo22z2 + - +tonzn

x1 =21 tt1022 +t1 323+ +tinzn

Ty = 2n
where t; ; are parameters.

Algorithm
input h(r) : polynomial
output (A& AE=D AMD AO) : generic Lé numbers

stepl. compute the radical of the Jacobi ideal Iy , = \/( 2h Oh Oh )

» Dz, Oxn
step2. compute the dimension s at O of the singular set X.

step3. Iy : rewrite Ix , in terms of variable z.

step4. set J(H'l = (35:11’ 62}12’ ) [FSH) J(QH)

stepd. for k =sto 1,
J(k NCL T SN I(k) J(k) I (saturation
Dz’ r, b
Ck = (V(ZO7 21, ""zk-—l) . Z}(l ))Ov A/(k) = (V(207Z17 ey Zk—l) . Fglk))(?a
where
k k k k
2, =V, T = v ).
_ (k)
AE) = (k) — ~(R) [AR)| = ry’nye
step6, set Jf(L = (22 I 1))

320
compute A9 = multzplzcityo(JJ(O)), |A©)]
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