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The confluent hypergeometric function and WKB
solutions

By

Toshinori TAKAHASHI*

Abstract

Explicit formulae which describe relations between the confluent hypergeometric function
and WKB solutions are found.

§1. Introduction

The purpose of this paper is to describe a relation between the confluent hypergeo‐
metric function and WKB solutions when the parameters live in a specific region and
an independent variable lives in a specific Stokes region. As is weıl known, the confluent

hypergeometric function, which is denoted {}_{1}F_{1}  (a, c, ; z) below, is an entire function and
is a solution to the following Kummer’s equation:

(1.1)   \frac{d^{2}w}{dz^{2}}+(c-z)\frac{dw}{dz}-aw=0
The equation we mainly consider in this paper is the following differential equation:

(1.2)  x \frac{d^{2}w}{dx^{2}}+(\gamma+\gamma_{0}\eta^{-1}-x)\eta\frac{dw}{dx}-
\eta^{2}(\alpha+\alpha_{0}\eta^{-1})w=0,
which is obtained by setting

(1.3)  a=\alpha_{0}+\eta\alpha, c=\gamma_{0}+\eta\gamma, z=\eta x

in (1.1). On the other hand, WKB solutions  \psi_{\pm} are defined as solutions (which are
formal power series in  \eta^{-1} ) for the differential equation

(1.4)  (- \frac{d^{2}}{dx^{2}}+\eta^{2}R)\psi=0,
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where  R is specified in the subsequent section. We call (1.4) the Whittaker.s equation
with a large parameter. The equation (1.4) is obtained by eliminating the first order
term of (1.2). The WKB solution is Borel summable under some suitable assumptions.
The Borel sums are analytic solutions of (1.4). Here the following natural question
arises: What is the relation between the solution of (1.4) coming from the confluent
hypergeometric function and the Borel sums of WKB solutions.

In [21], a similar question for the Gauss hypergeometric function and WKB solutions
has been treated and partially solved by M. Tanda. She compared the monodromy
matrices, and as a result, obtained a relation between a basis of the solution space
consisting of hypergeometric functions and another basis given by the Borel sums of
WKB solutions up to multiplicative constants. After her work, we treated the same

question and succeeded in determining the constants in [4] In that work, we made full
use of the WKB solutions normalized at one of the regular singular points. We use a
similar method in this work. To obtain a relation between the confluent hypergeometric
function and WKB solutions normalized at the turning point, we have to compute
the Voros coefficients. Although an explicit forms of the Voros coefficients for the

confluent hypergeometric differential equation with a large parameter are given in [5],
it is done only for the case where  \alpha_{0}=1/2 and  \gamma_{0}=1 in (1.3). We shall show that
the Voros coefficients for the Whittaker equation (14) can be computed if we suppose
the parameters (1.3). To this end, the definition of the Voros coefficients is slightly
modified.

The study on this topic is done by the author in [19]. All proofs of theorems that
wilı appear below are given there,

§2. Kummer’s equation with a large parameter

We consider the following differentiaı equation:

(2.1)  x \frac{d^{2}w}{dx^{2}}+(\gamma+\gamma_{0}\eta^{-1}-x)\eta\frac{d}{d\tau}-\eta^
{2}(\alpha+\alpha_{0}\eta^{-1})w=0,
which is obtained by setting  a=\alpha_{0}+\eta\alpha,  c=\gamma_{0}+\eta\gamma_{:}z=\eta x in the Kummer equation:

(2.2)   \frac{d^{2}w}{dz^{2}}+(c-z)\frac{dw}{dz} -- aw=0.
Here  \alpha_{0},  \gamma_{0},  \alpha and  \gamma are complex parameters. As is well known, the equation (2.ı)
has a regular singular point at the origin and an irregular singular point at  \infty , which
 a\iota e represented by  b_{j}(j=0,2) , namely,  b_{0}=0,   b_{2}=\infty . In order to study (2.1) By
eliminating the first order term of (2.1) by   \psi=x\frac{\gamma_{0}+\gamma\eta}{2}\exp(-\frac{x\eta}{2})w , we get the following
Whittaker‐type equation:

(2.3)  (-  \frac{d^{2}}{dx^{2}}+\eta^{2}R)\psi=0,
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where  R is a polynomial in  \eta^{-1} of the form  R=R_{0}+\eta^{-1}R_{1}+\eta^{-2}R_{2} with

 R_{0}= \frac{x^{2}+2x(2\alpha-\gamma)+\gamma^{2}}{4x^{2}},  R_{1}= \frac{(2\alpha_{0}-\gamma_{0})x+\gamma(\gamma_{0}-1)}{2x^{2}}.  R_{2}= \frac{\gamma_{0}^{2}-2\gamma_{0}}{4x^{2}}.
We set the following conditions:

(2.4)  \alpha\gamma(\alpha-\gamma)\neq 0,

(2.5)  {\rm Re}\alpha{\rm Re}\gamma{\rm Re}(\alpha-\gamma)\neq 0.

The first condition ensures that there exist two distinct turning points  a_{0} and  a_{1} and the

second condition implies that there is no Stokes curve which connects turning points.

The turning points are understood to be simple zeros of  R_{0}dx^{2} which are different from

 b_{0} and  b_{2}.

The WKB solutions normalized at a turning point  a are defined as

  \psi_{\pm}=\frac{1}{\sqrt{T_{odd}}}\exp(\pm\int_{a}^{x}T_{odd}dx) ,

where  T_{odd} is the odd order part with respect to  \sqrt{R_{0}} of the formal solution  T of the

Riccati‐type equation

  \frac{dT}{dx}+T^{2}=\eta^{2}R.
Stokes curve emanating from a turning point  a is defined as

 {\rm Im} \int_{a}^{x}\sqrt{R_{0}}dx=0.
Under the above condition, the WKB solutions normalized at the base point of the

Stokes curve are Borel summable in each region surrounded by the Stokes curves em‐

anating from the base point(Stokes regions). The Borel sums are analytic solutions of
(2.3). In this paper, we consider only the case where the parameters  \alpha,  \gamma are contained
in

 \Pi_{1}:=\omega_{1}\cup\iota(\omega_{1}) ,

where

 \omega_{1}=\{(\alpha, \gamma)\in \mathbb{C}^{2}|0<ffi\alpha<{\rm Re}\gamma\}
and

 \iota(\omega_{1})=\{(\alpha, \gamma)\in \mathbb{C}^{2}|{\rm Re}\gamma<{\rm Re}
\alpha<0\}

and the branch of  \sqrt{R_{0}} is chosen so that, if  {\rm Re}\gamma>0(<0) , we have

  \sqrt{R_{0}}\sim\frac{\gamma}{2x} x=b_{0},
(2.6)   \sqrt{R_{0}}\sim\frac{1}{2} x=b_{2}.

 ( \sqrt{R_{0}}\sim\frac{-1}{2})
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and the Stokes curve has the following form (Figure 1):

Figure 1

§3. Voros coefficients and their Borel sums

Let  C_{j}(j=0,2) be a path of integration starting from  b_{j} , going around  a_{j} in a

counterclockwise manner and going back to the point of departure. We also have  T_{odd,\leq 0}
denote the sum of the first two terms of  T_{odd} . Since  b_{j}(j=0,2) are singular points,

the series  T_{odd} is not integrable on  C_{J} . However, since the principal parts of  T_{odd} and

that of  T_{odd,\leq 0} coincide,  T_{odd}-T_{odd.\leq 0} is integrable. For that reason, we define the
Voros coefficients as follows:

Definition 3.1. Let  W_{j}=W_{j}(\alpha, \gamma_{:}\eta)(j=0,2) denote the formal power series in

 \eta^{-1} defined by

(3.l)   \frac{1}{2}\int_{C_{j}}(T_{odd}-T_{odd.\leq 0})dx.
We call  W_{j} the Voros coefficient of (2.3) with respect to  b_{j} for  j=0,2.

The explicit forms of  W_{j}(j=0,2) are given by the following theorem.

Theorem 3.2. The Voros coefficients  W_{j}(j=0,2) have the following forms:

(3.2)  W_{0}= \frac{1}{2}\sum_{n=2}^{\infty}\frac{(-1)^{n-1}\eta^{1-n}}{n(n-1)}
(\frac{B_{n}(\alpha_{0})}{\alpha^{n-1}}+\frac{B_{n}(\gamma_{0}-\alpha_{0})}
{(\gamma-\alpha)^{n-1}}-\frac{B_{n}(\gamma_{0})+B_{n}(\gamma_{0}-1)}{\gamma^{n-
1}}) ,

(3.3)  W_{2}= \frac{1}{2}\sum_{n=2}^{\infty}\frac{(-1)^{n1}\eta^{1-n}}{n(n-1)}
(\frac{B_{n}(\alpha_{0})}{\alpha^{n-1}}-\frac{B_{n}(\gamma_{0}-\alpha_{0})}
{(\gamma-\alpha)^{n-1}}) .

Here  B_{n}(x) denotes the Bernoulli polynomial defined by

(3.4)   \frac{te^{xt}}{e^{t}-1}=\sum_{n=0}^{\infty}B_{n}(x)\frac{t^{n}}{n!}.
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We can also compute their Borel sums by a streightforward calculation. To get
the Borel sums of the Voros coefficients  W_{j}(j=0,2) , we need to consider the Borel

summability of them. In our case, they are Borel summable when the parameters belong
to  \Pi_{1}.

Theorem 3.3. The Voros coefficients  W_{j}(j=0,2) are Borel summable in  \omega_{1} and

in  \iota(\omega_{1}) . The Borel sums  W_{j}^{1} of  W_{j} in  \omega_{1} have the following form:

(3.5)  W_{0}^{{\imath}}= \frac{1}{2}\log\frac{\Gamma(\gamma_{0}+\gamma\eta)
\Gamma(\gamma_{0}-1+\gamma\eta)\alpha^{\alpha_{0}+\alpha\eta-\frac{1}{2}}(\gamma
-\alpha)^{\gamma 0-\alpha_{0}+(\gamma-\alpha)\eta-\frac{1}{2}}}
{\Gamma(\alpha_{0}+\alpha\eta)\Gamma(\gamma_{0}-\alpha_{0}+(\gamma-\alpha)\eta)
\gamma^{2(\gamma 0+\gamma\eta-1)}\eta^{\gamma 0+\gamma-1}}+\frac{\gamma\eta}{2},
(3.6)  W_{2}^{1}= \frac{1}{2}\log\frac{\Gamma(\gamma_{0}-\alpha_{0}+(\gamma-\alpha)
\eta)\alpha^{\alpha_{0}+\alpha\eta-\frac{1}{2}}\eta^{2\alpha 0-\gamma 0+(2\alpha
-\gamma)\eta}}{\Gamma(\alpha_{0}+\alpha\eta)(\gamma-\alpha)^{\gamma 0-\alpha_{0}
+(\gamma-\alpha)\eta-\frac{1}{2}}}-\frac{2\alpha-\gamma}{2}\eta.

§4. Statements of the main results

Now we state the main theorem.

Theorem 4.1. Let  \Psi_{\pm}^{I} be the Borel sums of  \psi_{\pm} normalized at  a_{0} in the Stokes
region I. Under the above condition, the following relations hold:

(i) If  (\alpha, \gamma)\in\omega_{1} , we have

 {}_{1}F_{1}(a, c; \eta x)=\frac{\Gamma(c)e^{-\frac{\pi}{2}(c-a-\frac{1}{2})}}
{\sqrt{2}\Gamma(a)^{\frac{1}{2}}\Gamma(c-a)^{\frac{1}{2}}\eta^{\frac{c1}{2}}}x^{
-}e^{g}2\Psi_{+}^{1}
 ({\rm Im}(\gamma-\alpha)<0) .

(ii) If  (\alpha, \gamma)\in\iota(\omega_{1}) , we have

 {}_{1}F_{1}(a, c;\eta x)=x^{-\frac{c}{2}}e^{\frac{\eta x}{2}}(A_{0}^{\iota 1}
\Psi_{+}^{I}+A_{1^{1}}^{l}\Psi_{-}^{I}) ,

where

 A_{0}^{\iota 1}=i \frac{s\dot{{\imath}}n(c-a)\pi\sin\frac{c\pi}{2}\Gamma(c)
\eta^{\frac{1}{2}(a-c+1)}}{\sqrt{2\pi}\sin^{\frac{1}{2}}a\pi\sin\frac{(2a-c)\pi}
{2}\Gamma(a)^{\frac{1}{2}}e^{\frac{\pi z}{2}(a-\frac{1}{2})}}(e^{c\pi i\in}+
\frac{sia\pi}{in(,-a)\pi}) ,

 A_{1}^{\iota{\imath}}=-iA_{0}^{\iota{\imath}}+ \frac{\sin^{\frac{1}{2}}
a\pi\Gamma(c)\Gamma(1+a-c)^{\frac{1}{2}}e^{\frac{\pi \mathfrak{i}}{2}(a-2c+1)}}{
\sqrt{2\pi}\Gamma(a)^{\frac{1}{2}}\eta^{\frac{1-c}{2}}}
 (\epsilon=sgn({\rm Im} x) ,  {\rm Im}\alpha>0 and  {\rm Im}\gamma>0) .

In Theorem 4.1,  a and  c denote  \alpha_{0}+\alpha\eta and  \gamma_{0}+\gamma\eta respectively.
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